
Improving Games AI Performance using Grouped
Hierarchical Level of Detail

David Osborne and Patrick Dickinson 1

Abstract. Computer games are increasingly making use of large

environments; however, these are often only sparsely populated with

autonomous agents. This is, in part, due to the computational cost

of implementing behaviour functions for large numbers of agents. In

this paper we present an optimisation based on level of detail which

reduces the overhead of modelling group behaviours, and facilitates

the population of an expansive game world.

We consider an environment which is inhabited by many dis-

tinct groups of agents. Each group itself comprises individual agents,

which are organised using a hierarchical tree structure. Expanding

and collapsing nodes within each tree allows the efficient dynamic

abstraction of individuals, depending on their proximity to the player.

Each branching level represents a different level of detail, and the

system is designed to trade off computational performance against

behavioural fidelity in a way which is both efficient and seamless to

the player.

We have developed an implementation of this technique, and used

it to evaluate the associated performance benefits. Our experiments

indicate a significant potential reduction in processing time, with the

update for the entire AI system taking less than 1% of the time re-

quired for the same number of agents without optimisation.

1 INTRODUCTION

Computer games AI is becoming increasingly complex, with play-

ers expecting increasingly realistic behaviour from non-player char-

acters. At the same time, the size and detail of game environments

has increased dramatically, with games such as Crysis [5] having

effective view distances of over 8 kilometres. Often these environ-

ments are largely uninhabited, with the game agents centred around

the player’s location. If agents are present in other areas, they will

sometimes use simplified behaviour models to reduce computational

overheads. However, unless these are carefully constructed, problems

can arise when an agent’s simplified model is noticeably inconsistent

with its full behaviour.

Increasingly sophisticated methods of performance optimisation

have been investigated. For example, attempts have been made to

dynamically adjust the amount of CPU time given to each agent

[17]. Others have taken the concept of level of detail (LoD), a system

used extensively in computer graphics [4, 16] to dynamically adjusts

the complexity of visual representation, and transposed it to AI be-

haviour functions.

For example, work by Brockington [1] presents a LoD system

which was used in the commercial game Neverwinter Nights. This

made use of reduced behaviour complexity, based on 5 LoDs, with

1 University of Lincoln, Lincoln, email: david@digital-clouds.com, pdickin-
son@lincoln.ac.uk

characters at the highest level using a complete set of combat and

pathfinding algorithms. Those at lower LoDs had simplified versions

of the same functions. For example, at the highest level, characters

could use a full pathfinding system, whereas at the lowest level no

pathfinding was used: agents were simply moved in a straight line

to their destination with a time delay equivalent to the travel time.

Whilst effective, Brockington’s implementation is designed around

one specific game environment: many of the pathfinding abstractions

in his implementation rely on the structure of the levels within the

Neverwinter Nights game engine.

Other methods have made use of hierarchical representations of

behaviour models. Champandard’s [3] Hierarchical State Machines

(or HSMs) makes use of nested finite state machines. Each state of

a machine could contain another machine or a set of child states:

transitions from the parent state are effectively connected to all the

sub-states, and transitions to the parent state can be redirected to the

nested states. The key to HSMs is refinement and abstraction, with

abstraction allowing for a parent state to be used as a regular state,

rather than using the nested states or machines. Refinement allows

for the states contained within the parent state to be used instead. This

system applies LoDing to individual behaviours; however, designing

and visualising the HSM is difficult as complex behaviour functions

have to be decomposed into a set of simpler sub-states, while also

providing appropriate behavioural elements at the parent level.

Brom et al. [2] take a comparable approach by applying hierarchi-

cal models to goal-based task representation. Non-player character

behaviours are represented as tasks, which are further decomposed

into atomic actions. Brom et al.’s proposed LoD system controls the

detail with which individual actions are modelled and executed, and

is coupled with an analogous LoD representation for the environ-

ments inhabited by those agents.

1.1 Level of Detail and Group Behaviours

Whilst the above methods have explored LoD type representations

of the behaviour of individual game agents, our interest is the simu-

lation of large numbers of agents acting in groups. Games have often

made use of groups of agents working together, and one of the best

known examples is Reynold’s flocking algorithm [11]. Agents are

controlled using a small number of steering behaviours that are ap-

plied individually, based on their neighbourhood, in order to create

a believable emergent dynamic. Reynold’s example of boid flocks,

that is, flocks of artificial bird like creatures, made use of three very

basic components (alignment, cohesion and separation). Later work

[12] introduced other components for features such as path following

and obstacle avoidance.

