
Completeness and Decidability Results
for CTL in Coq

Christian Doczkal Gert Smolka

Published in Proc. of ITP 2014, Vienna, Austria, LNAI 8558, Springer, 2014
Revised June 17, 2015

We prove completeness and decidability results for the temporal logic CTL

in Coq/Ssreflect. Our basic result is a constructive proof that for every

formula one can obtain either a finite model satisfying the formula or a

proof in a Hilbert system certifying the unsatisfiability of the formula. The

proof is based on a history-augmented tableau system obtained as the

dual of Brünnler and Lange’s cut-free sequent calculus for CTL. We prove

the completeness of the tableau system and give a translation of tableau

refutations into Hilbert refutations. Decidability of CTL and completeness

of the Hilbert system follow as corollaries.

1 Introduction

We are interested in a formal and constructive metatheory of the temporal logic

CTL [6]. We start with the definitions of formulas, models, and a satisfiability

relation relating models and formulas. The models are restricted such that the

satisfiability relation is classical. We then formalize a Hilbert proof system and

prove it sound for our models. Up to this point everything is straightforward.

Our basic result is a constructive proof that for every formula one can obtain

either a finite model satisfying the formula or a derivation in the Hilbert system

certifying the unsatisfiability of the formula. As corollaries of this result we

obtain the completeness of the Hilbert system, the finite model property of CTL,

and the decidability of CTL.

Informal and classical proofs of our corollaries can be found in Emerson and

Halpern’s work on CTL [7, 5]. Their proofs are of considerable complexity as it

comes to the construction of models and Hilbert derivations. As is, their com-

pleteness proof for the Hilbert system is not constructive and it is not clear how

to make it constructive.

1

Brünnler and Lange [3] present a cut-free sequent system for CTL satisfying a

finite subformula property. Due to the subformula property, the sequent system

constitutes a decision method for formulas that yields finite counter-models for

non-valid formulas. The sequent system is non-standard in that formulas are

annotated with histories, which are finite sets of formulas. Histories are needed

to handle eventualities (e.g., until formulas) with local rules.

We base the proof of our main result on a tableau system that we obtain by

dualizing Brünnler and Lange’s sequent system. This is the first tableau sys-

tem for CTL employing only local rules. Existing tableau methods for CTL [7, 5]

combine local rules with global model checking of eventualities. Given a for-

mula, the tableau system either constructs a finite model satisfying the formula

or a tableau refutation. We give a translation from tableau refutations to Hilbert

refutations, thereby showing the completeness of the Hilbert system and the

soundness of the tableau system. The translation is compositional in that it is

defined by structural recursion on tableau refutations. For the translation it is

essential that the tableau system has only local rules.

With our results it should not be difficult to obtain formal and constructive

proofs of the soundness and completeness of Brünnler and Lange’s original sys-

tem.

The standard definition [5] of the satisfiability relation of CTL employs in-

finite paths, which are difficult to handle in a constructive setting. We avoid

infinite paths by capturing the semantics of eventualities with induction and the

semantics of co-eventualities with coinduction.

Our formal development consists of about 3500 lines of Coq/Ssreflect. There

are three subtasks of considerable complexity. One complex subtask is the con-

struction of finite models from intermediate structures we call demos. Our de-

mos play the role of the pseudo-Hintikka structures in Emerson [5] and are de-

signed such that they go well with the tableau system. Another complex subtask

is the construction of a demo from the tableau-consistent clauses in a subfor-

mula universe. Finally, the translation of tableau refutations to Hilbert refuta-

tions is of considerable complexity, in particular as it comes to the application

of the induction axioms of the Hilbert system.

Given the practical importance of CTL and the complex proofs of the meta-

theoretic results for CTL, we think that the metatheory of CTL is an interesting

and rewarding candidate for formalization. No such formalization exists in the

literature. In previous work [4] we have prepared this work by proving related

results for a weaker modal logic. As it comes to eventualities, which are re-

sponsible for the expressiveness and the complexity of the logic, our previous

work only captured the simplest eventuality saying that a state satisfying a given

formula is reachable.

2

Our development is carried out in Coq [13] with the Ssreflect [9] extension.

We build a library for finite sets on top of Ssreflect’s countable types and use it

to capture the subformula property. We also include a fixpoint theorem for finite

sets and use it to show decidability of tableau derivability.

In each section of the paper, we first explain the mathematical ideas behind

the proofs and then comment briefly on the difficulties we faced in the formal-

ization. For additional detail, we refer the reader to Coq development.1

2 CTL in Coq

We define the syntax and semantics of CTL as we use it in our formalization. We

fix a countable alphabet AP of atomic propositions p and define formulas as

follows:

s, t := p | ⊥ | s → t | AX s | A(s U t) | A(s R t)

We define the remaining propositional connectives using → and ⊥. We also use

the following defined modal operators: EX s ≡ ¬AX¬s, A+(s U t) ≡ AX A(s U t),
E(s U t) ≡ ¬A(¬s R¬t), E+(s U t) ≡ EX E(s U t), E(s R t) ≡ ¬A(¬s U¬t), and EG t ≡
E(⊥R t).

