
Instruction Scheduling Across Control Flow

MARTIN CHARLES GOLUMBIC* AND VLADIMIR RAINISH

IBM Israel Science and Technology, MAT AM-Advanced Technology Center, Haifa 31905, Israel

ABSTRACT

Instruction scheduling algorithms are used in compilers to reduce run-time delays for the
compiled code by the reordering or transformation of program statements, usually at
the intermediate language or assembly code level. Considerable research has been
carried out on scheduling code within the scope of basic blocks, i.e., straight line
sections of code, and very effective basic block schedulers are now included in most
modern compilers and especially for pipeline processors. In previous work Golumbic
and Rainish: IBM J. Res. Dev., vol. 34, pp. 93-97, 1990, we presented code replication
techniques for scheduling beyond the scope of basic blocks that provide reasonable
improvements of running time of the compiled code, but which still leaves room for
further improvement. In this article we present a new method for scheduling beyond
basic blocks called SHACOOF. This new technique takes advantage of a conventional,
high quality basic block scheduler by first suppressing selected subsequences of instruc
tions and then scheduling the modified sequence of instructions using the basic block
scheduler. A candidate subsequence for suppression can be found by identifying a
region of a program control flow graph, called an S-region, which has a unique entry
and a unique exit and meets predetermined criteria. This enables scheduling of a se
quence of instructions beyond basic block boundaries, with only minimal changes to an
existing compiler, by identifying beneficial opportunities to cover delays that would
otherwise have been beyond its scope. © 1994 by John Wiley & Sons, Inc.

1 INTRODUCTION

Instruction scheduling is a process of rearranging
or transforming program statements before execu
tion by a processor in order to reduce possible
run-time delays between compiled instructions.
An instruction scheduler is normally implemented
as part of a compiler [1 L and usually operates at
an intermediate language (lL) or assembly code
level. Such transformations must preserve data

dependency and are subject to other constraints.
Instruction scheduling can be particularly advan
tageous when compiling for pipelined machine ar
chitectures. which allow increased throughput by
overlapping instruction execution. For example, if
there is a delay of one cycle between fetching and
using a value V, it would be desirable to cover this
delay with an instruction that is independent of V
and is readv to be executed.

Received Febmarv 1992
Accepted May 1993

*Current address: Dept. of :'vlathematics and Computer Sci
ence, Bar-Ilan Cniversity. Ramat Gan. Israel

© 1994 by John Wiley & Sons, Inc.
Scientific Programmi~g, Vol. 2, pp. 1-5 (1993)
CCC 1058-9244 I 94 I 030001-05

Previous work on the implementation of in
struction scheduling concentrated on scheduling
within basic blocks [2-7J. A basic block is a se
quence of consecutive instructions for which the
flow of control enters at the beginning of the se
quence and exits at the end thereof without a
branch possibility, except at the point of exit. A.
basic block scheduler attempts to interleave inde
pendent instructions within each basic block so as

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357576352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 GOLC.\1BIC A:\"D RAI:\"ISII

to eliminate wasted machine cvcles. Such sched
ulers are quite effective for programs with long ha
sic blocks, common in some scientific applica
tions. Branch instructions, however. restrict the
effectiveness of pipelined architecture in ways that
cannot be handled with onlv basic block transfor
mations.

In an earlier work [8]. we have investigated
code replication techniques for scheduling be
yond the scope of basic blocks .. resulting in rea
sonahle improvements of running time of the
compiled code. However. the approach described
there still leaves room for further improvement.
and is unrelated to the new method presented
here.

In this paper, we present a technique called
SHACOOF for ScHeduling Across COntrOl Flow,
which extends capabilities well beyond basic
blocks. This technique enables reductions in run
time delays, due to branches and loops. etc .. and
enables pipelined architectures to be exploited in
ways that would not otherwise be possible. The
method depends on a new, but simple, decompo
sition in which successively larger portions of the
program control How graph are replaced by sum
mary pseudo instructions .. resulting in new, larger
sections of straight line code that can be sched
uled by existing techniques.

