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Abstract— This paper proposes a very fast and robust
multi-people tracking algorithm suitable for mobile platforms
equipped with a RGB-D sensor. Our approach features a
novel depth-based sub-clustering method explicitly designed
for detecting people within groups or near the background
and a three-term joint likelihood for limiting drifts and ID
switches. Moreover, an online learned appearance classifier is
proposed, that robustly specializes on a track while using the
other detections as negative examples.

Tests have been performed with data acquired from a mobile
robot in indoor environments and on a publicly available dataset
acquired with three RGB-D sensors and results have been
evaluated with the CLEAR MOT metrics. Our method reaches
near state of the art performance and very high frame rates in
our distributed ROS-based CPU implementation.

I. INTRODUCTION AND RELATED WORK

People detection and tracking are key abilities for a mobile
robot acting in populated environments. Such a robot must
be able to distinguish people from other obstacles, predict
their future positions and plan its motion in a human-aware
fashion, according to its tasks.

Many works exist about people detection and tracking
by using RGB cameras only ([9], [27], [6]) or 3D sensors
only ([20], [25], [26], [7], [21]). However, when dealing
with mobile robots, the need for robustness and real time
capabilities usually led researchers to tackle these problems
by combining appearance and depth information. In [3], both
a PTZ camera and a laser range finder are used in order
to combine the observations coming from a face detector
and a leg detector, while in [18] the authors propose a
probabilistic aggregation scheme for fusing data coming
from an omnidirectional camera, a laser range finder and
a sonar system. Ess et al. [10], [11] describe a tracking-by-
detection approach based on a multi-hypothesis framework
for tracking multiple people in busy environments from
data coming by a synchronized camera pair. The depth
estimation provided by the stereo pair allowed them to reach
good results in challenging scenarios, but their algorithm
reached real-time performance only if one does not take into
account the time needed by their people detection algorithm
which needs 30s to process each image. Stereo cameras
continue to be widely used in the robotics community ([1],
[23]), but the computations needed for creating the disparity
map always impose limitations to the maximum frame rate
achievable, thus leaving less room for further algorithms
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Fig. 1. Example of our system output: (left) a 3D bounding box is drawn
for every tracked person on the RGB image, (right) the corresponding 3D
point cloud is reported, together with people trajectories.

operating in series with the tracking one or requiring GPU
implementations [2].

With the advent of reliable and affordable RGB-D sensors
a rapid boosting of robots capabilities can be envisioned.
For example, the Microsoft Kinect sensor allows to natively
capture RGB and depth information at good resolution
(640x480 pixels) and frame rate (30 frames per second).
Even though the depth estimation becomes very poor over
eight meters of distance and this technology cannot be used
outdoors because the sunlight can change the infrared pattern
projected by the sensor, it constitutes a very rich source of
information that can be simply used on a mobile platform.
Recently, Samsung realized also a CMOS sensor capable of
simultaneous color and range image capture [15], thus paving
the way for a further diffusion of RGB-D sensors.

In [24] a people detection algorithm for RGB-D data is
proposed, which exploits a combination of HOG and HOD
descriptors. However, the whole frame is densely scanned to
search for people, thus requiring a GPU implementation for
being executed in real time. Also [8] relies on a dense GPU-
based object detection, while [19] investigates how the usage
of the people detector can be reduced using a depth-based
ROI tracking. However, the obtained ROIs are again densely
scanned by a GPU-based people detector.

In [17] a tracking algorithm on RGB-D data is proposed,
which exploits the multi-cue people detection approach de-
scribed in [24]. It adopts an on-line detector that learns
individual target models and a multi-hypothesis decisional
framework. No information is given about the computational
time needed by the algorithm and results are reported for
some sequences acquired from a static platform equipped
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with three RGB-D sensors.
In this work, we propose a multi-people tracking algorithm

with RGB-D data for static or mobile platforms. By assuming
that people are moving on a ground plane, our method is
able to robustly track them with a medium frame rate of
26 frames per second with a standard CPU implementation.
The main contributions are a 3D sub-clustering method that
allows to efficiently detect people very close to each other or
to the background, a three-term joint likelihood for limiting
drifts and ID switches and an online learned appearance
classifier that robustly specializes on a track while using
other detections as negative examples.

The remainder of the paper is organized as follows: in Sec-
tion II an overview of the two main blocks of our system is
given. The detection phase is described in Section III, while
Section IV details the tracking procedure and in Section V
we describe the tests performed and we report the results
evaluated with the CLEAR MOT metrics. Conclusions and
future works are contained in Section VI.