The formulas of CTL are interpreted over transition systems where the states

are labeled with proposition symbols. Unlike most of the literature on CTL [5,

7, 1], where the semantics of CTL formulas is defined in terms of infinite paths,

we define the semantics of CTL using induction and coinduction. Our semantics

is classically equivalent to the standard infinite path semantics but better suited

for a constructive formalization.

LetW be a type, R : W → W → Prop a relation, and P,Q : W → Prop predicates.

We require that R is serial, i.e., that everyw : W has some R-successor. We define

the eventuality AU (“always until”) inductively as:

Qw

AUR P Qw

P w ∀v.Rw v =⇒ AUR P Qv

AUR P Qw

Further, we define AR (“always release”) coinductively.

Qw P w

ARR P Qw
============

Qw ∀v.Rw v =⇒ ARR P Qv

ARR P Qw
==================================

Now let L :AP → W → Prop be a labeling function. We evaluate CTL formulas to

1 http://www.ps.uni-saarland.de/extras/itp14.

3

http://www.ps.uni-saarland.de/extras/itp14

K s → t → s
S ((u→ s → t)→ (u→ s)→ u→ t)

DN ((s → ⊥)→ ⊥)→ s
N AX(s → t)→ AX s → AX t

U1 t → A(s U t)
U2 s → AX A(s U t)→ A(s U t)
R1 A(s R t)→ t
R2 A(s R t)→ (s → ⊥)→ AX A(s R t)
AX AX⊥ → ⊥

s s → t
t

MP
s

AX s
Nec

t → u s → AXu→ u
A(s U t)→ u

AUind

u→ t u→ (s → ⊥)→ AXu

u→ A(s R t)
ARind

Figure 1: Hilbert Axiomatization of CTL

predicates on W :

eval p = Lp eval (s → t) = λw.eval s w =⇒ eval t w

eval ⊥ = λ_.False eval (AX s) = λw.∀v.Rw v =⇒ eval t v

eval (A(s U t)) = AUR (eval s) (eval t)

eval (A(s R t)) = ARR (eval s) (eval t)

We say w satisfies a formula s, written w î s, if we have eval s w. Similar to [4],

we consider as models only those serial transition systems (W,R, L) for which

∀s∀w ∈ W.w î s ∨w 6î s (1)

is provable. When M is a model, we write →M for the transition relation of M
and w ∈M if w is a state ofM.

Note that having to prove (1) severely restricts our ability to construct infinite

models. However, since CTL has the small model property it suffices to construct

finite models for our completeness results. For these models (1) is easy to prove.

Formalizing models this way allows us to reason about the classical object logic

CTL without assuming any classical axioms.

The Hilbert axiomatization we use in our formalization is a variant of the

Hilbert system given by Emerson and Halpern [7]. The rules and axioms of the

Hilbert axiomatization are given in Figure 1. We write ` s if s is provable from

the axioms and call a proof of ¬s a Hilbert refutation of s.

4

Theorem 2.1 If ` s then w î s for all modelsM and states w ∈M.

Proof Induction on the derivation of ` s, using (1) for the cases corresponding

to DN and ARind.

We are now ready to state our basic theorem.

Theorem 2.2 (Certifying Decision Method) For every formula we can construct

either a finite model or a Hilbert refutation.

3 A History-Based Tableau System for CTL

The tableau system we use as the basis for our certifying decision method em-

ploys signed formulas [11]. A signed formula is either s+ or s− where s is a

formula. Signs bind weaker than formula constructors, so s → t+ is to be read as

(s → t)+. We write σ for arbitrary signs and σ for the sign opposite to σ . A state

satisfies a signed formula sσ if it satisfies bsσ c where bs+c = s and bs−c = ¬s.
We refer to positive until formulas and negative release formulas as eventu-

alities. For the eventuality A(s R t)− to be satisfied at a state, there must be a

path from this state to a state satisfying ¬t that satisfies ¬s on every state along

the way.

A clause is a finite set of signed formulas and a history is a finite set of

clauses. The letters C and D range over clauses and the letter H ranges over

histories. For the rest of this paper, sets are always assumed to be finite. An

annotated eventuality is a formula of the form

A(s UH t)+ | A+(s UH t)+ | A(s RH t)− | A+(s RH t)−

An annotation is either an annotated eventuality or the empty annotation “·”.

The letter a ranges over annotations. An annotated clause is a pair C|a of a

clause C and an annotation a.