In Section 2, we introduce the notion of an S
region, and describe in Section 3 how S-regions
are used to identify subsequences of instructions
for suppression. A detailed example showing how
the SHACOOF instruction scheduler covers de
lays in a simple yet typical program is given in
Section 4 along with a discussion of implementa
tion issues.

2 5-REGIONS

The fundamental idea of the SHACOOF method
is to identify a candidate subsequence of instruc
tions to be suppressed, treating it as one would a
subroutine. making it transparent to the basic
block scheduler. These subsequences correspond
to regions of the program How graph having a
unique entry, a unique exit, and satisfying certain
minimality conditions. We call theseS-regions. By
suppressing the S-region, regarding it as a pseudo
instruction, and preserving data dependency, in
structions can then be moved over it using the
current basic block scheduler. We now make
these definitions precise.

Let G be the programjlow graph, with vertices

corresponding to the basic blocks and with a di
rected edge from block B 1 to B2 if B2 is a successor
of B 1 [1~. Letpred(.V) and succ(S) denote the ,.;et
of all predecessors and successors of vertices of set
N. respectively. A subgraph S of G is called an S
region with entry x and exit y (x # y) if the follow
ing four conditions hold:

1. X. yES
2. pred(S- x) ~ S- y
3. succ(S- y) ~ S- x
4. There i>i no regionS'~ S. with entry :r' and

exit _y' satisfying (1) - (:-3). with .r = x'
ory = y'.

ln particular. the definition implies that every
path from G - S to S goes through x. and that
every path from S to G - S goes through y. It is
also easy to show the following.

Lemma. There is at most one S-region with
entry x or with exit y.

Proof Suppose there are two S-regions 5 1 and
82 with the same entry x. Condition 4 implies that
one is not contained in the other. so there exists a
zESt (z # x), such that z fE. S.2 . But there must be
a path from x to z. so z E succ(S2- .n:;. where y 2

is the exit of 5 2 . Condition 3 implies that z E S 2 -

x, a contradiction. o
S-regions may be nested or chained as illus

trated in Figure 1. This example shows part of a
How graph, where each vertex B1 to B2c, represents
a basic block and So, ... , 5 6 denoteS-regions.
In the example, So - S1 - S2 and Ss - S;:, are
chained S-regions; region 5 4 is nested inside re
gion 83, etc. S-regions can be generated or recog
nized in 0 (e log e) time,* where e is the number of
edges in the How graph using modifications of
standard algorithmic design techniques [1, 9j.

The notion of an S-region is similar to that of a
statement in a well-structured language without
the minimality condition, however. in addition to

dealing with arbitrary program constructs we also
disallow certain well-structured statements. The
S-regions So and 5 2 , for example, are very un
structured. Note too in the example that the set of
blocks {B12, B13, B14 , B 1:;} is not an S-region, al
though under certain definitions it might be con
sidered a statement. S-regions were introduced in
graph theory [10], where they were called ham
mocks, but have remained unstudied with the ex
ception of one other compiler application [11].

L'\STRCC:TlOl\",\L SCI !EDCLL\G ACHOSS CO:\TROL FLO\\ 3

So consists of 8z- Bs with entry 82 and exit Bs
S1 consists of 85- B7 with entry 85 and exit B7
Sz consists of 87- B1o with entry 87 and exit 810
S3 consists of 811- 8zo with entry 811 and exit 8zo
S4 consists of 816- 819 with entry 816 and exit 819
Ss consists of 8zo- 8zz with entry 8zo and exit 822
S6 consists of 81-823 with entry 81 and exit 823

FIGURE 1 A flow graph.