II. SYSTEM OVERVIEW

Fig. 2. Block diagram describing input/output data and the main operations
performed by our detection and tracking modules.

In this section, we briefly outline the two main software
blocks of our people tracking system. As reported in Fig. 2,
the RGB-D data are processed by a detection module that
filters the point cloud data, removes the ground and performs
a 3D clustering of the remaining points. Furthermore, we
apply a HOG-based people detection algorithm to the RGB
image of the resulting clusters in order to keep only those
that are more likely to belong to the class of people. The
resulting output is a set of detections that are then passed to
the tracking module.

Our tracking algorithm performs detection-track associa-
tion as a maximization of a joint likelihood composed by
three terms: motion, color appearance and people detection
confidence. For evaluating color appearance, a person clas-
sifier for every target is learned online by using features ex-
tracted from the color histogram of the target and choosing as
negative examples also the other detections inside the image.
The HOG confidence is also used for robustly initializing
new tracks when no association with existing tracks is found.

III. DETECTION

A. Voxel grid filtering

The voxel grid filter consists of a smart down-sampling of
the RGB-D point cloud. At each frame, the space is subdi-
vided into a set of voxels (volumetric pixels) and all points
inside each voxel are approximated with the coordinates of
their centroid. By default, we chose the voxel size to be
0.06m. This value allowed us to downsize the point cloud of
our RGB-D sensor by an order of magnitude, thus reaching
high real time performance and having enough data for
performing the tracking procedure. Moreover, this operation
is also useful for obtaining point clouds with approximately
constant density, where points density no longer depends on
their distances from the sensor. In that condition the number
of points of a cluster is directly related to its real size. As an
example, in Fig. 3 we compare the raw point cloud of the
Microsoft Kinect RGB-D sensor with the result of the voxel
grid filtering when choosing the voxel size to be of 0.06m.

(a) Raw Kinect point cloud. (b) After voxel grid filtering.

Fig. 3. The effect of the voxel grid filter on Kinect 3D data.

B. Sub-clustering groups of people

Since we make the assumption that people walk on a
ground plane, our algorithm estimates and removes this
plane from the point cloud provided by the voxel grid filter.
We compute the plane coefficients with a RANSAC-based
least square method and we remove all the inliers within a
threshold distance. The ground plane equation is updated at
every frame by considering as initial condition the estimation
at the previous frame, thus allowing real time adaptation
to small changes in the floor slope or camera oscillations
typically caused by robot movements.

Once this operation has been performed, the different
clusters are no longer connected through the floor, so they
could be calculated by labeling neighboring 3D points on the
basis of their Euclidean distances. However, this procedure
can lead to two typical problems: (i) the points of a person
could be subdivided into more clusters because of occlusions
or some missing depth data; (ii) more persons could be
merged into the same cluster because they are too close or
they touch themselves or, for the same reason, a person could
be clustered together with the background, such as a wall or
a table.

For solving problem (i), after performing the Euclidean
clustering, we merge clusters that are very near in ground



plane coordinates1, so that every person is likely to belong
to only one cluster. For what concerns problem (ii), when
more people are merged into one cluster, the more reliable
way to detect individuals is to detect the heads, because there
is a one to one person-head correspondence and heads are
the body parts least likely to be occluded. Moreover, the head
is usually the highest part of the human body. From these
considerations we implemented the following algorithm, that
detects the heads from a cluster of 3D points and segment it
into sub-clusters according to the head positions:

1) for every cluster a height map2 is created along the
direction corresponding to the image x axis;

2) local maxima are searched for within the height map;
3) only maxima farther than a threshold distance in

ground plane coordinates are kept because people
heads are not often nearer than the intimate distance
[14], usually equal to 0.3m;

4) a sub-cluster is created for every remaining maximum
and points nearer than the intimate distance in ground
plane coordinates are associated to it;

5) sub-clusters with too few points or not enough high
are discarded.

For the sub-clusters obtained we compute their HOG
confidence, that is we apply a HOG people detector [9]
to the part of the RGB image corresponding to the cluster
theoretical bounding box, namely the bounding box that
should contain the whole person, from the head to the
ground. It is worth to notice that this procedure allows to
obtain a more reliable HOG confidence, respect to applying
the HOG detector directly to the cluster bounding box, also
when a person is occluded. For the people detector, we used
Dollár’s implementation of HOG3 and the same procedure
and parameters described by Dalal and Triggs [9] for training
the detector, thus reaching similar performance in terms of
precision/recall.