We give the semantics of annotated clauses by interpreting clauses, histories,

and annotations as formulas. If an object with an associated formula appears

in the place of a formula, it is to be interpreted as its associatend formula. The

associated formula of a clause C is
∧
sσ∈Cbsσ c. The associated formula of a

history H is the formula
∧
C∈H ¬C . The associated formula of an annotation is

defined as follows:

af(·) = >
af(A(s UH t)+) = A((s ∧H)U(t ∧H))

af(A+(s UH t)+) = A+((s ∧H)U(t ∧H))
af(A(s RH t)−) = E((¬s ∧H)U(¬t ∧H))

af(A+(s RH t)−) = E+((¬s ∧H)U(¬t ∧H))

5

The meaning of an annotated eventuality can be understood as follows: a state

satisfies A(s UH t)+ if it satisfies A(s U t) without satisfying any clause from H
along the way. For A(s RH t)− we push the negation introduced by the sign down

to s and t before adding the history. A state satisfies the annotated clause C|a,

if it satisfies the formula C ∧ a.

The request of a clause is the set RC := { s+ | AX s+ ∈ C }. The request of

annotations is defined such that r (A+(s UH t)) = A(s UH t) and r a = · for all

other annotations. The intuition behind requests is that if a state satisfies C|a,

then every successor state must satisfy RC|r a.

Our tableau calculus derives unsatisfiable clauses. The rules of the calculus

can be found in Figure 2. The notation C, sσ is to be read as C ∪ {sσ}. If C, sσ

appears in the conclusion of a rule, we refer to C as the context and to sσ as the

active formula. The tableau system is essentially dual to the sequent calculus

CT [3]. While CT derives valid disjunctions, our tableau calculus derives unsatis-

fiable conjunctions. Aside from syntactic changes, the main difference between

CT and the tableau calculus is that in CT all the rules carry the proviso that the

active formula in the conclusion does not appear in the context. We impose no

such restriction. The reason for this is simply convenience. Our completeness

proof does not rely on this added flexibility.

The history mechanism (last two rows in Figure 2) works by recording all con-

texts encountered while trying to fulfill one eventuality. If a context reappears

further up in the derivation, we can close this branch since every eventuality that

can be fulfilled, can be fulfilled without going through cycles. If all branches lead

to cycles, the eventuality cannot be fulfilled and the clause is unsatisfiable.

In our formalization, we do not argue soundness of the tableau system di-

rectly using models. Instead, we show the following translation theorem:

Theorem 3.1 If C|a is tableau derivable, then ` ¬(C ∧ a).

Corollary 3.2 If C|a is tableau derivable, then C|a is unsatisfiable.

We defer the proof of Theorem 3.1 to Section 6.

Even though it is not part of our formal development, we still argue soundness

of the tableau system informally (and classically) to give some intuition how the

history mechanism works. Soundness of all the rules except AH and RH is easy

to see. The case for AH is argued (in the dual form) by Brünnler and Lange [3].

So we argue soundness of RH here. Assume that C|A(s RH t)− is satisfiable and

C, t−|· is unsatisfiable. Then the situation looks as follows:

•
C ∧ E(¬s ∧H U¬t ∧H)

◦
C

◦
¬C

•
¬t ∧H ∧¬C

¬s ∧H

6

C,p+, p−|a C,⊥+|a
C, s−|a C, t+|a
C, s → t+|a

→+
C, s+, t−|a
C, s → t−|a

→−

RC|r a
C|a

X
RC,u−|r a
C,AXu−|a

AX−
RC|A(s UH t)−

C|A+(s UH t)−
R+H

C, t+|a C, s+,A+(s U t)+|a
C,A(s U t)+|a

U+
C, t−, s−|a C, t−,A+(s U t)−|a

C,A(s U t)−|a
U−

C, s+, t+|a C, t+,A+(s R t)+|a
C,A(s R t)+|a

R+
C, t−|a C, s−,A+(s R t)−|a

C,A(s R t)−|a
R−

C|A(s U� t)+

C,A(s U t)+|·
A�

C, t+|· C, s+|A+(s UH,C t)+

C|A(s UH t)+
AH

C|A(s UH,C t)+
A

C|A(s R� t)−

C,A(s R t)−|·
R�

C, t−|· C, s−|A+(s RH,C t)−

C|A(s RH t)−
RH

C|A(s RH,C t)
R

Figure 2: Tableau System for CTL

There exists some state satisfying C ∧ E(¬s ∧H U¬t ∧H). Hence, there exists a

path satisfying ¬s ∧ H at every state until it reaches a state satisfying ¬t ∧ H.

Since C, t−|· is unsatisfiable, this state must also satisfy ¬C . Therefore, the path

consists of at least 2 states. The last state on the path that satisfies C (left

circle) also satisfies ¬s and E+((¬s ∧ H ∧ ¬C)U(¬t ∧ H ∧ ¬C)) and therefore

C, s−|A+(s RH,C t)−.

Note that, although the RH rule looks similar to the local rule R−, the sound-

ness argument is non-local; if there is state satisfying the conclusion of the rule,

the state satisfying one of the premises may be arbitrarily far away in the model.

As noted by Brünnler and Lange [3], the calculus is sound for all annotated

clauses but only complete for clauses with the empty annotation. Consider the

clause �|A(pU{{p+}} p)+. The clause is underivable, but its associated formula

is equivalent to the unsatisfiable formula A((p ∧ ¬p)U(p ∧ ¬p)). To obtain a

certifying decision method, completeness for history-free clauses is sufficient.

