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ABSTRACT 

Instruction scheduling algorithms are used in compilers to reduce run-time delays for the 
compiled code by the reordering or transformation of program statements, usually at 
the intermediate language or assembly code level. Considerable research has been 
carried out on scheduling code within the scope of basic blocks, i.e., straight line 
sections of code, and very effective basic block schedulers are now included in most 
modern compilers and especially for pipeline processors. In previous work Golumbic 
and Rainish: IBM J. Res. Dev., vol. 34, pp. 93-97, 1990, we presented code replication 
techniques for scheduling beyond the scope of basic blocks that provide reasonable 
improvements of running time of the compiled code, but which still leaves room for 
further improvement. In this article we present a new method for scheduling beyond 
basic blocks called SHACOOF. This new technique takes advantage of a conventional, 
high quality basic block scheduler by first suppressing selected subsequences of instruc
tions and then scheduling the modified sequence of instructions using the basic block 
scheduler. A candidate subsequence for suppression can be found by identifying a 
region of a program control flow graph, called an S-region, which has a unique entry 
and a unique exit and meets predetermined criteria. This enables scheduling of a se
quence of instructions beyond basic block boundaries, with only minimal changes to an 
existing compiler, by identifying beneficial opportunities to cover delays that would 
otherwise have been beyond its scope. © 1994 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Instruction scheduling is a process of rearranging 
or transforming program statements before execu
tion by a processor in order to reduce possible 
run-time delays between compiled instructions. 
An instruction scheduler is normally implemented 
as part of a compiler [ 1 L and usually operates at 
an intermediate language (lL) or assembly code 
level. Such transformations must preserve data 

dependency and are subject to other constraints. 
Instruction scheduling can be particularly advan
tageous when compiling for pipelined machine ar
chitectures. which allow increased throughput by 
overlapping instruction execution. For example, if 
there is a delay of one cycle between fetching and 
using a value V, it would be desirable to cover this 
delay with an instruction that is independent of V 
and is readv to be executed. 
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Previous work on the implementation of in
struction scheduling concentrated on scheduling 
within basic blocks [2-7J. A basic block is a se
quence of consecutive instructions for which the 
flow of control enters at the beginning of the se
quence and exits at the end thereof without a 
branch possibility, except at the point of exit. A. 
basic block scheduler attempts to interleave inde
pendent instructions within each basic block so as 
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to eliminate wasted machine cvcles. Such sched
ulers are quite effective for programs with long ha
sic blocks, common in some scientific applica
tions. Branch instructions, however. restrict the 
effectiveness of pipelined architecture in ways that 
cannot be handled with onlv basic block transfor
mations. 

In an earlier work [8]. we have investigated 
code replication techniques for scheduling be
yond the scope of basic blocks .. resulting in rea
sonahle improvements of running time of the 
compiled code. However. the approach described 
there still leaves room for further improvement. 
and is unrelated to the new method presented 
here. 

In this paper, we present a technique called 
SHACOOF for ScHeduling Across COntrOl Flow, 
which extends capabilities well beyond basic 
blocks. This technique enables reductions in run
time delays, due to branches and loops. etc .. and 
enables pipelined architectures to be exploited in 
ways that would not otherwise be possible. The 
method depends on a new, but simple, decompo
sition in which successively larger portions of the 
program control How graph are replaced by sum
mary pseudo instructions .. resulting in new, larger 
sections of straight line code that can be sched
uled by existing techniques. 

In Section 2, we introduce the notion of an S
region, and describe in Section 3 how S-regions 
are used to identify subsequences of instructions 
for suppression. A detailed example showing how 
the SHACOOF instruction scheduler covers de
lays in a simple yet typical program is given in 
Section 4 along with a discussion of implementa
tion issues. 

2 5-REGIONS 

The fundamental idea of the SHACOOF method 
is to identify a candidate subsequence of instruc
tions to be suppressed, treating it as one would a 
subroutine. making it transparent to the basic 
block scheduler. These subsequences correspond 
to regions of the program How graph having a 
unique entry, a unique exit, and satisfying certain 
minimality conditions. We call theseS-regions. By 
suppressing the S-region, regarding it as a pseudo 
instruction, and preserving data dependency, in
structions can then be moved over it using the 
current basic block scheduler. We now make 
these definitions precise. 