In Fig. 4 we report an example of sub-clustering of a
cluster that was composed by eight people very close to each
other. In particular, we show: (a) the height map obtained
from the original cluster as a black and white image, the
final estimation of the head position as white points above
the height map, the cluster segmentation into sub-clusters
explained with colors and (b) the final output of the people
detector on the whole image. Fig. 5 shows an example of
how our sub-clustering method allows to correctly detect a
person otherwise merged with the background.

IV. TRACKING

The tracking module receives as input the detections
coming from one or more detection modules and solves
the data association problem as the maximization of a joint
likelihood encoding the probability of ground plane motion
and color appearance, together with that of being a person.

1Before doing this, we remove clusters too high with respect to the ground
plane.

2For every bin, it contains the maximum height from the ground plane.
3Contained in his Matlab toolbox http://vision.ucsd.edu/˜pdollar/toolbox.

(a) Height map and
segmentation.

(b) People detection output.

Fig. 4. Sub-clustering of a cluster containing eight people standing very
close to each other.

(a) (b) (c)

Fig. 5. Example of how the sub-clustering method allows to correctly
detect a person otherwise merged with the background. a) Height maps, b)
detector output, c) tracker output.

A. Online classifier for learning color appearance

For every initialized track we maintain an online classifier
based on Adaboost, like the one used in [13] or [17]. But,
unlike these two approaches, that make use of features
directly computed on the RGB (or depth) image, we calculate
our features in the color histogram of the target, as following:

1) we compute the RGB color histogram of the points
corresponding to the current detection associated to the
track;

2) we select a set of randomized axis-aligned paral-
lelepipeds (one for each weak classifier) inside the
histogram. The feature value is given by the sum of his-
togram elements that fall inside a given parallelepiped.

With this approach, the color histogram is computed only
once for all the feature computations. In Fig. 6 we report the
three most weighted features (parallelepipeds in the RGB
color space) for each one of the three people of Fig. 1 at the
initialization (first row) and after 150 frames (second row).
It can be easily noticed how the most weighted features after
150 frames highly reflect the real targets colors.

For the training phase, we use as positive sample the color
histogram of the target, but, instead of selecting negative
examples only from randomly selected windows of the
image as in [13], we consider also as negative examples the
histograms calculated on the detections not associated to the
current track. This approach has the advantage of selecting
only the colors that really characterize the target and distin-
guish it from all the others. Fig. 7 clearly shows how this
method increases the distance between the confidences of the
correct track and the other tracks.



Fig. 6. From left to right: visualization of the features selected by Adaboost
at the first frame (first row) and after 150 frames (second row) for the three
people of Fig. 1.

(a) Random windows. (b) Other detections and random
windows.

Fig. 7. Confidence obtained by applying to the three people of Fig. 1 the
color classifier trained on one of them (Track 1) for two different methods
of choosing the negative examples.

B. Three-term joint likelihood

For performing data association we use the Global Nearest
Neighbor approach (solved with the Munkres algorithm),
described in [16] and [3]. Our cost matrix derives from the
evaluation of a three-term joint likelihood for every target-
detection couple.

As motion term we compute the Mahalanobis distance of
the detection position and estimated velocity from the pre-
dicted state of the track. Given that this distance is distributed
as a chi-square, we use this distribution for defining a gating
function for the possible associations.

An Unscented Kalman Filter is exploited to predict people
positions and velocities along the two ground plane axes
(x, y), because it has prediction capabilities near those of
a particle filter, but it is only slightly more computationally
expensive than an Extended Kalman Filter [3]. As people
motion model we chose a constant velocity model because
it is good at managing full occlusions, as described in [3].

For modeling people appearance we add two more terms:

1) the color likelihood, that helps to distinguish between
people when they are close to each other or when a
person is near the background. It is provided by the
online color classifier learned for every track;

2) the detector likelihood, that helps keeping the tracks on
people, without drifting to walls or background objects
when their colors look similar to those of the target.

For this likelihood we use the confidence obtained with
the HOG detector.

The joint likelihood to be maximized for every track i and
detection j is then

Li,j
TOT = Li,j

motion · Li,j
color · L

j
detector. (1)

For simpler algebra we actually minimize the log-likelihood

li,jTOT = −log
(
Li,j
TOT

)
= γ·Di,j

M +α·ci,jonline+β·cjHOG, (2)

where Di,j
M is the Mahalanobis distance between track i and

detection j, ci,jonline is the confidence of the online classifier
of track i evaluated with the histogram of detection j and
cjHOG is the HOG confidence of detection j.

If there are unassociated detections with HOG confidence
above a security threshold, new tracks are created.

V. EXPERIMENTS

A. Indoor tracking from mobile robot

Fig. 8. The mobile platform we used for the experiments. Note that for
this work we only exploit RGB-D data from a Microsoft Kinect sensor and
do not make use of other sensors such as Laser Range Finder or sonars.

