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ABSTRACT 
Civilian noise complaints and damage claims have created the 
need for stations to monitor military impulse noise.  However, 
the stations currently in service suffer from numerous false 
positive detections (due to wind noise) of impulse events and 
often miss many events of interest.  To improve the accuracy of 
military impulse noise monitoring, an algorithm based upon a 
Bayesian classifier with inputs of conventional and custom 
acoustic metrics is proposed.  To train and evaluate the noise 
classifier approximately 1,000 waveforms were field collected.  
The final Bayesian noise classifier used kurtosis and crest 
factor and, the frequency domain metrics, spectral slope and 
weighted square error as inputs.  The EM algorithm is utilized 
to fit multi-Gaussian distributions to the different classes of 
data.  In testing the classifier performed to accuracies of up to 
99.6%. 

 
INTRODUCTION 
 
The production of high amplitude impulse noise and its effects 
on the community surrounding military installations have 
become of great concern in recent years1.  In an effort to assist 
the investigation of noise complaints and damage claims2, 
monitoring stations have been installed in the areas surrounding 
some military installations.  However, these stations are not 
able to detect many impulse events, especially those with a 
peak level (Lpk) below 119dB, and are plagued by false positive 
detections, mainly due to wind noise.  The goal of this effort 
and previous efforts is to produce a noise classifier with 
improved impulse detection below peak levels (Lpk) values of 
119dB and greater resistance to false positive detections3,4.   
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In previous work, a data set containing waveforms of military 
impulse noise and non-impulsive noise was classified using an 
artificial neural network.  The metrics used in the classifier 
were kurtosis, crest factor (CF), spectral slope (m), and 
weighted square error (WSE) 3,4.  It was deemed of interest to 
classify the same data set with a Bayesian classifier5-8 to 
determine if comparable performance to the artificial neural 
network classifiers3,4 could be achieved, while offering greater 
simplicity and possible better physical understanding of the 
process.  The proposed Bayesian classifier would utilize the 
same data as the previous study along with the same computed 
metrics.   
 
NOMENCLATURE 
 
Lpk   Peak Sound Level  
CF  Crest Factor 
PSD  Power Spectral Density 
m  Spectral Slope 
WSE  Weighted Square Error 
EM  Expectation-Maximization 
 
DATA COLLECTION 
 
As described in the previous body of work3,4, approximately 
1,000 usable waveforms were field collected to train and 
evaluate classifiers.  Within the data set, there were 330 
waveforms of military impulse noise, 560 waveforms of wind, 
and 110 waveforms of aircraft noise.  Of the 330 recordings of 
military impulse noise, 66 contained more than one impulse 
event within the 2.1 to 2.5 second recording.  The military 
1 Copyright © 2007 by ASME 
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impulse noise recordings consisted of 155mm Howitzers, 
81mm mortars, 60mm rockets, M67 hand grenades, and 
Bangalore Torpedoes (strings of 3, (27lbs HE)).  The military 
impulse noise records had Lpk values ranging from 80 to 
138dB.  The non-impulse noise records were wind noise and 
aircraft noise (F-16, A-10, C-130).  The military impulse noise 
recordings were made at ranges between 1.5 km and 6 km from 
the noise sources and military aircraft noise recordings were 
made at distances of approximately 0.5 to 8 km.  Although 
most of the energy of the noise sources to be measured is 
within the 0 to 100 Hz bandwidth, the data were sampled at 
10kHz to verify that no key features in the higher frequency 
range were being neglected.  Data were also measured at a 
variety of different locations and under a variety of different 
conditions in attempt to witness the largest array of factors that 
may affect the data. 
 
 
 
DATA PROCESSING 
 
Prior work describes the investigation of several conventional 
acoustic metrics and the Power Spectral Density (PSD), and 
their corresponding utility in applications of identifying 
military impulse noise3,4.  Of these conventional acoustic 
metrics, it was shown that kurtosis and crest factor were the 
most useful in applications of identifying military impulse 
noise.  Two additional scalar metrics, spectral slope (m) and 
weighted square error (WSE), were also developed and their 
utility in producing a more accurate artificial neural network 
noise classifier was quantified3,4. 
 
 
BAYES CLASSIFIER 
 
A Bayesian Classifier is a type of classifier based on Bayes’ 
rule of probability5-8.  Bayes’ rule is stated as 
 ( ) ( ) ( )
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where x is the vector of observations and Ci is the ith class of 
data from n classes.  In equation (1) P(Ci|x) is the probability 
that a data point is from class Ci given the observation vector x, 
p(x|Ci) is the conditional probability density of class i, P(Ci) is 
the prior probability of data class Ci, and p(x) is the probability 
density of observation vector x, which is defined in terms of the 
conditional probability densities as 
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In the Bayesian Classifier, there is a cost associated with 
classifying a data point into a particular class.  The classifier 
works to minimize the cost of a decision.  Let the expected 
conditional cost be defined as 
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where kij is the cost of deciding the data is from class i when 
the data is from class j.  The classifier performs the function  
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to minimize the cost of classification.  To minimize the average 
probability of misclassification cost kij is set to 
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Taking into account equations (1) and (2), the conditional cost 
is now defined as  
 ( ) ( )xCPxCK ii |1| −= .   (6) 
The Bayes decision rule7 is thus given by 
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In using a Bayesian classifier it is convenient to assume a 
Gaussian distribution of data, thus conditional probability 
density of class i would be defined as 
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where m is the dimension of the observation vector, Qi is the 
covariance matrix, and µi is the mean vector.  However, in the 
case of this problem, the metrics are not truly Gaussian. Thus, 
fitting a single Gaussian distribution to each class of data will 
likely not produce a classifier with adequate accuracy.  
Consequently, a Gaussian mixture fit to the data may provide a 
classifier with greater accuracy.  The EM (Expectation-
Maximization) algorithm was used to construct these 
distributions, which were compared to single Gaussian fits. 
 