Other systems have been based on human behaviour. For exam-

ple, van der Sterren presented two methods based on military com-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357576241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


bat. These compared emergent, decentralised command structures

[13], where agents passed information to each other and acted on

their local knowledge of the world, with centralised command [14]

where one agent made decisions for an entire group. Both of these

approaches provide good results: however, due to the high complex-

ity of the behaviours, they are better suited to smaller sized groups.

Aside from military oriented models, a significant body of re-

lated work has developed around the simulation of human crowd be-

haviour. The objective of these systems is to create believable emer-

gent group dynamics in everyday situations which are recognisable

to the player or user. In most cases, such systems are comparable

with Reynold’s steering behaviours but employ considerably more

complex behavioural models coupled with typically human environ-

mental influences. Early work by Musse and Thalman [6] considered

the use of emotional and sociological models of human behaviour

for simulating crowd activities in simple contexts, such as visiting

a museum. Later work by Sung et al.[15] focussed on situation de-

pendent behaviour functions, and scalability, whilst Pelechano et al.

[9] developed a model of interaction which generates interesting and

realistic emergent behaviours in queues and crowded spaces.

Works by Brockington, Champandard, and Brom et al. which con-

sidered the optimisation of behaviour functions for individual agents

has already been mentioned. Similar approaches to the optimisation

of crowd simulations have also been proposed, such as that of Pettre

et al. [10] which used reduced update times for non-visible agents,

combined with simplified individual behaviour functions. However,

systems comprising group-based agents offer the potential to further

consider both interactions between agents, and representations of the

entire group. Some existing research has approached LoDing from

this perspective.

For example, Niederberger and Gross [7], presented a hierarchy

of agents in a group, where each individual was assigned to a dis-

crete LoD value. This determined both how each agent’s behaviour

was implemented as an individual, and also how computational re-

sources were distributed through the group. For example, an agent

could opt to pass its scheduled computation resources to another, su-

perior, agent in the hierarchy.

Work by O’Hara [8] is of particular interest to us. This consid-

ered the representation of a group of agents engaging in Flocking

behaviour (using Reynolds steering behaviours [11]), and sought to

reduce the number of entities required to maintain a persistent model.

Agents with stable trajectories and similar spatial characteristics are

dynamically clustered into sub-groups called stable groups. These

were then abstracted to a single entity which represents the stable

group’s dynamic and spatial properties, removing the need to update

each member individually. However, as stable groups are defined by

their member’s dynamic characteristics, the group structure of the

entire flock must be validated and maintained. For example, stable

groups were merged, and others split, in response to interactions with

other groups.

1.2 Our Approach

Like O’Hara [8], the aim of our work is to optimise the simulation

of flocking agents through the abstraction of individuals. However,

we approach this more from the perspective of player perception and

experience (as is the case for LoDing in graphics). Moreover, we

consider the problem of maintaining an entire environment rather

than a single flock: whilst O’Hara applied his system to a single

group of hundreds of agents, our experiments have simulated hun-

dreds of thousands of agents, organised into separate and distinct

groups occupying the same world. Our motivation is that this type

of arrangement represents a likely structure for a large-scale game

environment; for example, a sweeping plain populated by herds of

different types of animals.

The novelty of our method derives from our approach to LoDing a

group of agents. Existing approaches (like O’Hara’s) use a bottom-up

approach, and seek to reduce the representation required for a num-

ber of discrete agents acting in a group. Instead, we take a top-down

approach in which we consider the group itself to be a single entity,

and then add or remove agents as required to achieve an appropriate

level of detail.

We have developed a hierarchical model to represent a group of

agents engaged in flocking behaviour (using Reynolds steering be-

haviours [11]). Unlike O’Hara, who maintains adaptive clusters of

agents, our abstraction is based on a predefined hierarchical tree

structure. Leaf nodes in the tree represent the active group, and each

branching node defines a LoD abstraction of it’s subtree. LoDing is

implemented by simply expanding or collapsing individual nodes: in

our experiments we limit the depth of the tree, but this is an arbitrary

restriction. Our structure also affords the potential to optimise mem-

ory usage by deallocating collapsed nodes until required. Whilst we

arguably do not maintain the same level of persistence as O’Hara,

we are able to retain consistent behaviours for very large numbers of

agents, and support seamless transitions through different LoDs by

incrementally adjusting the representation of each subtree.

