
The Case For Heterogeneous HTAP

Raja Appuswamy? Manos Karpathiotakis? Danica Porobic? Anastasia Ailamaki? ‡

?École Polytechnique Fédérale de Lausanne ‡RAW Labs SA

firstname.lastname@epfl.ch

ABSTRACT
Modern database engines balance the demanding require-
ments of mixed, hybrid transactional and analytical pro-
cessing (HTAP) workloads by relying on i) global shared
memory, ii) system-wide cache coherence, and iii) massive
parallelism. Thus, database engines are typically deployed
on multi-socket multi-cores, which have been the only plat-
form to support all three aspects.

Two recent trends, however, indicate that these hard-
ware assumptions will be invalidated in the near future.
First, hardware vendors have started exploring alternate
non-cache-coherent shared-memory multi-core designs due
to escalating complexity in maintaining coherence across
hundreds of cores. Second, as GPGPUs overcome programma-
bility, performance, and interfacing limitations, they are
being increasingly adopted by emerging servers to expose
heterogeneous parallelism. It is thus necessary to revisit
database engine design because current engines can neither
deal with the lack of cache coherence nor exploit heteroge-
neous parallelism.

In this paper, we make the case for Heterogeneous-HTAP
(H2TAP), a new architecture explicitly targeted at emerging
hardware. H2TAP engines store data in shared memory to
maximize data freshness, pair workloads with ideal processor
types to exploit heterogeneity, and use message passing with
explicit processor cache management to circumvent the lack
of cache coherence. Using Caldera, a prototype H2TAP en-
gine, we show that the H2TAP architecture can be realized
in practice and can offer performance competitive with spe-
cialized OLTP and OLAP engines.

1. INTRODUCTION
The past few years have witnessed a rise in demand for

real-time business intelligence. Organizations increasingly
require analytics on fresh operational data to derive timely
insights. To meet these requirements, database engines have
to efficiently support hybrid transactional and analytical
workloads (HTAP) over shared data. Designing a database

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2017.
8th Biennial Conference on Innovative Data Systems Research (CIDR ‘17)
January 8-11, 2017 , Chaminade, California, USA.

engine that can serve mixed workloads efficiently is challeng-
ing, because OLTP workloads require ACID semantics, high
throughput, and performance isolation, while OLAP work-
loads require interactive response times and data freshness.

Database engines meet these conflicting demands by rely-
ing on hardware to support three important functionalities.
First, they rely on global shared memory to store a single
copy of data that can be accessed by both OLTP and OLAP
workloads. Second, they rely on cache coherence to guaran-
tee that two threads running on different cores see a consis-
tent view of data stored in shared memory despite layers of
caching. Third, they rely on abundant parallelism to concur-
rently execute OLTP and OLAP queries. Despite providing
massive parallelism, accelerators like GPGPUs have tradi-
tionally neither shared memory nor maintained coherence
with CPUs. Thus, contemporary database engines are de-
signed to be deployed on high-end multi-socket multi-cores.

Two recent trends, however, necessitate revisiting con-
temporary database engine design. First, as we move from
the multi-core era to the many-core one, maintaining co-
herence across hundreds of core-private caches has become
challenging. Architecture researchers and hardware ven-
dors have started exploring many-core designs that support
global shared memory but not system-wide cache coher-
ence [6, 7, 19, 33, 49]. Second, over the past few years,
GPGPUs have evolved from memory-limited, niche acceler-
ators into general-purpose processors that support, among
other advanced features, globally shared address space and
pageable virtual memory. Based on these trends, emerging
hardware will likely have three salient properties: i) het-
erogeneous parallelism, ii) global shared memory, and iii)
no system-wide cache coherence. Current database engines
are a poor match for emerging hardware because they can
neither deal with the lack of cache coherence nor exploit het-
erogeneous parallelism. As a result, despite underutilizing
hardware resources, current engines deployed on emerging
hardware will continue to suffer from a “house pattern” [43]:
OLTP and OLAP workloads will negatively interfere with
each other due to resource contention.

This paper presents Heterogeneous-HTAP (H2TAP), a
new architecture for designing database engines explicitly
targeted at emerging hardware. The H2TAP architecture re-
quires database engines to address all three aspects of emerg-
ing hardware explicitly by adhering to two design princi-
ples: i) make heterogeneity a first-class design citizen, ii) de-
couple shared memory from cache coherence. Using these
principles, H2TAP database engines exploit heterogeneity
by pairing processors with their ideal workloads, provide

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357576215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

GPU Architecture Cores FP32 Power Mem cap Mem b/w I/f type I/f b/w
(GFlops) (MB) (GB/s) (GB/s)

GeForce 8800 Tesla 128 345.6 768 103.7 PCIe 1.0 4
GTX 580 Fermi 512 1581.1 1536 192.3 PCIe 2.0 8

GTX 780 Ti Kepler 2304 3976.7 3072 288.4 PCIe 3.0 16
GTX 980 Ti Maxwell 2816 5632 6144 336 PCIe 3.0 16
GTX 1080 Ti Pascal 3328 10696 10240 400 NVLink 80-200

Table 1: Processing power, memory capacity, and interconnection bandwidth of consumer-grade NVIDIA
graphics cards across generations

data freshness for OLAP workloads by storing data in glob-
ally shared memory, and use message-passing-based paral-
lelism instead of shared-memory parallelism to scale OLTP
workloads even in the absence of cache coherence. We vali-
date the H2TAP architecture by designing and implementing
Caldera, a prototype H2TAP engine. Our evaluation shows
that Caldera can provide transactional throughput compa-
rable to state-of-the-art OLTP engines while providing inter-
active response time and data freshness for analytical queries
using GPGPUs.

2. EMERGING SERVER HARDWARE
This section presents the characteristics of emerging hard-

ware and their mismatch with modern database engines.

2.1 Generalization of GPGPUs
Traditionally, GPGPUs suffered from two major limita-

tions. First, applications that used GPGPUs had to man-
age host (CPU) and device (GPU) memory separately, thus
complicating programmability. Second, GPU device mem-
ory capacity was too limited to store all data. Therefore, ap-
plications had to manually copy data from system to device
memory via the slow PCIe bus before executing a computa-
tion on the GPU. As a result, despite work that showed that
GPGPUs can provide substantial improvement in perfor-
mance over CPUs [10, 14, 17, 18, 51], they were not widely
used in the industry because analytical queries running on
GPGPUs spent most of their time transferring data. As Ta-
ble 1 shows, however, GPGPUs are evolving from memory-
limited accelerators for niche domains to general-purpose
processors with radical improvements along the dimensions
of performance, interfacing, and programmability1.

