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Time Periodic Navier-Stokes Flow with

Nonhomogeneous Boundary Condition

By Hiroko Morimoto

Abstract. It is known that the Navier-Stokes initial boundary
value problem for non-homogeneous boundary condition has a unique
local solution (e.g., O. A. Ladyzhenskaya[5]). Nevertheless, it seems
to the author that there is no results for the periodic problem with
non-homogeneous boundary condition satisfying the general outflow
condition. We consider the periodic problem for the Navier-Stokes
equations in a two dimensional bounded domain. In case of a symmet-
ric domain, we obtain a periodic weak solution for symmetric boundary
values satisfying only the general outflow condition.

1. Introduction

Let Ω be a bounded domain of R
2. The boudary ∂Ω consists of N + 1

smooth connected components Γ0 ∪ Γ1 ∪ · · · ∪ ΓN , that is, simple closed

curves, where N ≥ 1, Ω being inside of Γ0. We suppose that Ω is symmetric

with respect to the x2-axis and every Γi (0 ≤ i ≤ N) intersects the x2-axis.

We call this assumption (SYM). Let Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ).

We consider the periodic problem for the Navier-Stokes equations.


ut = ν∆u− (u · ∇)u−∇p + f in Q

div u = 0 in Q

u = β on Σ

u(x, 0) = u(x, T ) for x ∈ Ω

(1.1)

where the fluid velosity u = u(x, t) and the pressure p = p(x, t) are unknown,

the external force f = f(x, t) and the boundary value β = β(x, t) are given.

The function β should satisfy the outflow condition:∫
∂Ω

β · ndσ = 0(1.2)
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which we call the general outflow condition (GOC). Here n is an outward

unit normal vector to ∂Ω. The following condition, which is stronger than

(GOC), is called the stringent outflow condition (SOC).
∫

Γk

β · ndσ = 0 (∀k = 0, 1, 2, · · · , N).(1.3)

(GOC) and (SOC) are equivalent if the boundary ∂Ω has only one connected

component.

We suppose that β depends only on x and not on t. Let b = b(x) be a

divergence free extension of β = β(x).

{
div b = 0 in Ω

b = β on ∂Ω.
(1.4)

A result for the β depending on t and x will be in the forthcoming paper

T-P. Kobayashi[4].

Notation. Before stating our result, we introduce some function spaces.

C∞
0 (Ω) and L2(Ω) are as usual. The inner product and the norm of

L2(Ω) are denoted by (·, ·) and ‖ · ‖. H1(Ω) is a usual Sobolev space.

C∞
0,σ(Ω) = {u ∈ C∞

0 (Ω) × C∞
0 (Ω); divu = 0 in Ω}

H = H(Ω) is the closure of C∞
0,σ(Ω) in L2(Ω) × L2(Ω) and

H1
σ(Ω) = {u ∈ H1(Ω) ×H1(Ω); divu = 0 in Ω}

V = V (Ω) is the closure of C∞
0,σ(Ω) in H1(Ω) × H1(Ω). Since Ω is

bounded, we use the Dirichlet norm ‖∇u‖ for u ∈ V , which is equivalent to

the H1 norm.

V ′ is the dual space of V .

We use the notation

B(u, v, w) = ((u · ∇)v, w) =

∫
Ω

∑
i,j

ui
∂vj
∂xi

wjdx.

For a vector function defined in Ω, ϕ(x) = ϕ(x1, x2), we put

ϕs(x1, x2) =
1

2
(ϕ1(x1, x2) − ϕ1(−x1, x2), ϕ2(x1, x2) + ϕ2(−x1, x2))

ϕa(x1, x2) =
1

2
(ϕ1(x1, x2) + ϕ1(−x1, x2), ϕ2(x1, x2) − ϕ2(−x1, x2)).
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ϕs is called the symmetric part of ϕ and ϕa antisymmetric part of ϕ. It

holds

ϕ = ϕs + ϕa.

Definition 1.1. A vector valued function u(x1, x2) = (u1(x1, x2),

u2(x1, x2)) defined in Ω is called symmetric with respect to the x2-axis

if u = us , that is,

u1(−x1, x2) = −u1(x1, x2), u2(−x1, x2) = u2(x1, x2).

holds true. u is called antisymmetric with respect to the x2-axis if u = ua,

that is,

u1(−x1, x2) = u1(x1, x2), u2(−x1, x2) = −u2(x1, x2).

holds true.