7

3.1 Decidability of Tableau Derivability

For our certifying decision method, we need to show that tableau derivability is

decidable. The proof relies on the subformula property, i.e., the fact that back-

ward application of the rules stays within a finite syntactic universe. We call a set

of signed formulas subformula closed, if it satisfies the following conditions:

S1. If (s → t)σ ∈ F , then {sσ , tσ} ⊆ F .

S2. If AX sσ ∈ F , then sσ ∈ F .

S3. If A(s U t)σ ∈ F , then {sσ , tσ ,A+(s U t)σ} ⊆ F .

S4. If A(s R t)σ ∈ F , then {sσ , tσ ,A+(s R t)σ} ⊆ F .

It is easy to define a recursive function ssub that computes for a signed formula

sσ a finite subformula closed set containing sσ . The subformula closure of a

clause C is defined as sfc C :=
⋃
s∈C ssub s and is always a subformula closed

extension of C . Now let F be a subformula closed set. The annotations for F ,

written A(F), consist of · and eventualities from F annotated with histories

H ⊆ P(F), where P(F) is the powerset of F . We define the universe for F as

U(F) := P(F)×A(F).

Lemma 3.3 1. IfF is subformula closed, the setU(F) is closed under backward

application of the tableau rules.

2. For every annotated clause C|a there exists a subformula closed set F , such

that C|a ∈ U(F).
3. Derivability of annotated clauses is decidable.

Proof Claim (1) follows by inspection of the individual rules. For (2) we reason

as follows: If a = ·, we take F to be sfc C . If a = A(s UH t), one can show that

C|A(s UH t) ∈ U(sfc (C,A(s U t)∪
⋃
D∈H D)). All other cases are similar.

For (3) consider the annotated clause C|a. By (2) we know that C|a ∈ U(F)
for some F . We now compute the least fixpoint of one-step tableau derivability

inside U(F). By (1) the annotated clause C|a is derivable iff it is contained in

the fixpoint.

3.2 Finite Sets in Coq

To formalize the tableau calculus and the decidability proof, we need to formal-

ize clauses and histories. The Ssreflect libraries [8] contain a library for finite

sets. However, the type of sets defined there requires that the type over which

the sets are formed is a finite type, i.e., a type with finitely many elements. This

is clearly not the case for the type of signed formulas.

We want a library providing extensional finite sets over countable types (e.g.,

signed formulas) providing all the usual operations including separation ({x ∈

8

A | px }), replacement ({f x | x ∈ A }), and powerset. We could not find a

library satisfying all our needs, so we developed our own.

Our set type is a constructive quotient over lists. We use the choice operator

provided by Ssreflect to define a normalization function that picks some canoni-

cal duplicate-free list to represent a given set. This normalization function is the

main primitive for constructing sets. On top of this we build a library providing

all the required operations. Our lemmas and notations are inspired by Ssreflect’s

finite sets and we port most of the lemmas that apply to the setting with infinite

base types. We instantiate Ssreflect’s big operator library [2], which provides us

with indexed unions.

Our library also contains a least fixpoint construction. For every bounded

monotone function from sets to sets we construct its least fixpoint and show the

associated induction principle. This is used in the formalization of Lemma 3.3

to compute the set of derivable clauses over a given subformula universe.

4 Demos

We now define demos. In the completeness proof of the tableau calculus, demos

serve as the interface between the model construction and the tableau system.

Our demos are a variant of the pseudo-Hintikka structures used by Emerson [5].

Instead of Hintikka clauses, we use literal clauses and the notion of support [10].

A signed formula is a literal, if it is of the form pσ , ⊥σ , or AX sσ . A literal

clause is a clause containing only literals. A literal clause is locally consistent if

it contains neither ⊥+ nor both p+ and p− for any p. A clause supports a signed

formula, written C . sσ , if

C . l ⇐⇒ l ∈ C if l is a literal

C . (s → t)+ ⇐⇒ C . s− ∨ C . t+

C . (s → t)− ⇐⇒ C . s+ ∧ C . t−

C . A(s U t)+ ⇐⇒ C . t+ ∨ (C . s+ ∧ C . A+(s U t)+)

C . A(s U t)− ⇐⇒ C . t− ∧ (C . s− ∨ C . A+(s U t)−)

C . A(s R t)+ ⇐⇒ C . t+ ∧ (C . s+ ∨ C . A+(s R t)+)

C . A(s R t)− ⇐⇒ C . t− ∨ (C . s− ∧ C . A+(s R t)−)

We define C . D := ∀sσ ∈ D. C . sσ .

A fragment is a finite, rooted, and acyclic directed graph labeled with clauses.

If G is a fragment, we write x ∈ G to say that x is a node of G and x →G y if

there is a G-edge from x to y . A node x ∈ G is internal if it has some successor

and a leaf otherwise. If x ∈ G, we write Λx for the literal clause labeling x.