Let G be the programjlow graph, with vertices 

corresponding to the basic blocks and with a di
rected edge from block B 1 to B2 if B2 is a successor 
of B 1 [1~. Letpred(.V) and succ(S) denote the ,.;et 
of all predecessors and successors of vertices of set 
N. respectively. A subgraph S of G is called an S
region with entry x and exit y (x # y) if the follow
ing four conditions hold: 

1. X. yES 
2. pred(S- x) ~ S- y 
3. succ(S- y) ~ S- x 
4. There i>i no regionS'~ S. with entry :r' and 

exit _y' satisfying (1) - (:-3). with .r = x' 
ory = y'. 

ln particular. the definition implies that every 
path from G - S to S goes through x. and that 
every path from S to G - S goes through y. It is 
also easy to show the following. 

Lemma. There is at most one S-region with 
entry x or with exit y. 

Proof Suppose there are two S-regions 5 1 and 
82 with the same entry x. Condition 4 implies that 
one is not contained in the other. so there exists a 
zESt (z # x), such that z fE. S.2 . But there must be 
a path from x to z. so z E succ(S2- .n:;. where y 2 

is the exit of 5 2 . Condition 3 implies that z E S 2 -

x, a contradiction. o 
S-regions may be nested or chained as illus

trated in Figure 1. This example shows part of a 
How graph, where each vertex B1 to B2c, represents 
a basic block and So, ... , 5 6 denoteS-regions. 
In the example, So - S1 - S2 and Ss - S;:, are 
chained S-regions; region 5 4 is nested inside re
gion 83, etc. S-regions can be generated or recog
nized in 0 ( e log e) time,* where e is the number of 
edges in the How graph using modifications of 
standard algorithmic design techniques [1, 9j. 

The notion of an S-region is similar to that of a 
statement in a well-structured language without 
the minimality condition, however. in addition to 

dealing with arbitrary program constructs we also 
disallow certain well-structured statements. The 
S-regions So and 5 2 , for example, are very un
structured. Note too in the example that the set of 
blocks {B12, B13, B14 , B 1:;} is not an S-region, al
though under certain definitions it might be con
sidered a statement. S-regions were introduced in 
graph theory [10], where they were called ham
mocks, but have remained unstudied with the ex
ception of one other compiler application [ 11]. 
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So consists of 8z- Bs with entry 82 and exit Bs 
S1 consists of 85- B7 with entry 85 and exit B7 
Sz consists of 87- B1o with entry 87 and exit 810 
S3 consists of 811- 8zo with entry 811 and exit 8zo 
S4 consists of 816- 819 with entry 816 and exit 819 
Ss consists of 8zo- 8zz with entry 8zo and exit 822 
S6 consists of 81-823 with entry 81 and exit 823 

FIGURE 1 A flow graph. 

3 THE USE OF S-REGIONS IN SHACOOF 

The decomposition into S-regions provides a 
mechanism for eliminating remaining delays (no
ops) that result from branches and loops. For an 
S-region S having entry x and exit y. the candi
date subsequence P of instructions to be sup
pressed comprises: 

1. The last instruction b of the entrv block x if 
b is a branch statement 

2. The label l at the top of the exit blocky if l 
exists** 

3. All instructions in all remaining blocks of S 

By suppressing P. regarding it as one pseudo 
instruction, we can then apply a basic block 
scheduler (like that in reference 6) to the straight 
line code consisting of the block x (without b if bE 

** We assume an IL for which every basic block begins with 
a label (with no instruction) only if there is a need for iL such as 
being the target of a branch. 

P). the single pseudo instruction P. and the block 
y (without l if l E P ). 

A plurality of candidate subsequence,; can be 
identified for suppression in this way. by generat
ing all S-regions. or generating them on demand. 
and replacing successively larger portions of the 
flow graph by such pseudo instructions when de
lays still remain, resulting in new. larger sections 
of straight line code that can be scheduled by the 
basic block scheduler. 