Hs = Hs(Ω) = {u ∈ H(Ω);u = us}
V s = V s(Ω) = {u ∈ V (Ω);u = us}

It is to be remarked that the trace to the axis of symmetry of the second

component of u ∈ V s(Ω) vanishes, that is, u(x) = (0, u2(0, x2)) for x =

(0, x2) ∈ Ω. See Fujita[2] for details.

Our result is as follows.

Theorem 1.1. Let Ω satisfy the assumption (SYM), f ∈ L2(0, T ; (V s)′)
and β = β(x) be smooth, symmetric and satisfy (GOC). Then, there exists

u such that u− b ∈ L2(0, T ;V s) ∩ L∞(0, T ;Hs) and

{
< u′, ϕ > +ν(∇u,∇ϕ) + B(u, u, ϕ) =< f, ϕ > (∀ϕ ∈ V s)

u(0) = u(T )
(1.5)

hold true. Here b is a solenoidal symmetric extension of β, and < ·, · >
means the duality between (V s)′ and V s.

Remark 1.1. For the Navier-Stokes initial-boundary value problem,

the solvability is well known. It is due to the possibility to use Gronwall’s

lemma. See, e.g., O. A. Ladyzhenskaya [5].
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However, only partial results are known for the existence of solution to

the stationary problem under (GOC). In 1984, Ch.Amick[1] showed the ex-

istence of symmetric solution for 2-dimensinal case assuming the symmetry

for the domain and the data. In 1997, H.Fujita[2] obtained a Leray type

inequality for 2-dimesional symmetric functions and proved the existence of

symmetric solutions for the stationary problem.

It is not known that there exists a periodic Navier-Stokes flow for a gen-

eral domain with the boundary value satisfying only (GOC). If the boundary

value satisfies (SOC) or the integrals |
∫
Γk

β ·ndσ|(k = 0, 1, · · · , N) are small,

the theorem holds. Our result admits the large |
∫
Γk

β ·ndσ|(k = 0, 1, · · · , N)

with (GOC).

For the case β = 0 there are many results. See Prodi[9] (n = 2), Kaniel-

Shinbrot[3] (n = 3), Takeshita[11] (n = 2). For n = 2, 3, Yudovic[12] treated

β 	= 0 with (SOC). Serrin[10] treated the case for n = 3 with small Reynolds

number. See also Morimoto[8].

2. Symmetric Bases

Let Ω be a 2-dimensional bounded domain, symmetric with respect to

the x2-axis. We consider the weak formulation of the Stokes boundary value

problem in Ω. Let f ∈ Hs(Ω). Then, by Riesz’ theorem, we can show that

there exists one and only one u ∈ V s(Ω) satisfying

(∇u,∇v) = (f, v) (∀v ∈ V s(Ω)).

Define the operator T : Hs(Ω) → Hs(Ω) as Tf = u. Then T is a bounded

linear operator from Hs(Ω) into Hs(Ω). T is symmetric, therefore it is

selfadjoint. T is also injective. Using Rellich’s theorem, we find T is a

compact operator defined on Hs(Ω). By the general theory for compact

operator, the non-zero spectrum of T is eigenvalues µj and corresponding

eigenfunctions fj are complete in Hs(Ω). Furthermore, all the eigenvalues

are positive: µj > 0.

Put λj = µ−1
j , wj = Tfj . After normalizing {wj}j and using the same

symbol, we find {wj}j is a complete ortho-normal system in Hs(Ω) and

{wj/
√

λj}j is a complete ortho-normal system in V s(Ω).
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3. Preliminaries

Let Ω ⊂ R
2.

Lemma 3.1. Let u, v, w ∈ H1(Ω) × H1(Ω), div u = 0 and one of the

trace of u, v, w to ∂Ω vanishes. Then

B(u, v, w) = −B(u,w, v).

Lemma 3.2. The trilinear form B satisfies

(i) |B(u, v, u)| ≤ ‖u‖2
4‖∇v‖ (u ∈ L4(Ω), v ∈ V )

(ii) |B(u, v, w)| ≤ C1‖∇u‖‖∇v‖‖∇w‖ (u, v, w ∈ V )

(iii) |B(u, v, u)| ≤ C2‖∇u‖2‖v‖4 (u ∈ V, v ∈ H1)

where the constants C1, C2 depend on Ω.

Lemma 3.3. (Poincaré’s inequality)

‖u‖ ≤ C3‖∇u‖ (u ∈ V )

where C3 is a constant depending on Ω.

These three Lemmas hold true even for Ω ⊂ R
3.