We present here some results obtained with our tracking
system on RGB-D video sequences collected in an indoor
environment with the mobile robot shown in Fig. 8. It
consists of a Pioneer P3-AT platform equipped with a
Microsoft Kinect sensor, which is endowed with a standard
RGB camera, an infrared camera and an infrared projector.
This low cost hardware can provide RGB-D data with 640
x 480 pixel resolution at 30 frames per second. In these
tests we acquired depth data at a reduced resolution, namely
160 x 120 pixels, for speed. It is worth to notice that this
choice does not affect the accuracy achievable by our system,
because of the voxel dimension we chose for the voxel grid
filter we apply.

We performed tests while the robot was moving along one
direction in three different scenarios of increasing difficulty:

1) no obstacle is present, people move with simple (lin-
ear) trajectories;

2) no obstacle is present, people move with complex
trajectories and interact with each other;

3) obstacles (chairs, a whiteboard) are present, people
move with complex trajectories and interact with each
other.



Every video sequence extends over about 750 frames, thus
the total test set includes 4671 frames, 12272 instances of
people and 26 tracks that have been manually annotated
on the RGB image and that constitute the ground truth.
The minimum distance between people is 0.2m while the
minimum people-object distance is 0.05m.

For the purpose of evaluating the tracking performance
we adopted the CLEAR MOT metrics [4], that consists
of two indexes: MOTP and MOTA. The MOTP indicator
measures how well exact positions of people are estimated,
while the MOTA index gives an idea of the number of errors
that are made by the tracking algorithm in terms of false
negatives, false positives and mismatches. In particular, given
that our ground truth does not consist of the metric positions
of all persons, but of their positions inside the image, we
computed the MOTP index as the average PASCAL index
[12] (intersection over union of bounding boxes) of the
associations between ground truth and tracker results by
setting the validation threshold to 0.5. We computed the
MOTA index with the following formula

MOTA = 1 −
∑

t (fnt + fpt + IDsw
t )∑

t gt
(3)

where fnt is the number of ground truth people instances
(for every frame) not found by the tracker, fpt is the number
of output tracks instances that do not have correspondences
with the ground truth, IDsw

t represents the number of times
a track corresponding to the same person changes ID over
time and gt is the total number of ground truth instances
present in all frames.

In Table I we report, for every test sequence, the MOTP
and MOTA indexes, the percentage of false positives and
false negatives and the number of ID switches. The results
are very good for these tests: the only ID switches are due
to people who change motion direction when occluded by
other people or outside the camera field of view. In Fig. 9 we
report some examples of correctly tracked frames from our
test set. Different IDs are represented by different colors and
the bounding box is drawn with a thick line if the algorithm
estimates a person to be completely visible, while a thin line
is used if a person is considered occluded.

At the Italian robotics fair Robotica 2011, held in Milan
on the 16-19th November 2011, we tested the real time
capabilities of our tracking system in crowded environments.
Our robot successfully managed to detect and track people
within groups and to follow a particular person within a
crowded environment by means of only the data provided
by the tracking algorithm. Some images collected from those
days are shown in Fig. 10.

B. Test with the RGB-D People Dataset

For the purpose of comparing with other state of the art
algorithms we tested our tracking system with the RGB-D
People Dataset4 ([24], [17]), that contains about 4500 RGB-
D frames acquired from three vertically mounted Kinect

4http://www.informatik.uni-freiburg.de/ spinello/RGBD-dataset.html.

TABLE I
TRACKING RESULTS FOR TESTS WITH A MOVING ROBOT.

MOTP MOTA FP FN ID Sw.
Simple traj. 82.2% 95.8% 2.5% 1.6% 3
Complex traj. 83.5% 90.9% 4.7% 4.4% 1
With obstacles 83.3% 94.3% 4.7% 0.9% 3

TABLE II
TRACKING EVALUATION WITH RGB-D PEOPLE DATASET.

MOTP MOTA FP FN ID Sw.
Ours 73.7% 71.8% 7.7% 20.0% 19
[17] N/A 78% 4.5% 16.8% 32

sensors. Even if the exact position between the sensors
is not provided in the dataset webpage, we deduced it
to be as shown in Fig. 11. For this test, we used three
independent people detection modules (one for each Kinect),
then detections have been fused at the tracking stage.

Fig. 11. Sensory setup configuration for the RGB-D People Dataset.