Performance. The latest Pascal GPUs offer 16× higher
processing power and 13.3× more memory capacity than
their Tesla counterparts. GTX 1080 Ti will have an order
of magnitude more cores and 4× higher memory bandwidth
than even state-of-the-art multi-core CPUs. Furthermore,
GPU cards which are customized for compute acceleration
typically pack 2× more memory capacity and processing
power over these consumer-grade graphics cards.

Interfacing. PCIe 3.0 already offers 4× higher band-
width compared to PCIe 1.0, and PCIe 4.0 is expected to
double the bandwidth again. In addition, NVIDIA has re-
cently announced NVLink [38], an energy-efficient, high-
bandwidth GPU-CPU or GPU-GPU interconnect that will
offer at least 5× the bandwidth of the current PCIe 3.0 bus.
NVLink is already being used to interconnect IBM Power
CPUs and NVIDIA GPUs in Summit and Sierra, two su-
percomputers commissioned by the U.S DoE [40].

1While this work uses NVIDIA terminology, all concepts and
contributions presented apply to AMD GPGPUs as well.

0

0.5

1

1.5

2

2.5

3

memcpy uva memcpy uva um

fermi maxwell

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
) Q1 Q2 Q3 Q4 Q5

2.15

5.33

1.02 0.87
0.52

Figure 1: Scan execution time under Fermi/Maxwell
GPUs

Programmability. Since CUDA 4.0, NVIDIA Fermi
GPUs have supported Unified Virtual Addressing (UVA) [37],
which enables GPUs and CPUs to share a single address
space. The Kepler architecture added support for Unified
Memory (UM) in CUDA 6.0 [37]. UM enables applications
to offload memory management entirely to the CUDA run-
time, which automatically tracks memory accesses and mi-
grates data to host or device memory depending on the ac-
cess patterns to improve locality. With CUDA 8.0, the Pas-
cal architecture further extends UM with support for virtual
memory-based page faulting in GPU; data allocated on the
CPU is automatically faulted in and moved to the GPU one
page at a time, only when accessed. Applications can thus
oversubscribe GPU memory, i.e., allocate a chunk of mem-
ory larger than the GPU device capacity and access it using
the same address pointer across CPUs and GPUs.

Figure 1 quantifies the net effect of some of these im-
provements by showing the results from a microbenchmark
that executes five filter queries over a 2GB column of inte-
gers using an M2090 Fermi GPU and a GTX 980 Maxwell
GPU. Each query launches a kernel – a function that all
the threads of a GPU device execute in parallel. The three
cases in the graph present scenarios where memory is allo-
cated separately on device and host, requiring an explicit
copy operation (“memcpy”), or memory is allocated using
UVA/UM and requires no copying. In the memcpy case, we
report the total time taken to perform the host-to-device in-
put copy, kernel execution, and device-to-host output copy.
For UVA and UM, we report the time to execute the kernel.

There are four important observations to be made. First,
the memcpy case shows a 2× improvement because of the
improvement in bandwidth from 8 GB/s under PCIe 2.0
(Fermi) to 16 GB/s under PCIe 3.0 (Maxwell). Second,
while UVA was 2.5× slower than memcpy under Fermi, it is
1.18× faster under Maxwell. This shows that UVA enables
efficient CPU–GPU data sharing. Third, under UM, the
first query takes 0.24 seconds and is 1.5× slower than under
UVA. The remaining queries, however, execute in 0.07 sec-
onds, and are 2.5× faster. After the first query, the CUDA
runtime automatically migrates the input array allocated in

UM over to the GPU. Thus, subsequent queries are unaf-
fected by the PCIe bandwidth limitation. This performance
improvement required no programming effort and shows the
locality benefit of using UM. Finally, comparing Fermi UVA
and Maxwell UVA/UM, the execution time gets a 6× reduc-
tion with UM, and a 2.46× reduction with UVA. All these
speedups are noteworthy because i) they purely stem from
improvements in interfaces and programmability, as the ker-
nel does little computation, and ii) they show that efficient
CPU–GPU data sharing is possible.

2.2 Specialization of CPUs
In stark contrast to the generalization of GPGPUs is the

increasing specialization of commodity multi-socket multi-
cores. An aspect of specialization which is particularly rel-
evant to database designers is the design of hardware cache
coherence (CC). All widely used multi-cores provide CC-
shared memory to ensure that memory store operations per-
formed by one core are visible to load operations performed
by another core despite multiple levels of caching. CC also
forms the framework for features like atomics on shared
memory words and Hardware Transactional Memory. How-
ever, as the number of cores increases, the cost and com-
plexity needed to maintain coherence across all core-private
caches is also increasing dramatically [33, 50]. Research
has also shown that CC presents scalability challenges for
latency-sensitive workloads [33, 34].

While designing scalable CC protocols for multi-cores con-
tinues to be a challenging topic [32], hardware vendors have
started investigating alternative multi-core architectures that
vary widely with respect to CC support. The latest Haswell
processors support three modes of CC; choosing the right
mode impacts the latency and bandwidth of both core-to-
core data transfers and memory accesses [34]. SoCs like TI
OMAP4, OMAP5, and Samsung Exynos, which are based
on the ARM v8 specification, group cores into multiple do-
mains such that coherence is maintained within but not
across domains. Intel SCC [19] is a 48-core processor that
provides non-CC shared memory with core-to-core message
passing capability. IBM Cell Broadband Engine [16] is a
single-chip multiprocessor with eight non-CC Synergistic Pro-
cessor Elements (SPE) optimized for data processing. Given
such variation among processors in providing CC, several re-
searchers argue that system-wide CC may no longer be avail-
able in the near future [6, 7, 31], and are building software
such as operating systems [5, 6, 31, 49], file systems [20],
memory management libraries [7], and runtime libraries [11,
29], explicitly targeted at emerging non-CC systems.

2.3 Database engines on emerging hardware
Putting the hardware trends together, we believe that

in the near future, the servers that will be used to deploy
database engines will have three salient properties: 1) they
will support heterogeneous parallelism with CPUs that excel
at latency-critical task-parallel workloads and GPGPUs that
excel at throughput-heavy data-parallel workloads, 2) simi-
lar to contemporary servers, they will support a global ad-
dress space that is shared across all processors, and 3) un-
like contemporary servers, they will not support system-
wide CC. Current engines suffer from three major problems
on such hardware.

First, database designs that rely on CC-shared memory
for scaling transactional workloads will be incompatible with

non-CC hardware. Database engines rely on CC for cross-
core data sharing, and more importantly, thread synchro-
nization based on spinlocks, shared-memory atomics, or HTM.
In the absence of system-wide CC, the only option today is
to scale OLTP workloads using the shared-nothing (SN) de-
sign. The SN design, however, is agnostic to the fact that
memory is globally shared across all processors, and thus
suffers from distributed transaction overheads when running
poorly partitionable workloads [42].