3 THE USE OF S-REGIONS IN SHACOOF

The decomposition into S-regions provides a
mechanism for eliminating remaining delays (no
ops) that result from branches and loops. For an
S-region S having entry x and exit y. the candi
date subsequence P of instructions to be sup
pressed comprises:

1. The last instruction b of the entrv block x if
b is a branch statement

2. The label l at the top of the exit blocky if l
exists**

3. All instructions in all remaining blocks of S

By suppressing P. regarding it as one pseudo
instruction, we can then apply a basic block
scheduler (like that in reference 6) to the straight
line code consisting of the block x (without b if bE

** We assume an IL for which every basic block begins with
a label (with no instruction) only if there is a need for iL such as
being the target of a branch.

P). the single pseudo instruction P. and the block
y (without l if l E P).

A plurality of candidate subsequence,; can be
identified for suppression in this way. by generat
ing all S-regions. or generating them on demand.
and replacing successively larger portions of the
flow graph by such pseudo instructions when de
lays still remain, resulting in new. larger sections
of straight line code that can be scheduled by the
basic block scheduler.

For the example in Figure 1. thf' chain [2 .. Po.
5 .. P 1 , ?, P2 , 10] (where P 0 • P 1 • and ? 2 represent
the pseudo instructions for the S-region,; 5 0 • S1.
and 5 2 , respectively) is straight line code, and it
now becomes possible to move instructions from ?
up to 2 or from 5 down to 10, etc .. assuming, in
the normal manner, that data dependency per
mits. l\'ote that the instruction subsequence for So,
(which the pseudo instruction P:-, will replace) con
sists of only instructions from basic block 21, be
cause basic block 20 has no branch and basic
block 22 has no label.

41MPLEMENTATION ISSUES

The SHACOOF instruction scheduler forms part
of an experimental version of one of the lB.\1 XL
family of compilers for the IB.\1 RISC System/
6000 computers. It can be called in to operation
one or more times as required during compilation
and is applied to instructions at an IL level. It can
be used either conservatively (only after register
allocation) or aggressively* (also before register
allocation). On the SPEC Benchmark program
EQYI'OTT. it prmides a further 6% run-time
speedup over basic block scheduling alone.

The control flow graph provides the informa
tion on the structure of the basic blocks that is
needed for the identification of the S-regions in
cluding the determination of their respective entry
node x, exit node y. and intermediate nodes. An
S-region table can be built in which data on x. y
and the intermediate nodes for each S-region are
stored, and which implicitly tag the instructions of
the S-region. In other words, by accessing the S
region table. the instnlctions that belong to a can-

* As with manv compiler optimization techniques involving
code motion. SHACOOF instrul'tion scheduling mav tend to
increase register pressure bY lengthening the "live" area of
some variables. Therefore. very aggressive instruction schedul
ing applied before global register allocation maY cause extra
spill code to be inserted and may limit certain other optimiza
tions such as coalescing [12-15:.

4 GOLUMBIC AND RAINISH

Table 1. An Example of a Program Explaining
the Operation of SHACOOF

sample()
{

1. int i, count;
2. count = 0;
3. for (i=O; i< 10 ; i++
4. {
5. if (function1(i)) {count+= 1;}
6. }

return count;

didate subsequence for suppression can be identi
fied. As the instructions are not physically tagged,
there are no tags to be removed after scheduling.

It is common practice in modern compilers to
maintain the sequence of IL instructions as a type
of linked list. Before calling the SHACOOF sched
uler, however, we modify the pointers in the in
struction sequence list so that the basic blocks oc
cur in the logical sequence dictated by the control
flow graph, so that the entry block of an S-region
precedes all intermediate blocks that in turn pre
cede the exit node. This neither modifies the con
tent of the instruction fields (merely the pointers
accompanying them) nor modifies the control flow
graph. After this modification. it is a simple matter
to sequence through all the instructions of an S
region from the entry node to the exit node.**

** It should be noted that the order of the instructions
within a basic block in the input instruction sequence, deter
mined by the pointers, will correspond to the logical sequence
in accordance with control flow. This will not normally be the
case over basic block boundaries, due to branch and jump
instructions between basic blocks.