9

We also write xroot for the root of a graph if the graph can be inferred from the

context. A fragment is nontrival if its root is not a leaf.

We fix some subformula closed set F for the rest of this section. and write

L for the set of locally consistent literal clauses over F . We also fix some set

D ⊆ L. Let L ∈ D be a clause. A fragment G is a D-fragment for L if:

F1. If x ∈ G is a leaf, then Λx ∈ D and Λx ∈ L otherwise.

F2. The root of G is labeled with L.

F3. If x →G y , then Λy .R(Λx).
F4. If x ∈ G is internal and AX s− ∈ Λx , then x →G y and Λy . R(Λx), s− for

some y ∈ G.

A D-fragment G for L is a D-fragment for L and u if whenever L . u then:

E1. If u = A(s U t)+, then L . t+ or Λx . s+ for every internal x ∈ G and Λy . t+

for all leaves y ∈ G.

E2. If u = A(s R t)−, then L . t− or Λx . s− every internal x ∈ G and Λy . t−

for some y ∈ G.

Note that if u is an eventuality and L . u, then u is fulfilled in everyD-fragment

for L and u. The conditions L . t+ in (E1) and L . t− in (E2) are required to han-

dle the case of an eventuality that is fulfilled in L and allow for the construction

of nontrivial fragments in this case. A demo for D is an indexed collection of

nontrivial fragments (G(u, L))u∈F ,L∈D where each G(u,L) is a D-fragment for L
and u.

4.1 Demos to Finite Models

Assume that we are given some demo (G(u, L))u∈F ,L∈D. We construct a model

M satisfying all labels occurring in the demo. If F is empty, there is nothing to

show, so we can assume that F is nonempty.

The states of M are the nodes of all the fragments in the demo, i.e., every

state ofM is a dependent triple (u, L,x) with u ∈ F , L ∈ D, and x ∈ G(u,L). A

state (u, L,x) is labeled with atomic proposition p iff p+ ∈ Λx .

To define the transitions of M, we fix an ordering u0, . . . , un of the signed

formulas in F . We write ui+1 for the successor of ui in this ordering. The

successor of un is taken to be u0. The transitions of M are of two types. First,

we lift all the internal edges of the various fragments to transitions inM. Second,

if x is a leaf in G(ui, Lj) that is labeled with L, we add transitions from (ui, Lj , x)
to all successors of the root of G(ui+1, L). Thus, the fragments in the demo can

be thought of as arranged in a matrix as shown in Figure 3 where the Li are

the clauses in D. Note that every root has at least one successor, since demos

contain only nontrivial fragments. Thus, the resulting transition system is serial

10

G(u0, L0) G(u0, L1) · · · G(u0, Ln)

G(u1, L0) G(u1, L1) · · · G(u1, Ln)
...

...
...

G(un, L0) G(un, L1) · · · G(un, Ln)

Figure 3: Matrix of Fragments

and hence a model. We then show that every state of M satisfies all signed

formulas it supports.

Lemma 4.1 If (u, L,x) ∈M and Λx . sσ , then (u, L,x) î bsσ c.

Proof The proof goes by induction on s. We sketch the case for A(s U t)+. The

case for A(s R t)− is similar and all other cases are straightforward.

Let w = (ui, Lj , x) ∈M and assume Λx . A(s U t)+. By induction hypothesis

it suffices to show AUM s t w where

AUM s t w := AU (→M) (λ(_, _, y).Λy . s+) (λ(_, _, y).Λy . t+)w

To show AUM s t w it suffices to show AUM s t (ui+1, L, xroot) for all L satisfying

L . A(s U t)+ since by (F3) the property of supporting A(s U t)+ gets propagated

down to the leaves of G(ui, Lj) on all paths that do not support t+ along the

way.

Without loss of generality, we can assume A(s U t)+ ∈ F . Thus, we can prove

AUM s t (ui+1, L, xroot) by induction on the distance from ui+1 to A(s U t)+ ac-

cording to the ordering of F . If ui+1 = A(s U t)+, we have AUM s t (ui+1, L, xroot)
by (E1). Otherwise, the claim follows by induction, deferring to the next row of

the matrix as we did above.

Theorem 4.2 If (Gu,L)u∈F,L∈D is a demo for D, there exists a finite model satis-

fying every label occurring in (Gu,L)u∈F,L∈D.

11

4.2 Formalizing the Model Construction

Our representation of fragments is based on finite types. We represent finite la-

beled graphs as relations over some finite type together with a labeling function.

We then represent fragments using clause labeled graphs with a distinguished

root element.

We turn the finite set F × D into a finite type I. Except for the transitions

connecting the leaves of one row to the next row, the model is then just the

disjoint union of a collection of graphs indexed by I. Let G : I → graph be such a

collection. We lift the internal edges of G by defining a predicate

liftEdge : (Σi:I.G i)→ (Σi:I.G i)→ bool

on the dependent pairs of an index and a node of the respective graph satisfying

liftEdge (i, x) (i,y) ⇐⇒ x →G i y
i ≠ j =⇒ ¬liftEdge (i, x) (j,y)

The definition of liftEdge uses dependent types in a form that is well supported

by Ssreflect.