Second, while specialized OLAP engines exploit the mas-
sive parallelism of GPGPUs [1, 17, 18], all current general-
purpose engines ignore them because they traditionally did
not share an address space with CPUs, and thus made it
difficult to share data across transactional and analytical
workloads. Using these contemporary database engines on
emerging hardware with GPGPUs that no longer suffer from
any such data-sharing limitations would leave abundant het-
erogeneous parallelism untapped.

Third, even state-of-the-art database engines exhibit a
house pattern [43]: under mixed workloads, increasing OLAP
throughput by scheduling more concurrent analytical queries
results in a collapse in transactional throughput due to con-
tention for processing resources. Avoiding the house pattern
requires throttling or preempting analytical queries in order
to prioritize transaction execution. Such throttling is com-
pletely unwarranted in emerging server platforms, especially
since the heterogeneous processing resources are underuti-
lized. Given these problems, we believe that it is time to
revisit database design for emerging hardware.

3. THE CASE FOR H2TAP
Heterogeneous-HTAP (H2TAP) is a new architecture for

building database engines that uses two design principles
to exploit all aspects of emerging hardware: 1) make het-
erogeneity a first class design citizen, 2) decouple shared
memory and CC dependencies.

Heterogeneity as an opportunity. The H2TAP ar-
chitecture exploits heterogeneity based on the observation
that the latency-critical nature of OLTP workloads and the
bandwidth-intensive nature of OLAP workloads are aligned
with the task-parallel nature of CPUs and the data-parallel
nature of GPUs respectively. Thus, the H2TAP architecture
uses both hardware and workload heterogeneity in a syner-
gistic fashion by introducing the archipelago abstraction.

Archipelagos are resource containers defined by a set of
processor cores and a target workload. H2TAP uses archi-
pelagos by partitioning cores into a task-parallel archipelago
consisting only of CPU cores, and a data-parallel archipelago
that can contain both GPUs and CPU cores. Transactions
are executed in the task-parallel archipelago while analyti-
cal queries are handled by the data-parallel archipelago as
shown in Figure 2.

Decoupling shared memory and cache coherence.
Despite executing queries in different archipelagos, the H2TAP
architecture mandates storing a single copy of data in shared
memory that is globally accessible across archipelagos. Still,
while the H2TAP architecture expects hardware to support
shared memory, it does not rely on system-wide CC. Instead,
H2TAP engines have to explicitly manage CC in software.
The clear separation of workloads across archipelagos sim-
plifies this task to a certain extent – as analytical queries
do not update data, H2TAP engines do not have to main-
tain coherence across archipelagos. However, H2TAP en-

OLAP archipelago

GPU

OLTP archipelago

DRAM DRAMDRAM DRAM

SHARED MEMORY

Core Core

S
c
h
e

d
u

le
r

Query compiler

Core

Query runtime

Query parser & optimizer

Figure 2: H2TAP deployed over emerging server
hardware.

gines should guarantee that transactions running within the
task-parallel archipelago obey the ACID properties and ana-
lytical queries running in the data-parallel archipelago work
on transactionally consistent data despite the lack of CC.

H2TAP blueprint. Figure 2 shows software compo-
nents that an H2TAP engine would need to implement in
order to realize the H2TAP architecture in practice. The
parser and optimizer form a front end that translates a SQL
query into a physical query plan. The scheduler is responsi-
ble for implementing the archipelago abstraction by manag-
ing core–archipelago membership. Using this information,
the scheduler can provide run-time elasticity by enabling
on-the-fly “migration” of CPU cores between archipelagos.
Further, the scheduler also maintains processor and mem-
ory utilization statistics within each archipelago. Based on
these statistics, it works with the optimizer to determine the
target archipelago and cores where each query will be exe-
cuted. While the H2TAP architecture requires transactional
queries to be scheduled on CPUs in the task-parallel archi-
pelago, it enforces no such restrictions on the scheduling of
analytical queries in the data-parallel archipelago. Thus, the
scheduler can combine dynamic run-time information, such
as data locality, with static optimizer cost models to decide
if a given analytical query should be executed on CPU or
GPU cores in the data-parallel archipelago.

Once the scheduler determines the target execution envi-
ronment, a query compiler produces the query implementa-
tion from the physical query plan. Instead of using volcano-
style interpretation for executing the query plan, the query
compiler generates machine code corresponding to the target
processor(s) for the query. Query compilation reduces the
interpretation overheads of query execution [26, 27, 36, 44,
46], and masks the effects of (data) heterogeneity [22, 23, 24];
H2TAP extends the concept of heterogeneity to hardware in
order to mask the difference in Instruction Set Architectures
(x86 or PTX [39]).

Finally, the generated code is passed to the Query run-
time together with information from the scheduler about
the target processor(s) where the query should be executed.
The runtime is responsible for both providing a mechanism
for sharing data across archipelagos, and shepherding query
execution within each archipelago.

H2TAP benefits. The H2TAP architecture provides
several benefits. First, archipelagos enable affinitizing work-
loads to ideal processor types; transactions benefit from task

parallelism provided by CPUs and analytical queries benefit
from data parallelism provided by GPUs. Second, by en-
abling CPU cores to change membership between task and
data-parallel archipelagos on the fly, the H2TAP architec-
ture improves deployment elasticity because it enables dy-
namic load balancing. For instance, an H2TAP engine could
configure its scheduler to move unused CPU cores from task-
to data-parallel archipelago, and use them for running ana-
lytical queries under light OLTP workloads. Third, by sep-
arating OLTP and OLAP execution, archipelagos eliminate
interference and processor resource contention across work-
loads, and hence the house pattern, by design. Fourth, by
decoupling shared memory and CC, the H2TAP architecture
enables new database engine designs that can take a mid-
dle ground between shared-everything designs, which rely on
CC and shared memory, and shared-nothing designs, which
are oblivious to both aspects.

H2TAP challenges. Despite the benefits of H2TAP,
realizing it in practice also requires answering three ques-
tions. First, H2TAP engines have to store data in a lay-
out that is suitable for efficiently running both transactional
and analytical workloads. However, research on CPU-based
database engines has shown that different workloads bene-
fit from different storage layouts [2, 13]. OLTP workloads
benefit from the N-ary Storage Model (NSM) because the
whole-record read-write operations performed by transac-
tions can be implemented efficiently using NSM’s row-wise
layout. OLAP workloads, in contrast, touch only a few at-
tributes, and thus benefit more from the columnar layout
of the Decomposition Storage Model (DSM), which mini-
mizes data transfers and utilizes CPU caches better. As
H2TAP engines need to support both workloads, the first
question to be answered is whether “middle-ground” [2] hy-
brid layouts [3, 4, 15] work in the H2TAP context as well.