For the example in Figure 1. thf' chain [2 .. Po. 
5 .. P 1 , ?, P2 , 10] (where P 0 • P 1 • and ? 2 represent 
the pseudo instructions for the S-region,; 5 0 • S1. 
and 5 2 , respectively) is straight line code, and it 
now becomes possible to move instructions from ? 
up to 2 or from 5 down to 10, etc .. assuming, in 
the normal manner, that data dependency per
mits. l\'ote that the instruction subsequence for So, 
(which the pseudo instruction P:-, will replace) con
sists of only instructions from basic block 21, be
cause basic block 20 has no branch and basic 
block 22 has no label. 

41MPLEMENTATION ISSUES 

The SHACOOF instruction scheduler forms part 
of an experimental version of one of the lB.\1 XL 
family of compilers for the IB.\1 RISC System/ 
6000 computers. It can be called in to operation 
one or more times as required during compilation 
and is applied to instructions at an IL level. It can 
be used either conservatively (only after register 
allocation) or aggressively* (also before register 
allocation). On the SPEC Benchmark program 
EQYI'OTT. it prmides a further 6% run-time 
speedup over basic block scheduling alone. 

The control flow graph provides the informa
tion on the structure of the basic blocks that is 
needed for the identification of the S-regions in
cluding the determination of their respective entry 
node x, exit node y. and intermediate nodes. An 
S-region table can be built in which data on x. y 
and the intermediate nodes for each S-region are 
stored, and which implicitly tag the instructions of 
the S-region. In other words, by accessing the S
region table. the instnlctions that belong to a can-

* As with manv compiler optimization techniques involving 
code motion. SHACOOF instrul'tion scheduling mav tend to 
increase register pressure bY lengthening the "live" area of 
some variables. Therefore. very aggressive instruction schedul
ing applied before global register allocation maY cause extra 
spill code to be inserted and may limit certain other optimiza
tions such as coalescing [ 12-15:. 
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Table 1. An Example of a Program Explaining 
the Operation of SHACOOF 

sample() 
{ 

1. int i, count; 
2. count = 0; 
3. for (i=O; i< 10 ; i++ 
4. { 
5. if (function1(i)) {count+= 1;} 
6. } 

return count; 

didate subsequence for suppression can be identi
fied. As the instructions are not physically tagged, 
there are no tags to be removed after scheduling. 

It is common practice in modern compilers to 
maintain the sequence of IL instructions as a type 
of linked list. Before calling the SHACOOF sched
uler, however, we modify the pointers in the in
struction sequence list so that the basic blocks oc
cur in the logical sequence dictated by the control 
flow graph, so that the entry block of an S-region 
precedes all intermediate blocks that in turn pre
cede the exit node. This neither modifies the con
tent of the instruction fields (merely the pointers 
accompanying them) nor modifies the control flow 
graph. After this modification. it is a simple matter 
to sequence through all the instructions of an S
region from the entry node to the exit node.** 

** It should be noted that the order of the instructions 
within a basic block in the input instruction sequence, deter
mined by the pointers, will correspond to the logical sequence 
in accordance with control flow. This will not normally be the 
case over basic block boundaries, due to branch and jump 
instructions between basic blocks. 

Table 1 illustrates a sample program for sched
uling and Table 2 gives the intermediate level ma
chine instruction sequence corresponding to line 2 
until line 6 of the program, annotated with in
struction numbers (1.1-1.12) and basic block 
numbers (B1 - B4 ). A three-cycle delay needs to 
be covered between each compare instruction C 
and its corresponding conditional branch BT. The 
conventional basic block scheduler has succeeded 
in block B2 to push up the add immediate AI 
which increments the loop index, thus covering 
only one cycle of the (1.6, 1.8) pair. 1\'othing could 
be done for the (I. 11, I. 12) pair by the basic block 
scheduler. 