Our model construction differs slightly from the construction used by Emer-

son and Halpern [5]. In Emerson’s handbook article, every leaf of a fragment is

replaced by the root with the same label on the next level. Thus, only the inter-

nal nodes of every fragment become states of the model. This would amount to

using a Σ-type on the vertex type of every dag. In our model construction, we

connect the leaves of one row to the successors of the equally labeled root of the

next row, thus, avoiding a Σ-type construction. This makes use of the fact that

CTL formulas cannot distinguish different states that have the same labels and

the same set of successors.

5 Tableaux to Demos

An annotated clause is consistent if it is not derivable, and a clause C is consis-

tent if C|· is consistent. Let F be a subformula closed set. We now construct a

demo for the consistent literal clauses over F . We define

D := {L ⊆ F | L consistent, L literal }

We now have to construct for every pair (u, L) ∈ F ×D a nontrivial D-fragment

for L and u. We will construct a demo, where all the fragments are trees. To

bridge the gap between the tableau, which works over arbitrary clauses, and

D-fragments, which are labeled with literal clauses only, we need the following

lemma:

12

Lemma 5.1 If C|a ∈ U(F) is consistent, we can construct a literal clause L ⊆ F
such that L . C and L|a is consistent.

Proof The proof proceeds by induction on the total size of the non-literal for-

mulas in C . If this total size is 0, then C is a literal clause and there is noth-

ing to show. Otherwise there exists some non-literal formula uσ ∈ C . Thus

C|a = C \ {uσ}, uσ |a and we can apply the local rule for uσ . Consider the case

where uσ = s → t+. By rule→+ we know that C\{s → t+}, s−|a or C\{s → t+}, t+
is consistent. In either case we obtain a literal clause L supporting C by induction

hypothesis. The other cases are similar. �

Before we construct the fragments, we need one more auxiliary definition

R− C := RC, {RC, s− | AX s− ∈ C }

The set of clauses R−C serves the dual purpose of the request RC . It contains

all the clauses that must be supported at the successors of C to satisfy (F4).

The demo for D consists of three kinds of fragments. The easiest fragments

are those for a pair (u, L) where L 6.u or u is not an eventuality. In this case, a

D-fragment for L is also a D-fragment for L and u.

Lemma 5.2 If L ∈ D, we can construct a nontrivial D-fragment for L.

Proof By assumption L|· is consistent. According to rules X and AX−, C|· is

consistent for every clause C ∈ R−L. Note that there is at least one such clause.

By Lemma 5.1, we can obtain for every C ∈ R−L some clause LC ∈ D. The D-

fragment for L consists of a single root labeled with L and one successor labeled

with LC for every C ∈ R−L.

Next, we deal with the case of a pair (A(s U t)+, L) where L . A(s U t)+. This is

the place where we make use of the history annotations.

Lemma 5.3 If C|A(s UH t)+ ∈ U(F) is consistent, we can construct a D-

fragment G for L such that Λx . s+ for every internal node x ∈ G and Λy . t+

for all leaves y ∈ G where L is some clause supporting C,A(s U t)+.

Proof Induction on the slack of H, i.e., the number of clauses from P(F) that

are not in H. Since C|A(s UH t)+ is consistent, we know C ∉ H. According to rule

AH, there are two cases to consider:

• C, t+|· ∈ U(F) is consistent: By Lemma 5.1 we obtain a literal clause L such

that L . C, t+ and L|· is consistent. The trivial fragment with a single node

labeled with L satisfies all required properties.

13

• C, s+|A+(s UH,C t)+ ∈ U(F) is consistent: By Lemma 5.1 we obtain a literal

clause L such that L . C, s+ and L|A+(s UH,C t)+ is consistent. In particular,

L,A+(s U t)+ is locally consistent and supports C as well as A(s U t)+. By in-

duction hypothesis, we obtain a D-fragment for every clause in R−L. Putting

everything together, we obtain a D-fragment for L,A+(s U t)+ satisfying all

required properties �

Lemma 5.4 If L ∈ D, we can construct a nontrivial D-fragment for L and

A(s U t)+.

Proof Without loss of generality we can assume that L . s+ and A+(s U t)+ ∈ L.

All other cases are covered by Lemma 5.2. Using rules X, AX−, and A�, we show for

every C ∈ R−L that C|A(s U� t)+ is a consistent clause in U(F). By Lemma 5.3

we obtain a D-fragment for every such clause. Putting a root labeled with L on

top as in the proof of Lemma 5.2, we obtain a nontrivial D-fragment for L and

A(s U t)+ as required.

Lemma 5.5 If L ∈ D, we can construct a nontrivial D-fragment for L and

A(s R t)−.

The proof of Lemma 5.5 is similar to the proof of Lemma 5.4 and uses a similar

auxiliary lemma.