The EM algorithm is an unsupervised learning method that can 
be used to fit a set number of probability distributions to a 
distribution of data.  This technique can be used to find patterns 
or clusters of data when the composition of the data set is 
largely unknown6,9.  For this particular case, the EM algorithm 
is used to fit Gaussian mixture distributions to the data points 
of a particular class of noise and the distributions to be fit to the 
data are Gaussian.  For each Gaussian distribution generated by 
the EM algorithm, the algorithm returns the covariance matrix, 
mean vector, and a factor relating the particular Gaussian’s 
contribution to the entire distribution.  Thus, in the case of 
fitting r Gaussians to the distribution of a particular class of 
noise, the conditional probability distribution is now defined as 
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where wj is the contribution of Gaussian j to the entire 
probability distribution.  It is important to note that  
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1
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j
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so that the distribution is a true probability density function.   
 
The next step is to compute the prior probabilities of a given 
noise source.  Let the likelihood ratio be defined as 
2 Copyright © 2007 by ASME 

se: http://www.asme.org/about-asme/terms-of-use



Do
 
( ) ( )

( )∑
≠
=

=Λ n

is
s

s

i
i

Cxp

Cxpx

1
|

|
.   (11) 

Additionally, let a value known as threshold of test be defined 
as 
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The classifier can now be defined as shown in Figure 1. 

 
Now, by analyzing the distribution of the likelihood ratio it is 
possible to define the prior probability of a given class based 
on the desired characteristics of the classifier.  If it is desired 
that the classifier be most sensitive to a particular class and 
false positive detections are not of great concern, then the 
probability of that particular class should be set higher.  The 
inverse concept is also true.  Additionally if log10(Λ) is 
computed, the distributions of the likelihood ratios for 
particular classes will be approximately Gaussian6.  This allows 
for the computation of the theoretical accuracy of a Bayesian 
classifier.  Figure 2 provides a simple illustration of this 
concept.  To compute the theoretical accuracy of the classifier 
the threshold of test is first chosen.  The green curve represents 
the distribution of the likelihood ratio of the class of data we 
are attempting to identify and the blue curve is the distribution 
of the likelihood ratio of all other classes of data.  The area 
under the green curve to the left of the threshold of test is the 
theoretical rate of false negatives and the area under the blue 
curve to the right of the threshold of test is the theoretical rate 
of false positives.   

Figure 1:  Bayesian Classifier 

Comparator 
Assign 

observation to 
class i if Λi>ξi  

Λi 

ξi 
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Since both distributions are normal, the theoretical accuracy of 
the classifier is 
 ( ) ( )

2
11 __ posfalsenegfalse

ltheoretica

areaarea
A

−+−
= .  (13) 

For this example, selection the threshold where the two curves 
intersect as shown, would provide the highest accuracy. 
 
RESULTS AND DISCUSSION 
 
To compute the parameters of the classifier, half of the data was 
selected in a stratified random configuration (half of the aircraft 
noise data, half of the wind noise data, and half of the military 
impulse noise data) to serve as training data.  The remaining 
half of the data was used to evaluate the performance of the 
classifier.  In this classification problem there are three main 
classes of noise, aircraft noise, wind noise, and military 
impulse noise.  However, it is only necessary to discern 
military impulse noise from non-impulse noise (aircraft noise 
and wind noise).  Thus, aircraft noise and wind noise are 
grouped together as non-impulse noise.   
 
The performance of the classifier is evaluated for a variety of 
configurations of number of Gaussians fit to each class of data.  
In the interest of presenting the results of this investigation in a 
clearer format, only the cases where equal numbers of 
Gaussians are used to fit each class of data are presented.  The 
limiting factor in number of Gaussians that are fit to a 
distribution of data is that as the number of Gaussians 
increases, the covariance matrices can become poorly 
conditioned, thus making the EM algorithm unstable.  The EM 
algorithm was relatively stable for fits of 8 Gaussians or less 

- - - -

Threshold of Test

Region of False 
Positives 

Region of False 
Negatives 

Figure 2:  Simple Illustration of Log-Likelihood 
Distributions 
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for each class of data.  Figure 3 shows the results of algorithm 
for a typical case, (three Gaussians fit per class). 
 