Table 1 illustrates a sample program for sched
uling and Table 2 gives the intermediate level ma
chine instruction sequence corresponding to line 2
until line 6 of the program, annotated with in
struction numbers (1.1-1.12) and basic block
numbers (B1 - B4). A three-cycle delay needs to
be covered between each compare instruction C
and its corresponding conditional branch BT. The
conventional basic block scheduler has succeeded
in block B2 to push up the add immediate AI
which increments the loop index, thus covering
only one cycle of the (1.6, 1.8) pair. 1\'othing could
be done for the (I. 11, I. 12) pair by the basic block
scheduler.

SHACOOF recognizes that the set of basic
blocks {B2, B:3 , B4 } form an S-region with entry at
B~ and exit at H ... The three instructions labeled
with a plus sign indicate the subsequence P which
is to be suppressed. that is, the last instruction of
basic block B 2 (which is a branch), all instructions
of basic block B.1 (in this example there is only
one), and the first instruction of basic block B ...
(which is a label). Table 3 illustrates the instruc
tion sequence as perceived by the basic block
scheduler after P has been suppressed. called
here "PSECDO" and numbered SCPR. Follow
ing the suppression of instructions 1.8 to 1.1 0, the
new instruction sequence from 1.4 to 1.12 in Table
3 forms a piece of straight line code that basic
block scheduler handles in a conventional man
ner, resulting in the code illustrated in Table 4.

Instruction 1.11 has been moved across the
PSECDO instruction in order to coYer the pipeline
delay between the compare of l. 11 and the branch
of 1.12. The final output instruction sequence with
the suppressed instructions restored is shown in
Table 5. Kot only has the pair (1.11. 1.12) been
coYered, but the pair (1.6. 1.8) that was originally

Table 2. An Annotated Sequence of Machine Instructions Corresponding to
Lines 2-6 of the Program of Table 1

Basic Block

I.1 LI r31=0 Load Immed. B1
I.2 LR r30=r31 Load Reg. B1
I.3 CL. 0: label B2
I.4 LR r3=r30 Load Reg. B2
I.5 CALL r3=function1,1,r3 Call B2
I.6 c crO=r3, 0 Compare B2
I.7 AI r30=r30, 1 Add Immed. B2

+ I.8 BT CL.3,crO,Ox4/eq Branch True B2
+ I.9 AI r31=r31, 1 Add Immed. B3
+ I. 10 CL. 3: label B4

I.ll c cr1=r30, 10 Compare B4
I. 12 BT CL.O,cr1,0x1/lt Branch True B4

ll'\STRCCTIO:\"AL SCHEDCLI~G ACROSS CO:\"TROL FLOW 5

Table 3. The Sequence of Instructions Following
Suppression

!.1 LI r31=t
!.2 LR r30=r31
!.3 CL. 0:
!.4 LR r3=r30
!.5 CALL r3=function1,1,r3
!.6 c crO=r3, 0
!.7 AI r30=r30, 1
SUPR PSEUDO r31,cr0
!.11 c cr1=r30, 10
I. 12 BT CL. 0, cr 1 , Ox1 /l t

Table 4. The Sequence of Instructions Following
Scheduling

!.1 LI r31=0
!.2 LR r30=r31
!.3 CL. 0:
!.4 LR r3=r30
!.5 CALL r3=function1,1,r3
!.6 c crO=r3, 0
!.7 AI r30=r30, 1
!.11 c cr1=r30, 10
SUPR PSEUDO r31,cr0
I. 12 BT CL.O,cr1,0x1/lt

Table 5. The Output Sequence of Instructions

!.1 LI r31=0
!.2 LR r30=r31
!.3 CL. 0:
!.4 LR r3=r30
!.5 CALL r3=function1,1,r3
!.6 c crO=r3, 0
I. 11 c cr1=r30, 10
!.7 AI r30=r30, 1
!.8 BT CL.3,crO,Ox4/eq
!.9 AI r31=r31, 1
I. 10 CL. 3:
I. 12 BT CL. 0, cr1, Ox1/lt

covered bv onlv ont> cn:le is now covert>d b,· two . .
cvdes.