Theorem 5.6 1. There exists a D-demo.

2. If C|· is consistent, then w î C for some finite modelM with w ∈M.

Note that by Theorem 4.2 all the locally consistent labels of the internal nodes

of the constructed fragments are satisfiable and hence must be consistent. How-

ever, at the point in the proof of Lemma 5.3 where we need to show local consis-

tency of L,A+(s U t) from consistency of L|A+(s UH t) showing local consistency

is all we can do.

All fragments constructed in this section are trees. In the formalization, we

state the lemmas from this section using an inductively defined tree type, leaving

the sets of nodes and edges implicit. Thus, trees can be composed without up-

dating an edge relation or changing the type of vertices. Even using this tailored

representation, the formalization of Lemma 5.3 is one of the most complex parts

of our development.

For Theorem 5.6, we convert the constructed trees to rooted dags. To convert

a tree T to a dag, we turn the list of subtrees of T into a finite type and use this

as the type of vertices. We then add edges from every tree to its immediate sub-

trees. This construction preserves all fragment properties even though identical

subtrees of T are collapsed in into a single vertex.

14

A1 ` A(s U t)↔ t ∨ s ∧A+(s U t)
A2 ` EG¬t → ¬A(s U t)
A3 ` A((s ∧u)U(t ∧u))→ u
E1 ` t → E(s U t)
E2 ` s → E+(s U t)→ E(s U t)
AE ` AX s → EX t → EX(s ∧ t)

EUind If ` t → u and ` s → EXu→ u, then ` E(s U t)→ u
EGind If ` u→ s and ` u→ EXu, then ` u→ EG s

Figure 4: Basic CTL Lemmas

6 Tableau Refutations to Hilbert Refutations

We now return to the proof of Theorem 3.1. For this proof, we will translate the

rules of the tableau calculus to lemmas in the Hilbert calculus. For this we need

a number of basic CTL lemmas. The lemmas to which we will refer explicitly can

be found in Figure 4. In formulas, we let s UH t abbreviate (s ∧H)U(t ∧H).
We present the translation lemmas for the rules AH and RH. Given the non-

local soundness argument sketched in Section 3, it should not come as a surprise

that the translation of both rules requires the use of the corresponding induction

rule from the Hilbert axiomatization. For both lemmas we use the respective

induction rule in dualized form as shown in Figure 4.

Lemma 6.1 If ` t → ¬C and ` E+(s UH,C t)→ s → ¬C ,then

` ¬(C ∧ E(s UH t)).

Proof Assume we have (a) ` t → ¬C and (b) ` E+(s UH,C t) → s → ¬C . By

propositional reasoning, it suffices to show

` E(s UH t)→ ¬C ∧ E(s UH,C t)

Applying the EUind rule leaves us with two things to prove. The first one is

` t ∧H → ¬C ∧ E(s UH,C t) and can be shown using (a) and E1. The other is

` s ∧H → EX(¬C ∧ E(s UH,C t))→ ¬C ∧ E(s UH,C t)

The second assumption can be weakened to E+(s UH,C t). Thus, we also have ¬C
by assumption (b). Finally, we obtain E(s UH,C t) using Lemma E2.

Lemma 6.2 If ` C → ¬t and ` C → s → ¬A+(s UH,C t), then

` ¬(C ∧ A(s UH t)).

15

Proof Assume we have (a) ` C → ¬t and (b) ` C → s → ¬A+(s UH,C t). We

set u := ¬t ∧ A+(s UH t) ∧ ¬A+(s UH,C t). We first argue that it suffices to show

(1) ` u → EG¬t. Assume we have C and A(s UH t). By (a) we also know ¬t and

thus we have s∧H and A+(s UH t) by A1. Using (b) and (1), we obtain EG¬t which

contradicts A(s UH t) according to A2.

We show (1) using the EGind rule. Showing ` u→ ¬t is trivial so it remains to

show ` u→ EXu. Assume u. By Lemma AE we have EX(A(s UH t)∧¬A(s UH,C t)).
It remains to show

` A(s UH t)∧¬A(s UH,C t)→ u

We reason as follows:

1. A(s UH t) assumption

2. ¬A(s UH,C t) assumption

3. ¬t ∨¬H ∨ C 2, A1

4. ¬s ∨¬H ∨ C ∨¬A+(s UH,C t) 2, A1

5. H 1,A3

6. ¬t 3, 5, (a)

7. s ∧ A+(s UH t) 1,6,A1

8. ¬A+(s UH,C t) 4, 5, 7, (b)

This finishes the proof.

Proof (of Theorem 3.1) Let C|a be derivable. We prove the claim by induction

on the derivation of C|a. All cases except those for the rules RH and AH are

straightforward. The former follows with Lemma 6.1 the latter with Lemma 6.2.