 

 
From Fig. 3, it is noticeable that non-impulse and impulse 
distributions in the top and 3rd plots do resemble Gaussian 
distributions, as expected.  The theoretical classifier, shown in 
the 2nd plot also appears to match the distributions presented in 
the top and 3rd plots.  The accuracy of the classifier is taken to 
be the ratio of the total number of data points classified 
correctly to the total number of data points processed.  In the 
bottom plot it is seen that there is quite a wide range of prior 
probability that should, theoretically produce classifiers with 
very similar accuracies.  This is a positive quality because it 
enables the algorithm to be tailored to being more or less 
sensitive to military impulse noise, thus dealing with outliers, 
without sacrificing much accuracy.   
 
A summary of the testing of the classifier is presented in Figure 
4 and Tables I. and II.  It is seen in Figure 4 that the accuracy of 
the classifier on the training data tended to increase as the 
number of Gaussian distributions used to model the data was 
increased.  This is expected as modeling the distribution with 
more components should produce a more accurate 
approximation of the distribution of the data.  The theoretical 
accuracy of the classifier also tended to increase as the number 
of Gaussians used was increased.  Since the theoretical 

Log-Likelihood Ratio 

Figure 3:  (top) Histogram of Log-Likelihood Ratio output 
for training data, (2nd) theoretical probability distribution for 
Log-Likelihood Ratio of classifier, (3rd) histogram of Log-
Likelihood Ratio for testing data, (bottom) theoretical 
classifier error associated with value chosen for threshold of 
test. 
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accuracy is based on the training data, this is also expected.  In 
the case of the accuracy of the classifier on the testing data, 
accuracy first increases, peaks at 5 distributions, and begins to 
decrease slightly.  The initial increase in accuracy is due to 
more Gaussian fits producing a better approximation of the 
actual data distribution.  The ensuing decrease in accuracy is 
due to the increased number of Gaussians over-fitting the 
training data.  This is a common problem with most classifier 
structures7,8.  The classifier has become too specific to the 
training data and thus has lost some of its generalization 
capabilities. 
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Figure 4:  Summary of Training Accuracy, Theoretical 
Accuracy, and Testing Accuracy 
 
Table I. summarizes the errors of the classifiers with respect to 
false positive and false negative detections.  In all cases the 
ratio of false positives to false negatives appears to be of the 
same order of magnitude.  This indicates that the choice of 
threshold of test is fairly neutral.  It may be adjusted to favor 
mitigation of false positives or false negatives accordingly.  A 
receiver operating curve is not included because the plot is not 
interesting since it is nearly rectangular, given the high level of 
accuracy achieved. 
 
Table I.  False Positive (FP) and False Negative (FN) 
Summary for Training, Theoretical, and Testing Cases 

Training Theoretical Testing Number of 
Gaussians 
fit to each 

class of data 

FP 
(%) 

FN 
(%) 

FP 
(%) 

FN 
(%) 

FP 
(%) 

FN 
(%) 

1 0.80 0.40 0.45 0.48 1.50 1.50 
2 0.80 0.40 0.31 0.79 1.40 1.00 
3 0.40 0.20 0.12 0.25 1.60 1.00 
4 0.40 0.00 0.01 0.02 1.20 0.40 
5 0.20 0.20 0.15 0.39 0.40 0.00 
6 0.20 0.20 0.03 0.03 1.40 0.40 
7 0.00 0.20 0.01 0.00 1.20 0.20 
8 0.00 0.20 0.01 0.00 1.40 0.20 
4 Copyright © 2007 by ASME 
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Figure 5 shows the theoretical accuracy of the classifier for 
choices of the threshold of test parameter (ξ).  It is notable that 
there is a wide range of prior probabilities that will produce a 
classifiers with comparable accuracies.  Referring back to the 
bottom plot in Figure 3, this is also expected as there is a wide 
range of prior probabilities that may be selected to produce 
classifiers of comparable accuracy.  In actual implementation, 
the choice of the priors would be based on the data observed 
and desired characteristics of the classifier.  As previously 
stated, this gives the user of this algorithm the opportunity to 
mitigate either false positives or false negatives while retaining 
a classifier with a high degree of accuracy. 
 

 
 
CONCLUSION 
 
This paper summarizes the extension of an effort to develop a 
simpler, yet accurate algorithm for identifying military impulse 
noise.  In earlier work military impulse noise was identified 
using an artificial neural network with inputs of scalar metrics:  
kurtosis, crest factor, spectral slope, and weighted square error.  
Utilizing these same scalar metrics, a Bayesian classifier was 
developed.  The Bayesian classifier was able to perform up to 
99.8% accurate on training data and 99.6% accurate on testing 
data.  This performance is very comparable to the ANN 
structures presented in earlier work.  It was also shown that the 
Bayesian classifier could be tailored to reduce the amount of 
false positive or false negative detections, as per user request, 
while maintaining a classifier with a high degree of accuracy.  
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Figure 5:  Theoretical classifier accuracy associated with 
value chosen for threshold of test. 
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Additionally, it is now possible to statistically characterize the 
observed values of the metrics, which may provide further 
insight into the behavior of the metrics for particular classes of 
noise.   
.   
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