We proceed by presenting our hierarchical group structure in Sec-

tion 2. In Section 3 we describe our test implementation, where we

apply our approach to agents controlled using Reynolds flocking

method. Sections 4 and 5 presents the results of our evaluation, and

discussion.

2 GROUPED LEVEL OF DETAIL

The main concept behind our approach is that agents of the same type

are often instantiated and managed in a distinct group. For example,

a single herd of animals may comprise a large number of agents who

act together. Within this context, we use LoDing as a means of con-

trolling the representation of the group as a whole (rather than the

representation of individuals with the group). We refer to this idea as

grouped level of detail.

LoDing applied to a 3D graphical models is implemented by vary-

ing the number of polygons used to render that model. This may

be implemented procedurally, or by using a set of pre-constructued

models with the same key geometrical features. Either way, the

model itself it considered to be a single entity, and the polygons are

the building blocks used to construct it: in principle any number of

polygons could be used to construct a particular model.

Our approach to AI grouped level of detail is analogous to the

graphical case. We consider that the agents themselves represent the

building blocks from which the group is constructed, and vary the

complexity of representation of the group by varying the number of

agents used to model it. For example, if we want to reduce the group

complexity, a set of agents is dynamically removed from the group

and replaced by a single agent which retains their spatial and dy-

namic characteristic. When more detail is required again, these ab-

stracted agents are expanded back into the original set.

2.1 Balancing Performance and Representation

Consider a simple case where a group has only two pre-defined

LoDs. In one case, the group may be represented with a full and



complete number of agents: this provides the maximum representa-

tional complexity, but also requires the highest processing resources

to maintain the group’s behaviour. In the second LoD, the entire

group is represented by just a single entity which abstracts all of its

constituent agents. This representation has minimal processing re-

quirements, but only a very simple representation. However these

LoDs are managed, transitions between them are likely to present in-

consistencies to the player. A key point of our approach is to mitigate

this effect by varying the number of agents in the group incremen-

tally.

In order to achieve this we have used a hierarchical tree structure to

represent the group, with nodes representing agents at various levels

of abstraction. Our tree has a nominal maximum depth, such that

leaf nodes at this depth effectively correspond to individual agents in

the group. Higher level nodes represent incremental abstractions of

their subtrees, and can be independently collapsed or expanded again

in response to a requirement for less or more detail. For example,

using a proximity-based LoD, subtrees representing agents which are

closer to the player are expanded to a greater depth than those which

are further away.

An example is shown in figure 1, where a LoD membrane passes

through a representation of the fully expanded tree to show its cur-

rent actual expansion. The dark coloured leaf nodes which lie along

the surface of the membrane represent the whole group at its current

LoD.

Only leaf nodes run full behaviour functions, and they are also

used to visualise the entire group during rendering. Nodes below the

membrane represent higher LoDs which are not currently instanti-

ated. For example, in figure 1 there are currently 4 leaf nodes. The

far left hand side is expanded to its highest level of of detail, with

2 nodes at the lowest depth instantiated. These represent individ-

ual agents running full behaviour functions. The two adjacent agents

have been abstracted to a lower LoD, and are modelled by a single

node. The remaining four agents are at an even lower LoD, being

represented by a single node on the far right-hand side. If more detail

were required, this single node could be expanded back into either 2

or 4 nodes again.

2.2 Node Update and Management

The relationship between tree nodes and LoDs is expressed in the

update procedure used for each node. Leaf nodes lying on the mem-

brane surface receive a full update, using Reynold’s flocking algo-

rithm. These leaf nodes are the agents used to represent the group at

its current LoD. Nodes below the membrane are currently abstracted

out of the group, and effectively represent higher LoDs which may

be utilised when required. These nodes are not updated.

Nodes above the membrane surface may be used to reduce the

current LoD (by simply collapsing them as required). These receive

a simplified update procedure which approximates the properties of

their subtrees. In our implementation we simply update these nodes

by averaging the dynamic attributes (position, velocity, etc.) of their

children. This is effected using a recursive bottom up tree update

procedure.

As mentioned, we use a player proximity test to determine when

nodes should be expanded or collapsed. For example, when a node

at a higher level of abstraction moves close enough to the player it is

expanded into child nodes (where the number is determined by the

branching factor), up to the maximum depth of the tree. Conversely,

when the two leaf nodes moves far enough from the player to warrant

an abstraction to a lower LoD, they are removed and their parent

becomes a new leaf.