Second, irrespective of the layout used, an H2TAP engine
must provide an efficient mechanism to provide analytical
queries running in the data-parallel archipelago with access
to transactionally-consistent data which is being updated by
transactions running on CPUs. Contemporary HTAP en-
gines typically use snapshotting to solve this problem [25].
If we used only CPUs in the data-parallel archipelago, we
would be able to use fork-based snapshotting [25] for ex-
ecuting OLAP queries over an immutable database snap-
shot. Unfortunately, such an approach is not applicable
with GPGPUs because CUDA memory allocations cannot
be shared across process boundaries due to CUDA runtime
limitations. Thus, the second question to be answered is
whether alternate software snapshotting techniques [48] can
be used to enable cross-archipelago data sharing.

Third, while the H2TAP architecture expects hardware
to support globally accessible shared memory, it does not
rely on system-wide CC. Thus, an H2TAP engine must be
able to scale transactional and analytical workloads despite
the lack of CC. Given that analytical queries running in the
data-parallel archipelago never update the database due to
their read-only nature, H2TAP obviates the need for cross-
archipelago CC. However, H2TAP engines must still over-
come the lack of coherence within the task-parallel archi-
pelago where concurrent transactions update shared data
and metadata. Therefore, the third question to be answered
is whether OLTP workloads can be scaled up within task-
parallel archipelagos without relying on CC.

4. CALDERA: AN H2TAP QUERY ENGINE
Caldera is a prototype query engine we develop to exam-

ine the opportunities offered by the H2TAP architecture and
address the challenges it raises. To this end, the Caldera pro-
totype implements only the query runtime and leaves the
other components described in Section 3 to future work.

Applying H2TAP. Caldera adheres to the H2TAP ar-
chitecture by grouping processors into a CPU-only task-
parallel archipelago, and a GPU-only data-parallel archi-
pelago. Transactions are executed in the task-parallel archi-
pelago while analytical queries are handled by the data-
parallel archipelago.

Caldera stores data in shared memory that is allocated us-
ing Unified Virtual Addressing. By using UVA, Caldera ex-
poses a global address space across archipelagos. We use
UVA because our current hardware setup uses Maxwell GPUs,
which impose strict limits on the maximum Unified Mem-
ory allocation size. In the future, we plan to use Unified
Memory with Pascal GPUs that have no such limitations.

Data layout. Prior research has focused on building hy-
brid layouts that can support both transactional and ana-
lytical workloads in the traditional HTAP context [2, 3, 4,
15]. For instance, PAX [2] is an alternative storage layout
that strikes a balance between the NSM and DSM extremes.
Like NSM, PAX organizes data records in pages. Like DSM,
PAX groups values of the same attribute together. A page
therefore contains minipages, each of which only contains
values of a single attribute. Due to its organization of data
into minipages and pages, PAX enables cache-friendly query
execution similar to DSM while providing update cost sim-
ilar to NSM.

Hybrid layouts like PAX play an even more important
role in the new H2TAP scenario because they provide two
tangible performance benefits. First, as the GPU memory
capacity is limited, data transfer plays a crucial role in deter-
mining the overall query execution time due to the limited
bandwidth of the PCIe bus. Thus, hybrid layouts will out-
perform NSM even in the H2TAP scenario due to their abil-
ity to reduce the amount of data transferred. Second, GPUs
coalesce global memory loads and stores issued by threads
into as few memory transactions as possible to both improve
performance and reduce memory bandwidth requirements.
However, in order for coalescing to work properly, threads
should access memory locations sequentially. Thus, a data
layout like PAX is a better fit for GPUs than NSM because
it enables such coalesced accesses.

Our current prototype supports NSM, DSM, and PAX
layouts. Caldera stores data in shared memory as a collec-
tion of horizontal partitions. Within a partition, records of a
table can be stored in any of the three layout types. Figure 3
shows the hierarchical partition–table–column–page data or-
ganization used by DSM.

OLAP in the data-parallel archipelago. The Caldera
prototype uses the kernel-based execution model for execut-
ing OLAP queries on the GPU similar to other GPU-based
OLAP engines [14, 17, 51]. Each database operator is im-
plemented as a collection of data-parallel primitives, where
each primitive is an individual CUDA kernel. OLAP queries
are executed by a dedicated CPU thread that executes each
database operator by executing the corresponding CUDA
kernels one at a time while using UVA to store all input,
intermediate, and output data. It is well-known that such
kernel-based execution results in sub-optimal use of the GPU

C10

Ta0

C20 C10

Tb0

C20

P0

C11

Ta1

P1

C21Columns:

Tables:

Partitions:

Pages:

Figure 3: The hierarchical data organization of
Caldera for a columnar data layout, and the in-
memory state after a transaction has updated ta-
ble T a. Superscripts represent epochs.

due to unwarranted data transfers [41, 51]. In the future,
we plan to use a query compilation infrastructure to fuse
multiple relational operators in a single kernel.

Caldera always executes OLAP queries on a database snap-
shot. Thus, users can trade off data freshness for perfor-
mance by having several OLAP queries share a snapshot, or
maximize freshness by taking a snapshot before running each
OLAP query. Snapshotting is implemented using a software-
based shadow-copying mechanism that works on the hierar-
chical data organization. We describe it using the layout
shown in Figure 3. Each table, column, and page is asso-
ciated with an epoch number. The query runtime creates
a snapshot by performing a shallow copy of the top-level
container and incrementing its epoch number. Thus, snap-
shotting is an instantaneous operation after which the newly
created snapshot and the “live” database share all data. Af-
ter snapshotting, the runtime identifies the columns that are
necessary for executing the OLAP query and invokes the
GPU kernel, passing in pointers to relevant pages. No data
is copied explicitly; the GPU kernel accesses data directly
from the UVA-allocated host memory.

Copy-on-write during updates and garbage collection are
integrated with transaction management. When a transac-
tion commits, the runtime identifies records to be updated.
It uses this information to identify the backing pages for
those records, and shadow-copies them by allocating new
pages and copying over data from the snapshot. Then, it
applies the updates, and marks the pages as “live” by in-
crementing their epoch number. It repeats this copy-on-
write process all the way back to the root, allocating new
data structures as required and updating pointers. Similarly,
when a snapshot is deleted, the query runtime uses epoch
numbers to identify both data and metadata that have been
superseded by the copy-on-write process and deletes the old
versions to reclaim space.