SHACOOF recognizes that the set of basic 
blocks {B2, B:3 , B4 } form an S-region with entry at 
B~ and exit at H ... The three instructions labeled 
with a plus sign indicate the subsequence P which 
is to be suppressed. that is, the last instruction of 
basic block B 2 (which is a branch), all instructions 
of basic block B.1 (in this example there is only 
one), and the first instruction of basic block B ... 
(which is a label). Table 3 illustrates the instruc
tion sequence as perceived by the basic block 
scheduler after P has been suppressed. called 
here "PSECDO" and numbered SCPR. Follow
ing the suppression of instructions 1.8 to 1.1 0, the 
new instruction sequence from 1.4 to 1.12 in Table 
3 forms a piece of straight line code that basic 
block scheduler handles in a conventional man
ner, resulting in the code illustrated in Table 4. 

Instruction 1.11 has been moved across the 
PSECDO instruction in order to coYer the pipeline 
delay between the compare of l. 11 and the branch 
of 1.12. The final output instruction sequence with 
the suppressed instructions restored is shown in 
Table 5. Kot only has the pair (1.11. 1.12) been 
coYered, but the pair (1.6. 1.8) that was originally 

Table 2. An Annotated Sequence of Machine Instructions Corresponding to 
Lines 2-6 of the Program of Table 1 

Basic Block 

I.1 LI r31=0 Load Immed. B1 
I.2 LR r30=r31 Load Reg. B1 
I.3 CL. 0: label B2 
I.4 LR r3=r30 Load Reg. B2 
I.5 CALL r3=function1,1,r3 Call B2 
I.6 c crO=r3, 0 Compare B2 
I.7 AI r30=r30, 1 Add Immed. B2 

+ I.8 BT CL.3,crO,Ox4/eq Branch True B2 
+ I.9 AI r31=r31, 1 Add Immed. B3 
+ I. 10 CL. 3: label B4 

I.ll c cr1=r30, 10 Compare B4 
I. 12 BT CL.O,cr1,0x1/lt Branch True B4 



ll'\STRCCTIO:\"AL SCHEDCLI~G ACROSS CO:\"TROL FLOW 5 

Table 3. The Sequence of Instructions Following 
Suppression 

!.1 LI r31=t 
!.2 LR r30=r31 
!.3 CL. 0: 
!.4 LR r3=r30 
!.5 CALL r3=function1,1,r3 
!.6 c crO=r3, 0 
!.7 AI r30=r30, 1 
SUPR PSEUDO r31,cr0 
!.11 c cr1=r30, 10 
I. 12 BT CL. 0, cr 1 , Ox1 /l t 

Table 4. The Sequence of Instructions Following 
Scheduling 

!.1 LI r31=0 
!.2 LR r30=r31 
!.3 CL. 0: 
!.4 LR r3=r30 
!.5 CALL r3=function1,1,r3 
!.6 c crO=r3, 0 
!.7 AI r30=r30, 1 
!.11 c cr1=r30, 10 
SUPR PSEUDO r31,cr0 
I. 12 BT CL.O,cr1,0x1/lt 

Table 5. The Output Sequence of Instructions 

!.1 LI r31=0 
!.2 LR r30=r31 
!.3 CL. 0: 
!.4 LR r3=r30 
!.5 CALL r3=function1,1,r3 
!.6 c crO=r3, 0 
I. 11 c cr1=r30, 10 
!.7 AI r30=r30, 1 
!.8 BT CL.3,crO,Ox4/eq 
!.9 AI r31=r31, 1 
I. 10 CL. 3: 
I. 12 BT CL. 0, cr1, Ox1/lt 

covered bv onlv ont> cn:le is now covert>d b,· two . . 
cvdes. 

5 SUMMARY 

The reordering of selected instructions at compilt> 
time can t>xploit the potential parallelism inherent 
in the code. In order to take most advantage of 
pipelined architectural feature,.;. we have pre
sented the SHACOOF technique. which enlarges 
the '·vision"' of an instruction ,.;cheduler bevond 
basic blocks. This technique augments an already 
good basic block scheduler and extends its capa-

bilitv in covering delays with onlv minimal 
changes to existing compilers. 
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