In Table II we reports the results obtained with our
default system against those obtained in [17]. A video with
our tracking results can be found at this link: http://
youtu.be/b70vLKFsriM and in Fig. 12 all the estimated
trajectories are shown from a top view. Our MOTA index
is 71.8%, while for [17] is 78%, but the number of ID
switches we obtained is considerably lower (19 instead of
32). Furthermore, the following considerations must be

Fig. 12. Top view of the resulting estimated trajectories for the RGB-D
People Dataset.

taken into account:
• 10% of people instances of this dataset appear on the

stairs, but tracking people who do not walk on a ground
plane was out of our scope. It is then worth to notice
that half of our false negatives refer to those people;



Fig. 9. Tracking output on some frames extracted from our test set collected from a moving robot.

Fig. 10. Examples of tracking results from our mobile robot moving in a crowded environment.

• in the annotation provided with the dataset some people
are missing even if they are visible and, when people are
visible in two images they are annotated only in one of
these. Our algorithm, however, correctly detects people
in every image they are visible. Examples of these kinds
of annotation errors are reported in Fig. 13. Actually,
90% of our false positives are due to these annotation
errors, rather than to false tracks. Without these errors,
the FP and MOTA values would be 0.7% and 78.9%;

• half of our ID switches are due to tracks re-initialization
just after they are created because of a poor initial
estimation for track velocity. If we do not use the
velocity in the Mahalanobis distance for motion likeli-
hood computation the ID switches decrease to 9, while
obtaining a MOTA of 70.5%.

(a) Track 1 (b) Track 16

Fig. 13. Examples of people missing in the ground truth (first row) while
detected by our algorithm (second row).

Given these issues, it seems that our tracking algorithm could
achieve state of the art performance if evaluated in a proper
way.

If we do not use the sub-clustering method described in
Section III-B the MOTA index decreases by 10%, while
the ID switches increase by 17. In Fig. 14 we report two
examples of people merged together when not using the sub-
clustering technique.

(a) (b)

Fig. 14. Examples of people merged together when not using the sub-
clustering method for the RGB-D People Dataset.

For this particular dataset the online classifier has not been
very useful because most of the people are dressed with the
same colors and the Kinect auto-brightness function makes
the brightness to considerably and suddenly change among
the images.

C. Runtime perfomance

The entire system is implemented in C++ within ROS, the
Robot Operating System5, making use of highly optimized
libraries for 2D computer vision [5], 3D point cloud pro-
cessing [22] and bayesian estimation6. Our implementation

5http://ros.org.
6Bayes++ - http://bayesclasses.sourceforge.net.



TABLE III
FRAME RATES FOR PROCESSING ONE KINECT STREAM (FPS).

CPU Detector Detector+Tracker
Intel Xeon E31225 3.10GHz 28 26

Intel i5-520M 2.40 GHz 23 19

does not rely on GPU processing, so that it can be used with
robots with limited computational resources.

In Table III we report the frame rates we measured for the
detection algorithm and for our complete system (detection
and tracking) with two computers we used for the tests: a
workstation with an Intel Xeon E31225 3.10 GHz processor
and a laptop with an Intel i5-520M 2.40 GHz7. These frame
rates are achieved using Kinect QQVGA depth resolution,
while they halve at Kinect VGA resolution. Our imple-
mentation exploits ROS multi-threading capabilities and is
explicitly designed for real time operation and for correctly
handling data coming from multiple sensors, delays and lost
frames. These results suggest that a robot could use the same
computer for people tracking and other tasks like navigation
and self localization. As a further test, we forced our system
to process in real time the 3x30Hz stream of the RGB-D
People Dataset. Even if only 32% of the images could be
processed (68% of frames was lost) it produced good results,
in fact the MOTA index computed for those images was
69.3% with 24 ID switches.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have presented a very fast and robust
algorithm for multi-people tracking from static or mobile
platforms equipped with a RGB-D sensor. The assumption
that people move on a ground plane and a novel sub-
clustering method allow to detect people even when very
close to each other or to the background. A three-term
joint likelihood is exploited for the data association process
for limiting drifts and ID switches and an online learned
appearance classifier is proposed, that robustly specializes on
a track while using the other detections as negative examples.

Tests have been performed with data acquired from a
mobile robot in indoor environments and on a publicly
available dataset acquired with three RGB-D sensors. Our
method reached near state of the art performance and our
ROS implementation has been tested to track people at 26fps
on a standard computer.

As a future work, we plan to improve the estimation
of tracks velocity, in order to avoid some ID switches.
Moreover, as our tracking stage has been explicitly designed
for fusing data from multiple distributed detection modules,
we plan to test it also with data coming from a RGB-D
camera network or a team of robots.
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