OLTP in the task-parallel archipelago. Caldera scales
OLTP workloads within the task-parallel archipelago by us-
ing message passing-based parallelism (that relies on fast
core-to-core messaging) rather than shared-memory paral-
lelism (that relies on cache coherence). Caldera schedules
one thread per core in the task-parallel archipelago and as-
signs one data partition to each thread, which then mediates
access to partition-local records. Each thread uses two-phase
locking (2PL) for concurrency control and a primary-key in-

dex to assist in record lookup. Unlike data, which is shared
across archipelagos, the lock tables and indices are private to
each thread running in the task-parallel archipelago and do
not belong to the snapshot hierarchy depicted in Figure 3.
Thus, they refer to logical records whose physical location
changes during copy-on-write operations.

An incoming transaction can be scheduled to run on any
thread; the chosen thread will act as its host (the client
thread). The client executes all operations of a transaction
using direct function calls to lookup/update records. If the
client contains the target record in its partition, it uses its
local lock table to decide if the access request can be granted.
If so, it grants the lock, performs shadow copying if neces-
sary, and executes the operation.

If the record belongs to a different partition, the client
sends a message to the data owner thread (the server thread)
requesting access to the record, and blocks the transaction.
When the server thread receives the message, it tries to ac-
quire the lock. If successful, it grants the lock, performs
shadow copying if necessary, and sends a reply message giv-
ing the client access to the record. If the acquisition fails,
the server thread delays replying back until the lock becomes
available. Rather than shipping the whole record in the
message, Caldera exploits hardware-supported shared mem-
ory to reduce data movement by sending only the record
pointer. Upon receiving the reply, the client thread un-
blocks the transaction and uses the record pointer to directly
lookup/update the record.

At transaction commit or abort time, the client thread
sends an explicit “release” message for each remote record.
Upon receiving a release message, the server thread releases
the associated lock and picks a new lock owner. If the new
owning transaction is local to the server, it is unblocked and
scheduled for execution. Otherwise, the server unblocks it
by replying back to the client.

Relying on explicit message passing has several benefits.
First, two processors can never simultaneously access a shared
memory word because each processor has exclusive access
over its partition. Before a thread can access a record, it has
to explicitly synchronize with the owning thread by send-
ing it a message. This explicit communication eliminates
the need for implicit thread synchronization with latches,
atomics, or other CC-dependent hardware features. Thus,
all aspects of transaction execution are single-threaded and
completely synchronization-free.

Explicit communication also makes maintaining coherence
across core-private caches straightforward. In Caldera, two
transactions can never concurrently update the same record
due to 2PL. Thus, cache management is necessary only to
ensure that two transactions running serially on two different
cores see the latest version of the record despite the existence
of caches. This can be done by adding explicit cache write
back and invalidation at two points. When a client thread
requests a record from a server thread, the server thread
explicitly writes back the dirty data from its local cache be-
fore replying back. Similarly, before the client thread sends
a release message at commit time, it writes back the data
it updated. Doing so guarantees that a thread will always
read the latest version of data from the memory instead of
an outdated cache. Together, explicit communication and
cache management ensure that Caldera can work on non-
CC hardware.

Finally, by abstracting away the details of communication
using a message passing library, Caldera is portable, as the
message-passing layer can be replaced to make it work on CC
multicores, non-CC multicores, and even potentially scale-
out clusters without any change to the core database logic.

5. EVALUATION
In this section, we present an evaluation of Caldera to

show that the H2TAP architecture can be implemented in
practice and can offer performance competitive to that of
state-of-the-art OLTP and OLAP engines. As described in
Section 4, Caldera uses three features to tackle the chal-
lenges posed by the H2TAP architecture, namely, software
snapshotting for cross-archipelago HTAP, message-passing
for transaction processing without CC, and PAX as the hy-
brid layout that enables data sharing across mixed work-
loads. Thus, in this section, we present the performance and
scalability of these three aspects and compare Caldera with
Silo [47], a main-memory OLTP engine, MonetDB [8], an
open-source column store, and“DBMS-C”, a commercial col-
umn store.

Experimental setup. All experiments are conducted
on a server running RHEL 7.2, equipped with two 12-core
Intel Xeon E5-2650L v3 CPUs, 256GB RAM, and a GeForce
GTX 980 GPU with 4GB memory. Although the hardware
we use supports system-wide CC, Caldera uses it only as the
message passing substrate for inter-thread communication.

5.1 HTAP with software snapshotting
We present the OLTP throughput and OLAP response

time achieved by Caldera under a mixed workload. For
these experiments, we use the TPC-H (SF-300) dataset.
We use TPC-H Q6, a selection over the lineitem table, as
the OLAP query. In our OLTP workload, each transac-
tion performs ten read-modify-update operations on records
randomly chosen from the lineitem table. Thus, the OLTP
workload is similar to an update-only YCSB workload [12]
with a theta value (zipfian distribution) of zero. We run
ten OLAP queries in succession on the GPU. The OLTP
workload is executed by the CPU until all OLAP queries
terminate. We use the snapshotting flexibility of Caldera to
demonstrate the performance-freshness trade off posed by
our software shadow copying implementation. Further, it is
common in real-world deployments for transactions to ac-
cess only a “hot” fraction of the dataset [30], whereas OLAP
queries scan through all the data. We make the target key
range used by the OLTP workload a parameter so that we
test sensitivity to skewed OLTP working set sizes.

Figure 4 shows the OLAP query execution time under
MonetDB, DBMS-C, and Caldera in the absence of trans-
actions. Both MonetDB and DBMS-C parallelize the query
across all 24 cores. MonetDB is 1.27× faster than DBMS-
C because it benefits from the use of secondary indexes.
Caldera exploits the massive parallelism of the GPU to pro-
vide 4.15× and 5.29× speedup over MonetDB and DBMS-C,
even though the table is streamed from host memory.

Figure 5 shows the OLTP throughput achieved by Caldera
as we vary the working set size from 1% to 100%. The
four lines show the throughput as we increase data fresh-
ness by varying snapshot frequency from one across all ten
OLAP queries to one per OLAP query. Clearly, transac-
tional throughput deteriorates when we increase the work-
ing set size or the frequency of snapshots due to software

0

2

4

6

8

10

Caldera DBMS-C MonetDB

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
.)

TPC-H Query 6

Figure 4: GPU-powered Caldera vs. CPU-powered
columnar engines for Q6 of TPC-H. Time for
Caldera includes data transfer costs.