Lemma 3.4. Let Ω be a bounded domain of R
2. Then there exists an

absolute constant c0 such that

‖v‖4 ≤ c0‖∇v‖1/2
2 ‖v‖1/2

2 (∀v ∈ H1
0 (Ω)).

Lemma 3.5. If v ∈ L2(0, T : V ) ∩ L∞(0, T : H), then,

(v · ∇)v ∈ L2(0, T : V ′).
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Lemma 3.6. Suppose f ∈ L2(0, T : V ′) and v ∈ L2(0, T : V )∩L∞(0, T :

H) and u = v + b satisfies (1.5). Then v′ ∈ L2(0, T : V ′). Furthermore, v

is continuous a.e. in [0, T ] taking value in V ′.

The next lemma is essential for the proof of our result.

Lemma 3.7 ([2], [7]). Let Ω satisfy (SYM) and β be a symmetric

smooth function defined on ∂Ω satisfying (GOC). Then, for every ε > 0,

there exists a solenoidal symmetric extension b of β such that

|B(v, v, b)| ≤ ε‖∇v‖2 (∀v ∈ V s).

Remark 3.1. It is well known that for the general bounded domain in

R
n(n = 2, 3), the similar inequality holds for ∀v ∈ V if β satisfy (SOC).

Remark 3.2. If u = v + b satisfies (1.5), then v satisfies the following.

< v′, ϕ > +ν(∇v,∇ϕ) + B(v, v, ϕ) + B(b, v, ϕ) + B(v, b, ϕ)(3.1)

=< f, ϕ > −ν(∇b,∇ϕ) −B(b, b, ϕ) (∀ϕ ∈ V s)

4. Proof of Theorem

Let {wj}j be as in Section 2, b = b(x) a symmetric solenoidal extension

to Ω of the boundary value β obtained in Lemma 3.7. First, we consider

the following finite dimensional problem:

Find a solution

vm(t) =

m∑
k=1

gkm(t)wk

to the initial value problem of ordinary differential equation:

(v′m, wj) + ν(∇vm,∇wj) + B(vm, vm, wj) + B(vm, b, wj)(4.1)

+B(b, vm, wj) =< f,wj > −ν(∇b,∇wj) −B(b, b, wj) (1 ≤ j ≤ m)

vm(0) = v0 ∈ [w1, w2, · · · , wm].
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It is immediate to see that there exists a positive tm such that a solution

vm(t) exists for t ∈ [0, tm]. Let us show tm = T . Multiply (4.1) by gjm(t)

and sum up with respect to j. Using Lemma 3.1, we find

1

2

d

dt
‖vm(t)‖2 + ν‖∇vm(t)‖2 + B(vm, b, vm)(4.2)

=< f, vm > −ν(∇b,∇vm) −B(b, b, vm).

Let ε > 0 arbitrary. By Lemma 3.7, we have

|B(vm, b, vm)| = | −B(vm, vm, b)| ≤ ε‖∇vm‖2.

Estimate the right side of (4.2) using Lemma 3.2 and Hölder’s inequality

and we obtain

| < f, vm > −ν(∇b,∇vm) −B(b, b, vm)| ≤ (‖f‖V ′ + ν‖∇b‖2 + ‖b‖2
4)‖∇vm‖

≤ ε‖∇vm‖2 + Cε(‖f‖2
V ′ + ν2‖∇b‖2

2 + ‖b‖4
4)

where the constant Cε depends only on ε. Choosing ε = ν/2, we obtain

d

dt
‖vm(t)‖2 + ν‖∇vm(t)‖2 ≤ F (t)(4.3)

where

F (t) = 2Cε(‖f(t)‖2
V ′ + ν2‖∇b‖2

2 + ‖b‖4
4).

F (t) is an integrable function independent of m. Integrating the both sides,

we have

‖vm(t)‖2 + ν

∫ t

0
‖∇vm(s)‖2ds(4.4)

≤ ‖v0‖2 +

∫ t

0
F (s)ds ≤ ‖v0‖2 +

∫ T

0
F (s)ds.

The right hand side is a constant independing of m. Therefore, we can take

tm = T .

Using Lemma 3.3 for (4.3), we obtain the following inequality with some

constant c1 > 0 independent of m:

d

dt
‖vm(t)‖2 + c1‖vm(t)‖2 ≤ F (t).(4.5)
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Integration of this inequality yields:

‖vm(t)‖2 ≤ ‖v0‖2e−c1t + e−c1t

∫ t

0
ec1sF (s)ds.(4.6)

Now, we consider the finite dimensional periodic problem:

(v′m, wj) + ν(∇vm,∇wj) + B(vm, vm, wj) + B(vm, b, wj)(4.7)

+B(b, vm, wj) =< f,wj > −ν(∇b,∇wj) −B(b, b, wj) (1 ≤ j ≤ m)

vm(0) = vm(T ).