We wish to maintain consistency in abstraction, as far as possi-

ble, and this raises the issue of how child nodes are best re-initialised

when their parent is expanded. We have experimented with two meth-

ods: firstly, attributes of abstracted nodes are retained relative to their

parent, and used for re-initialisation. This method is preferable in

terms of persistence, especially where nodes are quickly expanded

and collapsed, or smaller groups are used. However, it does also re-

quire that full storage for nodes is maintained down to the lowest

depth.

Alternatively, nodes can be re-initialised randomly (within reason-

able limits) relative to their parents. We have used this second method

in our experiments as it allows for nodes to be deallocated when not

in use, and thus utilises memory resources more efficiently. Note that

the actual number of individual agents represented by a hierarchical

group is given by:

Num. Agents = BranchingFactor
Max. Depth

(1)

The depth and branching factor directly affects how many nodes

will be given a full update at each cycle. The optimal structure thus

depends on several factors, such as the number of agents per group,

and how the LoD system is controlled (e.g. whether or not it is based

on player proximity).

3 IMPLEMENTATION

Our test implementation was developed in C++, and uses OpenGL to

provide a simple graphical representation of the 2-dimensional game

world. For each node undergoing a full update procedure we use the

three base flocking behaviour components suggested by Reynolds

[11], as well as an additional wandering behaviour [12]. The ran-

dom wandering component is important as the three base behaviours

utilise relationships between neighbouring nodes in the same group.

At the lowest LoD (where the root node represents an entire group)

these components are effectively abstracted out of existence. How-

ever, the wander component is an underlying behaviour which is re-

tained at all levels.

Reynolds uses a physical model, where behaviours are modelled

by applying forces to an agent. To implement this model, we model

each node as a point mass with a fixed value of ma = 50Kg. In

addition, each node has persistent position and velocity attributes pa

and va respectively. Each of the four steering components is imple-

mented as a physical force, which is calculated and applied to each

leaf node at each update cycle. These are described as follows.

Alignment applies a force to change the heading of the node to-

wards the average heading of its neighbours. The force is applied

along the direction of the average heading, which is calculated as:

Average Heading =
1

n

n∑

i=1

vi

‖vi‖
(2)

where n is the number of other nodes within its immediate neighbour-

hood. This neighbourhood is defined by a circle of radius N around

the node. The velocity vi is the velocity of node i in the neighbour-

hood. The heading represents a normalised target velocity direction.

Cohesion applies a force to steer a node towards the centre of its

neighbours. This is implemented by first calculating the centre point,

C, of the neighbourhood:

C =
1

n

n∑

i=1

pi (3)



Figure 1. Hierarchical representation of a group of agents

where pi is the position of node i. Once C has been calculated, a

seek function is used to steer the node towards C. This applies a

force given by the following:

Seek Force =
C − pa

‖C − pa‖
vmax − va (4)

where vmax is the maximum speed.

Separation has an opposing effect, steering nodes away from very

close neighbours. This force is given by the following:

Separation Force =

n∑

i=1

pa − pi

‖pa − pi‖
2

(5)

where pi is the position of neighbour node i.

Wander is the final behaviour used, and provides a pseudo-

random component. A force is applied to steer each node to a point

T offset randomly along the perimeter of a circle of radius wr pro-

jected a distance ws ahead of the node’s current position and heading

(we used values of wr = ws = 3). The force applied is then given

by:

Wander Force = T − pa (6)

Maximum force and velocity values were also used in order to

prevent nodes moving too rapidly. These were set to 500 and 20 re-

spectively. The full update function for a node is thus performed by

calculating the steering forces, summing them, and applying them

using the following dynamic update equations:

sa = vat +
1

2

TotalForce

ma

t
2

(7)

va = va +
TotalForce

ma

t (8)

where sa is the change in position, and t the time since the last up-

date. The magnitude of sa is limited to a maximum based on the

time since the last update, and va is initially set to the velocity calcu-

lated at the end of the previous update. This full 4-component update

model is applied to each leaf node (along the membrane surface in

figure 1). Nodes above this level are updated by simply computing

the average position and velocity values of their children.