0

50

100

150

200

1 2 4 8 16 32 64 100

Th
ro

u
gh

p
u

t
(K

Tp
s)

% Transactional data

q1
q1,5
q1,3,5,7
q1-10

Figure 5: OLTP transaction throughput in the pres-
ence of OLAP queries as we vary the OLTP working
set and the degree of data freshness.

0

2

4

6

8

10

1 2 4 8 16 32 64 100

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
.)

% Transactional data

Figure 6: Execution time of OLAP queries in the
presence of OLTP queries. All OLAP queries share a
single snapshot, but OLTP-triggered copy-on-write
stresses memory bandwidth.

0

20

40

60

80

100

120

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Th
ro

u
gh

p
u

t
(K

Tp
s)

Ex
ec

u
ti

o
n

 T
im

e
(s

ec
.)

#OLAP Queries

Time Throughput

Figure 7: Execution time of OLAP queries and
throughput of OLTP queries. We increase the num-
ber of queries that share a snapshot from 10 to 100.
Increasing snapshot sharing improves performance.

overhead, as Caldera incurs the cost of performing a copy-
on-write the first time data is modified after each snapshot.

Snapshotting also affects OLAP response time. Figure 6
shows the average, minimum, and maximum analytical query
response times for Caldera when all ten queries share one
snapshot as we vary the (OLTP) working set size from 1%
to 100%. In the presence of snapshotting, both analytical
queries running on the GPU and transactions running on
CPU compete for memory bandwidth due to the memory-
intensive copy-on-write process. This results in a 2× in-
crease in average response time and a 3× increase in maxi-
mum response time. Note that this overhead is not exclusive
to the shadow copy implementation of Caldera: Fork-based
snapshotting implementations also suffer under update in-
tensive workloads [48]. In addition to such snapshotting-
related overheads, current HTAP engines also exhibit the
house effect as transaction throughput collapses due to pro-
cessor resource contention caused by interference between
OLAP and OLTP workloads [43]. Under Caldera, in con-
trast, processor resource contention never occurs due to the
strict separation of workloads provided by the archipelago
abstraction. Contention for memory bandwidth is purely
due to the software overhead of our copy-on-write mecha-
nism and can be reduced using three techniques.

The first optimization is to trade off a degree of data
freshness for improved performance by sharing a snapshot
across several OLAP queries. Figure 7 shows the through-
put and response time for Caldera when we fix the OLTP

working set to 100% – the worst case in Figure 6 – and
vary the number of queries that share a snapshot from 10
to 100. Initially, almost all transactions perform copy-on-
write. Analytical queries that are executed concurrently
with these transactions suffer due to shared memory band-
width. This explains the high worst-case response time for
analytical queries. As the copy-on-write process converges,
both transactional throughput and analytical response time
improve substantially. Comparing Figures 5 and 7, we ob-
serve that sharing a snapshot across 100 queries provides
nearly a 5× improvement in OLTP throughput even if the
working set covers 100% of the data set.

Second, as shown in Figure 5, limiting the OLTP working
set to less than 16% of the total data size limits the worst-
case deterioration in throughput to only 2× even if we use
one snapshot per query. Thus, hybrid data layouts that per-
form hot–cold data classification [28] will enable Caldera to
further reduce the impact on OLTP throughput.

Third, profiling revealed that both memory allocation and
memory copying performed during the shadow-copy opera-
tion were sources of overhead. Thus, optimizing shadow
copying by using alternate snapshotting implementations [45,
48] is another approach for improving OLTP throughput.

5.2 OLTP with message passing
Next, we compare the performance and scalability of Caldera

against Silo for OLTP workloads. To avoid confounding per-
formance effects caused by memory allocation, and to keep

0

0.5

1

1.5

2

1 2 4 8 12 16 20 24

Th
ro

u
gh

p
u

t
(M

Tp
s)

cores

Caldera Silo

Figure 8: TPC-C scalability as the number of cores
increase.

0

2

4

6

8

10

0 20 40 60 80 100

Th
ro

u
gh

p
u

t
(M

Tp
s)

% Multisite transactions

Caldera Silo Silo-SN

Figure 9: Throughput as the percentage of multi-
site transactions increases.

the comparison fair, we use the NSM data layout, and also
use malloc as the memory allocator for Caldera.

The first experiment investigates the scalability of both
systems for the NewOrder transaction of the TPC-C bench-
mark. For both systems, we assign a warehouse to a thread
and increase the number of threads (and hence the num-
ber of warehouses). Figure 8 reports throughput at various
thread counts; both systems scale well. Caldera outperforms
Silo due to 1) better data locality provided by partitioning,
2) better code locality due to the lack of thread synchroniza-
tion, and 3) limited message passing overhead because only
10% of NewOrder transactions require remote accesses.

The next experiment investigates throughput sensitivity
in the presence of multi-site transactions. We use a read-only
microbenchmark in which each transaction reads ten records
from a table of 24M records partitioned across 24 cores.
Single-site transactions read all ten records from the local
partition. Multi-site transactions read two records from a
random remote partition and the remaining eight from the
local partition. We compare Caldera with two deployments
of Silo, namely, Silo and shared-nothing Silo (SN-Silo). The
default configuration uses a single instance of Silo over all
cores. SN-Silo represents how one could use current OLTP
engines on emerging non-CC multi-cores; the SN-Silo setup
uses one instance of Silo per core and a distributed trans-
action layer to coordinate multi-site transactions using the
two-phase commit (2PC) protocol.

Figure 9 shows the throughput achieved by all three sys-
tems as the fraction of multi-site transactions increases. Both
Caldera and SN-Silo are affected by multi-site transactions,
but for very different reasons; Caldera suffers due to the
use of CC as the message passing mechanism while SN-Silo
suffers due to the overheads of 2PC. Thus, for emerging
hardware, replacing CC with hardware message passing will
benefit Caldera, but not SN-Silo. Despite the message pass-
ing overhead, Caldera can match Silo’s throughput, showing
that the message passing-based design used by Caldera pro-
vides performance competitive with that of state-of-the-art
OLTP engines.

5.3 Data sharing with PAX
The next experiment examines the suitability of PAX for

OLAP operations executed on GPUs. For this experiment,
we use a main-memory-resident 16 GB table of 270M records.
Each record is comprised of 16 integer attributes. We use
three different storage layouts for the table: DSM, PAX, and
NSM. We set the size of the PAX page to 4KB. Each PAX

page contains 16 minipages, and each minipage contains 64
values. We then launch five instances of the following query
template:

SELECT SUM(col1 + ... + colN) FROM dataset

Each instance accesses 1, 2, 4, 8, or 16 attributes, respec-
tively. Figure 10 depicts the response time for each instance.