5 SUMMARY

The reordering of selected instructions at compilt>
time can t>xploit the potential parallelism inherent
in the code. In order to take most advantage of
pipelined architectural feature,.;. we have pre
sented the SHACOOF technique. which enlarges
the '·vision"' of an instruction ,.;cheduler bevond
basic blocks. This technique augments an already
good basic block scheduler and extends its capa-

bilitv in covering delays with onlv minimal
changes to existing compilers.

REFERENCES

[1] A. V. Aho, R. Sethi, andJ. D. Ulman, Compilers:
Principles, Techniques and Tools. Reading. MA:
Addison-Wesley. 1986.

[2] D. Bernstein. H. Bora!. and R. Y. Pinter. '·Opti
mal chaining in expression trees.·· IEEE Trans.
Comput. vol. 3?. pp. 1366-13?4. 1988.

[3] P. B. Gibbons and S. S. Muchnick, "Efficient in
struction scheduling for a pipelined architec
ture," Pro c. A CM Symp. Compiler Construction,
vol. 21, pp. 11-16, 1986.

[4] J. R. Goodman and W.-C. Ilsu. Proceedings of
the International Conference on Supercomput
ing. St. ~Ialo. France: AC~l Press. pp. +±2-452.
1988.

[.5 ~ J. L. Hennessy and T. Gross. ··Postpass code op
timization of pipeline constraints ... ACU Trans.
Program. Languages ,~,·stems, vol. 5. pp. 422-
448. 1983.

[6] H. \'\. arren. ··Instruction scht>dulinf! for tlw IB\1
RISC Svstem/6000 Processor."/BJJ]. Res. /Jeu.,
vol. 34. pp. 8:5-92. 1990.

·:l S. \'\"eiss and J. E. Smith. Proceedings of the Sec-

[8]

[9

r10:

r111

ond International Conference on Architectural
Support for Programming Languages Operating
Systems. Palo Alto. CA: IEEE Press. 198?. pp.
105-109.
:VI. C. Golumhic and \". Rainish. ""Instruction
schcdulinf! beyond basic blocks ... /lUI]. Res.
lJeu., vol. 34. pp. 9:3-9?. 1990.
~1. C. Golumbic. Algorithmic Graph Thcor~· and
Perfect Graphs. "lew York: Academic Press. 1980.
\· . .\'. Kas'janov. ·'Distinguishinf! hammocks in a
directed f!raph ... Sou. Jfath. JJok .. vol. 16. pp.
448-450. 19?5.
J. Ft>rrante. K . .1. Ottenstein. and J. D. \\.arren.
··The program dependence f!raph and its usP in
optimization.·· ACH Trans. Program. Lung. s:n ..
vol. 9. pp. 319-349. 198?.

[12] M. A. Auslander and ~1. E. Hopkins, ·'An over
view of the PL.8 compiler."' Proc. ACM S:vmp.
Compiler Construction, Vol. 1?. pp. 22-3L 1982.

r1:3] D. Bernstt>in. D. Q. Goldin, ~1. C. Golumbic. II.
Krawczvk. Y. ~lan~our. I. :\ahshon. and R. Y.
Pinter. ··Spill code minimization tPchniques for
optimizing compilers ... Proc. AC.H SICP/A.\''89
Conf Program. Lurzguap:e Design Implement ..
pp. 258-26:3. 1989.

·14] G. J. Chaitin. ~1. A. Auslander. A. K. Chandra. J.
CockP. :VI. E. Hopkins. and P. \\. ~larbtein. Rt>f!
ister allocation via co Iorin!! ... Comput. Lang., vol.
6. pp. 4?-5?. 1981.

[15 J G. J. Chaitin, "Register allocation and spilling via
graph coloring,•· Proc. ACM Symp. Compiler
Construction, vol. 1?, pp. 98-105. 1982.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