To formalize this kind of translation argument, we need some infrastructure

for assembling Hilbert proofs as finding proofs in the bare Hilbert system can be

a difficult task. We extend the infrastructure we used in our previous work [4] to

CTL. We use conjunctions over lists of formulas to simulate context. We also use

Coq’s generalized (setoid) rewriting [12] with the preorder { (s, t) | ` s → t }.
Putting our results together we obtain a certifying decision method for CTL.

Proof (of Theorem 2.2) By Lemma 3.3, derivability of the clause s+|· is decid-

able. If s+|· is derivable we obtain a proof of ¬s with Theorem 3.1. Otherwise,

we obtain a finite model satisfying s with Theorem 5.6 and Theorem 4.2. By

Theorem 2.1, the two results are mutually exclusive.

Corollary 6.3 (Decidability) Satisfiability of formulas is decidable.

Corollary 6.4 (Completeness) If ∀M.∀w ∈M.w î s, then ` s.

16

7 Conclusion

Our completeness proof for the tableau calculus differs considerably from the

corresponding completeness proof for the sequent system given by Brünnler

and Lange [3]. Their proof works by proving the completeness of another more

restrictive sequent calculus which is ad-hoc in the sense that it features a rule

whose applicability is only defined for backward proof search. We simplify the

proof by working directly with the tableau rules and by using the model con-

struction of Emerson [5].

The proof of Theorem 3.1 relies on the ability to express the semantics of

history annotations in terms of formulas. This allows us to show the soundness

of the tableau calculus by translating the tableau derivations in a compositional

way. While this works well for CTL, this is not necessarily the case for other

modal logics. As observed previously [4], the tableau system for CTL can be

adapted to modal logic with transitive closure (K+). However, K+ cannot express

the “until” operator used in the semantics of annotated eventualities. It therefore

appears unlikely that the individual rules of a history-augmented tableau system

for K+ can be translated one by one to the Hilbert axiomatization. The tableau

system we used to obtain a certifying decision method for K+ [4] uses a complex

compound rule instead of the more fine-grained history annotations employed

here. Thus, even though the logic CTL is more expressive than K+, the results

presented here do not subsume our previous results.

An alternative to our construction of a certifying decision method could be to

replace the tableau calculus with a pruning-based decision procedure like the one

described by Emerson and Halpern [7]. In fact Emerson and Halpern’s complete-

ness proof for their Hilbert axiomatization of CTL is based on this algorithm.

While their proof is non-constructive, we believe that it can be transformed into

a constructive proof. In any case, we believe that the formal analysis of our

history-augmented tableau calculus is interesting in its own right.

The proofs we present involve a fair amount of detail, most of which is omit-

ted in the paper for reasons of space. Having a formalization thus not only en-

sures that the proofs are indeed correct, but also gives the reader the possibility

to look at the omitted details.

For our formal development, we profit much from Ssreflect’s handling of

countable and finite types. Countable types form the basis for our set library

and finite types are used heavily when we assemble the fragments of a demo

into a finite model. Altogether our formalization consists of roughly 3500 lines.

The included set library consists of about 700 lines, the remaining lines are split

almost evenly over the proofs of Theorems 3.1, 5.6, and 4.2 and the rest of the

development.

17

References

[1] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

[2] Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical big operators. In:

Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs. LNCS, vol. 5170, pp.

86–101. Springer (2008)

[3] Brünnler, K., Lange, M.: Cut-free sequent systems for temporal logic. J. Log.

Algebr. Program. 76(2), 216–225 (2008)

[4] Doczkal, C., Smolka, G.: Constructive completeness for modal logic with

transitive closure. In: Hawblitzel, C., Miller, D. (eds.) CPP 2012. LNCS, vol.

7679, pp. 224–239. Springer (2012)

[5] Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Hand-

book of Theoretical Computer Science: Formal Models and Sematics, vol. B,

pp. 995–1072. Elsevier (1990)

[6] Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthe-

size synchronization skeletons. Sci. Comput. Programming 2(3), 241–266

(1982)

[7] Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the

temporal logic of branching time. J. Comput. System Sci. 30(1), 1–24 (1985)

[8] Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A modular for-

malisation of finite group theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs.

LNCS, vol. 4732, pp. 86–101. Springer (2007)

[9] Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension

for the Coq system. Research Report RR-6455, INRIA (2008), http://hal.

inria.fr/inria-00258384/en/

[10] Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with even-

tualities. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp.

240–254. Springer (2010)

[11] Smullyan, R.M.: First-Order Logic. Springer (1968)

[12] Sozeau, M.: A new look at generalized rewriting in type theory. Journal of

Formalized Reasoning 2(1) (2009)

[13] The Coq Development Team: http://coq.inria.fr

18

http://hal.inria.fr/inria-00258384/en/
http://hal.inria.fr/inria-00258384/en/
http://coq.inria.fr

	Introduction
	CTL in Coq
	A History-Based Tableau System for CTL
	Decidability of Tableau Derivability
	Finite Sets in Coq

	Demos
	Demos to Finite Models
	Formalizing the Model Construction

	Tableaux to Demos
	Tableau Refutations to Hilbert Refutations
	Conclusion