NSM has the slowest response times because it leads to
sub-optimal data access patterns. Specifically, GPUs man-
age threads in groups. The ideal access pattern in the con-
text of GPUs is one for which all threads in a group per-
form coalesced accesses, i.e., they access a contiguous chunk
of memory. When executing a query over NSM data, the
values for col1, col2, etc., are not stored contiguously, thus
resulting in multiple expensive memory transactions.

PAX and DSM have almost identical response times, with
the former being slightly slower. Both the PAX and DSM
layouts lead to coalesced memory accesses. In addition, both
layouts minimize unnecessary data transfers through the
PCIe bus. Specifically, the maximum transfer unit (MTU)
through the PCIe bus typically does not exceed 512 bytes.
We carefully configure the PAX layout so that the size of
each minipage is close to the MTU, and thus maximize the
utilization of the PCIe bandwidth.

While our previous experiment showed that NSM suffers
due to its inability to perform coalesced accesses, PAX and
DSM are able to effectively saturate the PCIe bandwidth.
The GPU memory, however, provides an order of magni-
tude higher bandwidth compared to PCIe. As on-board
GPU memory continues to increase in capacity, an impor-
tant question is whether PAX lags behind DSM if all data
were local to the GPU.

To answer this question, we repeated the previous experi-
ment while storing all data in GPU memory. Due to limited
memory capacity, we reduced the dataset size from 16GB
to 1GB. Figure 11 shows the response time for the three
layouts when the query touches only two attributes out of
16. We only report the kernel execution time and not data
transfer time for two GPUs belonging to different genera-
tions, namely a Fermi GPU (Tesla M2090) and the Maxwell
GPU (GTX 980). There are three important observations.

First, comparing the two GPUs, we see that the Maxwell
GPU provides a 2.5×, 3.1×, and 3.5× improvement for
DSM, PAX, and NSM layouts respectively. These results
are encouraging because despite being just a consumer-grade
graphics card, the Maxwell GPU (GTX 980) outperforms a
previous-generation compute accelerator (Tesla M2090).

0

1

2

3

4

5

6

1 2 4 8 16Ex
ec

u
ti

o
n

 T
im

e
(s

ec
.)

Attributes accessed

DSM PAX NSM

10 21

Figure 10: Comparing the efficiency of different data
layouts for GPU-based computations.

0

5

10

15

Fermi MaxwellEx
ec

u
ti

o
n

 T
im

e
(m

se
c.

)

GPU Architecture

DSM PAX NSM

Figure 11: Comparing different data layouts when
all data is GPU resident.

Second, comparing relative performance of each layout
within a GPU generation, we see that NSM is 3× slower
than DSM on Tesla and only 2× slower on Maxwell. Similar,
PAX is 1.3× slower on Tesla but matches DSM performance
on Maxwell. This result is in sharp contrast with the UVA
results we reported in Figure 10, where NSM was 13.74×
slower than DSM. This shows that modern GPUs have vastly
reduced the performance impact of non-coalesced memory
accesses when data fits in GPU memory. Thus, using a
PAX-like storage layout that acts as the middle ground be-
tween OLTP-oriented NSM and OLAP-oriented DSM is a
viable option for H2TAP. A possible next step would be
crafting a new data layout dynamically depending on the
workload requirements [3, 15], e.g., storing frequently ac-
cessed attributes together in a group of columns.

Summary. Overall, the results indicate that it is possible
to realize H2TAP in practice and show many of the opportu-
nities and challenges involved in designing H2TAP engines.

6. DISCUSSION
The Caldera prototype is a proof-of-concept implemen-

tation that demonstrates the feasibility of the H2TAP ar-
chitecture. In this section, we discuss several aspects that
require further research in order to realize a fully functional
H2TAP engine.

Query optimization and scheduling. Caldera sepa-
rates read-only OLAP queries from read-write transactions
and runs each category either on data-parallel (OLAP) or
on task-parallel (OLTP) archipelagos. Transactions require

synchronization at multiple levels (concurrency control pro-
tocols at the logical level, latching at the physical level,
atomics at the hardware level). Therefore, Caldera restricts
the membership of task-parallel archipelagos to CPUs. How-
ever, as OLAP queries can be parallelized well on both CPUs
and GPUs, Caldera makes the data-parallel archipelago het-
erogeneous. Given such heterogeneity, a given OLAP query
could potentially be executed on just CPUs, just GPUs, or
a mix of both. Thus, an important topic that requires fur-
ther research is query optimization and scheduling in the
heterogeneous OLAP archipelago.

GDB [17] was one of the first prototypes to investigate ex-
tensions to analytical cost models in the CPU–GPU query
coprocessing scenario for deciding optimal operator place-
ment. CoGaDB [9] is a more recent effort that uses cost
models based on observed query execution time that are
learned on-the-fly and continuously refined for both picking
an optimal query plan and the placement of operators across
CPUs and multiple GPUs. We plan to extend Caldera with
such heterogeneity-aware query optimizers in the future.

Utilizing other data-parallel hardware. Over the
past few years, processor vendors have introduced several
new heterogeneous hardware accelerators that compete with
GPUs for accelerating data-parallel workloads. For instance,
Intel Many Integrated Core processor (also known as Xeon
Phi) packs several hyperthreaded, low-frequency in-order
cores together with high-bandwidth memory in a single pack-
age to provide an order-of-magnitude more hardware con-
texts than server-grade Xeon processors. Intel HARP plat-
form integrates Field Programmable Gate Arrays (FPGAs)
and Xeon processors in a single multi-socket system. Recent
research has shown that analytical workloads benefit from
such heterogeneous hardware [21, 35].

While this paper focuses on GPUs, the H2TAP architec-
ture is independent of the type of data-parallel hardware
used for accelerating OLAP queries. In fact, given that the
H2TAP architecture decouples cache coherence from shared
memory, it can take advantage of the simpler data-parallel
hardware that does not necessarily support system-wide cache
coherence. Further, the use of query compilation makes the
overall architecture hardware-agnostic; any processor can be
integrated into the Caldera framework as long as the query
compiler generates specialized code for the target processor.

7. CONCLUSION
Modern database engines are designed to work on multi-

socket multi-cores that provide abundant homogeneous par-
allelism, system-wide CC, and global shared memory. As a
result, they are mismatched with emerging server hardware
which will make both parallelism and CC support heteroge-
neous. We introduce H2TAP, a new architecture for building
database engines on such hardware. Using Caldera, a proto-
type H2TAP engine, we show that the H2TAP architecture
can be realized in practice and can match the performance
of state-of-the-art specialized OLTP and OLAP engines.
Acknowledgments. We would like to thank the anony-
mous reviewers and the DIAS laboratory members for their
constructive feedback. This work is partially funded by the
EU FP7 Programme (ERC-2013-CoG) under grant agree-
ment number 617508 (ViDa), the EU FP7 Programme (FP7
Collaborative project) under grant agreement number 317858
(BigFoot), and the Swiss National Science Foundation (Grant
No. 200021-146407/1).