According to the previous investigation, there exists a unique solution vm(t)

for the initial value problem with the initial condition

vm(0) = v0 ∈ [w1, w2, · · · , wm].

Define the mapping Tm as

Tm : [w1, w2, · · · , wm] → [w1, w2, · · · , wm], Tmv0 = vm(T ).

Then Tm is a continuous mapping from [w1, w2, · · · , wm] to [w1, w2, · · · , wm].

Put Bm(R) = {u ∈ [w1, w2, · · · , wm] : ‖u‖ ≤ R}.
Now let us show that there exists a positive number R independent of

m such that Tm(Bm(R)) ⊂ Bm(R). Choose R as

R2 =
e−c1T

∫ T
0 ec1sF (s)ds

1 − e−c1T
.

Then R is independent of m, and if ‖v0‖ ≤ R, we have

‖v0‖2 +

∫ T

0
ec1sF (s)ds ≤ R2 + R2ec1T (1 − e−c1T ) = R2ec1T .

Therefore, by (4.6), we obtain

‖Tmv0‖2 = ‖vm(T )‖2 ≤ e−c1T (‖v0‖2 +

∫ T

0
ec1sF (s)ds) ≤ R2

and Tm(Bm(R)) ⊂ Bm(R) holds. By Brouwer’s fixed point theorem, there

exists v0 ∈ [w1, · · · , wm] such that Tm(v0) = v0. Let vm be the solution with
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the initial condition vm(0) = v0. Then vm is a periodic solution for (4.7).

Note that ‖vm(0)‖ ≤ R for all m. From the estimate (4.4), it follows

{vm}m is a bounded sequence in L∞(0, T : Hs).(4.8)

Let t = T in (4.4). Then we assure

{vm}m is a bounded sequence in L2(0, T : V s).(4.9)

Since {wj}j are chosen as the eigenfuctions of the Stokes operator, we find,

using Lemma 3.4, Lemma 3.5, Lemma 3.6, that

{v′m}m is a bounded sequence in L2(0, T : (V s)′).(4.10)

See J. L. Lions[6] for details. We can choose a subsequence which converges

to a suitable solution to the periodic problem (1.5).

5. Uniqueness

Let ui (i = 1, 2) be solutions to the periodic problem (1.5) for the bound-

ary condition u = β and the external force f , that is,

ui − bi ∈ L2(0, T ;V s) ∩ L∞(0, T ;Hs){
< u′i, ϕ > +ν(∇ui,∇ϕ) + B(ui, ui, ϕ) =< f, ϕ > (∀ϕ ∈ V s)

ui(0) = ui(T )

where bi is a solenoidal symmetric extension of β. Put u = u1 − u2. Then

u ∈ V s and

< u′, ϕ > +ν(∇u,∇ϕ) + B(u, u1, ϕ) + B(u2, u, ϕ) = 0 (ϕ ∈ V s).

Taking ϕ = u, we have

< u′, u > +ν(∇u,∇u) + B(u, u1, u) = 0.

By Lemma 3.2 (iii), it holds

|B(u, u1, u)| ≤ C2‖∇u‖2‖u1‖4,

therefore, we obtain

1

2

d

dt
‖u‖2 + (ν − C2‖u1‖4)‖∇u‖2 ≤ 0.



122 Hiroko Morimoto

Put U(t) := ν−C2‖u1‖4. If u1 is so small that U(t) > 0 holds a.e. t ∈ [0, T ],

then, using Poincaré’s inequality, we have

1

2

d

dt
‖u‖2 + C−2

3 U(t)‖u‖2 ≤ 0

Integrating this inequality, we obtain the estimate

‖u(t)‖2 exp{2C−2
3

∫ t

0
U(s)ds} ≤ ‖u(0)‖2 (∀t ∈ [0, T ]).(5.1)

Put t = T . Since u(0) = u(T ) and exp{2C−2
3

∫ T
0 U(s)ds} > 1, we have

‖u(0)‖ = 0. Therefore, using again (5.1), we have u(t) = 0 for 0 ≤ t ≤ T .

Theorem 5.1. If the periodic solution is small, then it is unique.

Remark 5.1. We do not know if the small periodic solution exists or

not.
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