We also made use of prioritised dithering, a method presented by

Reynolds which uses probabilities to determine whether a particular

force is applied on a particular update. Each force component is thus

assigned an associated probability, and also a weighting factor, which

can be used to fine-tune the behaviour functions. The values we used

for these two additional parameters are given in Table 1.

Parameter Value

Alignment Probability 0.4
Alignment Weight 20
Cohesion Probability 0.2
Cohesion Weight 50
Separation Probability 0.5
Separation Weight 2
Wander Probability 0.3
Wander Weight 20

Table 1. Prioritised Dithering Parameters

As mentioned, Reynold’s flocking behaviour is used to update the

current leaf nodes (that is, nodes lying along the expanded tree mem-

brane). Nodes at higher levels of detail (below the membrane) receive

no update as they are not instantiated. Nodes above the membrane

(at lower LoDs) receive a reduced update procedure where their po-

sition and velocity attributes are simply calcuated by averaging those

of their children.

3.1 Controlling the Level of Detail

The LoD is controlled using a proximity based test, where the dis-

tance between the player and each node is used to adjust the cor-

responding level during each game update. We also experimented

with a simpler implementation where we used only the distance be-

tween the player and the group root node. However, we found that

managing each node separately gave a superior representation, with



partial expansions allowing smoother transitions between different

group LoDs.

We set distances (from the player) which define the LoD for each

subtree. Each of these defines a radial LoD zone around the player,

and there is necessarily one zone for each possible depth level in the

tree. Thus, if a leaf node moves into a zone which represents a higher

LoD, then the node is expanded into child leaf nodes. As mentioned,

these nodes are initialised randomly: in our implementation we used

a maximum offset radius of 10M, and allowed the magnitude of the

randomised velocity to be anything below the maximum defined for

an agent.

Conversely, child nodes need to be collapsed to their parent if they

move far enough away from the player. We detect this condition by

examining the position of the parent of each leaf-pair. If, after the

parent has been updated, it lies in the zone corresponding to its own

LoD then the children are removed from the tree and the parent be-

comes a new leaf.

3.2 Running the Simulation

A software timer was used to call the AI update function every 500

milliseconds. This interval was chosen as a minimum which provided

smooth behaviour for large numbers of agents. We also used a sepa-

rate software timer to measure the amount of time actually spent on

each AI update cycle: we used this to quantify our evaluation, pre-

sented in the section 4. Our implementation also used a single player

entity, which could be moved using keyboard input, and we rendered

a top down view of the 2-dimensional world inhabited by the agent

groups. Note that other than the player and the agents, no other ob-

jects existed in the game environment. Figure 2 shows a visualisation

of one rendered update frame from our LoD system whilst running.

4 EVALUATION

In order to test the performance of our system we undertook a se-

ries of experiments. These were executed on PC running the Win-

dows 7 (32-bit) operating system, with a dual core 2.53GHz pro-

cessor and 4GB of memory. The neighbourhood distance, N, used

by the flocking algorithm was set to 20M, and the distance between

successive LoD zone thresholds (from the player) was set at 50M.

This means that, for example, groups whose nodes were all closer

than 50M would be represented at their highest detail level by a fully

expanded tree.

An experiment with a large number of agents and groups was used

to compare the performance of our grouped LoD system with an

analogous system that did not make use of optimisations. The LoDed

system used a tree with a maximum depth of 5, and a branching fac-

tor of 2. This provided a simulation of 32 agents per group, and the

test was run with 2048 groups giving a total of 65,536 agents. The

experiment was run for 500 update cycles, and then the mean update

times were taken for each test. Figure 3 shows the comparative re-

sults. As can be seen, there is a very significant reduction in update

time when grouped hierarchical level of detail is used.

We ran a second experiment to determine how many agents could

be reasonably represented while keeping the AI update time below

100 milliseconds. A similar set up to the previous test was used, with

a maximum depth of 5 and a branching factor of 2 giving a group

size of 32 agents. We started with 2048 groups in the simulation, and

repeatedly doubled the number of groups up to 65,536 (2,097,152

agents). However, beyond 32,768 groups (1,048,576 agents) the pro-

Figure 3. Average update time comparison.

gram became unstable due to lack of memory. The results of this test

are shown in figure 4.

Figure 4. Update times for varying numbers of agents.

Whilst very large numbers of agents could be represented effec-

tively, it is worth emphasising the point that system memory is a lim-

iting factor. In practical applications we expect that the actual number

of agents would be significantly lower.

5 CONCLUSION

We have proposed a group level of detail system, with the objec-

tive of achieving performance optimisations in systems simulating

large numbers of agents organised into groups. Our implementation

has integrated our approach with Reynolds’ force-based steering be-

haviours.

Our experiments suggest that large performance gains can be

achieved while maintaining a relatively seamless representation for

the player. However, it should be noted that while the number of



Figure 2. Visualisation of our implementation running. The central point of each cluster represents the root node of a group (its mean position). Each
connected point is an instantiated child node running a full update.

agents simulated in our experiments is very high, our agents are using

only simple steering behaviours, with minimal additional processing.

Nevertheless, most games requiring advanced behaviours will not re-

quire anywhere near as many agents as we have used, and additional

performance optimisation techniques could also be utilised, such as

reducing the amount of update time scheduled for lower LoDs. One

aspect of our work which we have not considered is that of the inter-

action between different groups: for example, how interactions be-

tween nodes at different LoDs might be effected. We leave this issue

as future work.

REFERENCES

[1] M. Brockington, “Level-Of-Detail AI for a Large Role-Playing Game,”
AI Game Programming Wisdom, Charles River Media, pp. 419-425,
2002.

[2] C. Brom, O Sery and T. Poch, “Simulation Level of Detail for Virtual
Humans,” Proceedings of the International Conference on Intelligent
Virtual Agents, pp. 1-14, Paris, 2005.

[3] A. Champandard, “Hierarchical State Machines,” AI Game Develop-
ment: Synthetic Creatures with Learning and Reactive Behaviours,
New Riders Publishing, pp. 557-571, 2003.

[4] J. H. Clark, “Hierarchical Geometric Models for Visible Surface Algo-
rithms,” Communications of the ACM, 19(10), pp. 547-544, 1976.

[5] Crytek, “CryENGINE 2 - Specifications,” [Online] 2007. [Cited:
19 December 2009.] http://www.crytek.com/technology/cryengine-
2/specifications.

[6] S. Musse and D. Thalmann, “A Model of Human Crowd Behavior:
Group Inter-Relationship and Collision Detection Analysis,” Workshop
of Computer Animation and Simulation (Eurographics97), Budapest,
1997.

[7] C. Niederberger and M. Gross, “Level-of-Detail for Cognitive real-time
Characters,” The Visual Computer: International Journal of Computer
Graphics, 21(3), pp. 188-202, 2005.

[8] N. O’Hara, “Hierarchical Imposters for the Flocking Algorithm,” Com-
puter Graphics Forum, 21(4), pp. 723-731, 2003.

[9] N. Pelechano, J. Allbeck and N. Badler, “Controlling individual agents
in high-density crowd simulation,” ACM SIGGRAPH/Eurographics
symposium on Computer animation, pp. 99108, , 2007.

[10] J. Pettre, P. de Heras Ciechomski, J. Mam, B. Yersin, J.-P. Laumond and
D. Thalmann, “Real-time navigating crowds: Scalable simulation and
rendering,” Computer Animation and Virtual Worlds, 17(3) pp. 445455,
2006.

[11] C. W. Reynolds, “Flocks, Herds and Schools: A Distributed Be-
havioural Model,” Computer Graphics, 21(4), pp. 25-34, 1987.

[12] C. W. Reynolds, “Steering Behaviours for Autonomous Characters,”
Games Developers Conference, San Jose, CA, pp. 763-782, 1999.

[13] W. van der Sterren, “Squad Tactics: Team AI and Emergent Maneu-
vers,” AI Game Programming Wisdom, Charles River Media, pp. 233-
246, 2002.

[14] W. van der Sterren, “Squad Tactics: Planned Maneuvers,” AI Game Pro-
gramming Wisdom, Charles River Media, pp. 247-259, 2002.

[15] M. Sung, M. Gleicher and Stephen Chenney, “Scalable Behaviors for
Crowd Simulation,” EUROGRAPHICS 23(3), 2004.

[16] L. Williams, “Pyramidal Parametrics,” Computer Graphics, (Proc. Sig-
graph 83), 17(3), pp. 1-11, 1983.

[17] I. Wright and J. Marshall, “Egocentric AI Processing for Computer En-
tertainment: A real-time Process Manager for Games,” in Proceeding of
International Conference on Intelligent Games and Simulation, pages
42-46, 2000.