8. REFERENCES
[1] MapD. https://www.mapd.com/.

[2] A. Ailamaki, D. J. DeWitt, M. D. Hill, and
M. Skounakis. Weaving Relations for Cache
Performance. In VLDB, 2001.

[3] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: a
hands-free adaptive store. In SIGMOD, 2014.

[4] J. Arulraj, A. Pavlo, and P. Menon. Bridging the
Archipelago Between Row-Stores and Column-Stores
for Hybrid Workloads. In SIGMOD, 2016.

[5] A. Barbalace, M. Sadini, S. Ansary, C. Jelesnianski,
A. Ravichandran, C. Kendir, A. Murray, and
B. Ravindran. Popcorn: bridging the programmability
gap in heterogeneous-ISA platforms. In EuroSys, 2015.

[6] A. Baumann, P. Barham, P. Dagand, T. L. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: a new OS architecture
for scalable multicore systems. In SOSP, 2009.

[7] A. Baumann, C. Hawblitzel, K. Kourtis, T. Harris,
and T. Roscoe. Cosh: Clear OS Data Sharing In An
Incoherent World. In TRIOS, 2014.

[8] P. A. Boncz, M. L. Kersten, and S. Manegold.
Breaking the memory wall in MonetDB.
Communications of ACM, 51(12):77–85, 2008.

[9] S. Breß, H. Funke, and J. Teubner. Robust Query
Processing in Co-Processor-accelerated Databases. In
SIGMOD, pages 1891–1906, 2016.

[10] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and
G. Saake. GPU-Accelerated Database Systems: Survey
and Open Challenges. Trans. Large-Scale Data- and
Knowledge-Centered Systems, 15:1–35, 2014.

[11] J. Cai and A. Shrivastava. Software Coherence
Management on Non-coherent Cache Multi-cores. In
VLSID, 2016.

[12] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SoCC, pages 143–154,
2010.

[13] G. P. Copeland and S. N. Khoshafian. A
Decomposition Storage Model. SIGMOD Record,
14(4):268–279, 1985.

[14] G. F. Diamos, H. Wu, J. Wang, A. Lele, and
S. Yalamanchili. Relational algorithms for
multi-bulk-synchronous processors. In PPoPP, 2013.

[15] M. Grund, J. Krüger, H. Plattner, A. Zeier,
P. Cudré-Mauroux, and S. Madden. HYRISE - A Main
Memory Hybrid Storage Engine. PVLDB, 4(2), 2010.

[16] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic
Processing in Cell’s Multicore Architecture. IEEE
Micro, 26:10–24, 2006.

[17] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational Query
Coprocessing on Graphics Processors. TODS,
34(4):21:1–21:39, 2009.

[18] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709–720,
2013.

[19] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,
G. Ruhl, D. Jenkins, H. Wilson, N. Borkar, G. Schrom,

F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella,
P. Salihundam, V. Erraguntla, M. Konow, M. Riepen,
G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar,
V. De, R. V. D. Wijngaart, and T. Mattson. A
48-Core IA-32 message-passing processor with DVFS
in 45nm CMOS. In ISSCC, pages 108–109, 2010.

[20] C. G. III, F. Sironi, M. F. Kaashoek, and
N. Zeldovich. Hare: a file system for
non-cache-coherent multicores. In EuroSys, 2015.

[21] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh.
Improving Main Memory Hash Joins on Intel Xeon
Phi Processors: An Experimental Approach. PVLDB,
8(6):642–653, 2015.

[22] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki.
Fast Queries Over Heterogeneous Data Through
Engine Customization. PVLDB, 9(12):972–983, 2016.

[23] M. Karpathiotakis, I. Alagiannis, T. Heinis,
M. Branco, and A. Ailamaki. Just-In-Time Data
Virtualization: Lightweight Data Management with
ViDa. In CIDR, 2015.

[24] M. Karpathiotakis, M. Branco, I. Alagiannis, and
A. Ailamaki. Adaptive Query Processing on RAW
Data. PVLDB, 7(12):1119–1130, 2014.

[25] A. Kemper and T. Neumann. HyPer: A hybrid
OLTP&OLAP main memory database system based
on virtual memory snapshots. In ICDE, 2011.

[26] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi.
Building Efficient Query Engines in a High-Level
Language. PVLDB, 7(10):853–864, 2014.

[27] K. Krikellas, S. Viglas, and M. Cintra. Generating
code for holistic query evaluation. In ICDE, 2010.

[28] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz,
T. Neumann, and A. Kemper. Data Blocks: Hybrid
OLTP and OLAP on Compressed Storage using both
Vectorization and Compilation. In SIGMOD, 2016.

[29] J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura,
J. Kim, and S. Han. COMIC: A Coherent Shared
Memory Interface for Cell Be. In PACT, 2008.

[30] J. J. Levandoski, P. Larson, and R. Stoica. Identifying
hot and cold data in main-memory databases. In
ICDE, 2013.

[31] F. X. Lin, Z. Wang, and L. Zhong. K2: A Mobile
Operating System for Heterogeneous Coherence
Domains. TOCS, 33(2):4, 2015.

[32] M. Martin, M. Hill, and D. Sorin. Why on-chip cache
coherence is here to stay. CACM, 55(7):78–89, 2012.

[33] T. G. Mattson, R. Van der Wijngaart, and
M. Frumkin. Programming the Intel 80-core
Network-on-a-chip Terascale Processor. In ICS, 2008.

[34] D. Molka, D. Hackenberg, R. Schöne, and W. E.
Nagel. Cache Coherence Protocol and Memory
Performance of the Intel Haswell-EP Architecture. In
ICPP, 2015.

[35] R. Mueller, J. Teubner, and G. Alonso. Data
Processing on FPGAs. PVLDB, 2(1):910–921, 2009.

[36] T. Neumann. Efficiently Compiling Efficient Query
Plans for Modern Hardware. PVLDB, 4(9):539–550,
2011.

[37] NVIDIA. CUDA C Programming Guide. http:
//docs.nvidia.com/cuda/cuda-c-programming-guide.

[38] NVIDIA. NVLink High-Speed Interconnect.
http://www.nvidia.com/object/nvlink.html.

[39] NVIDIA. Parallel Thread Execution ISA Version 4.3.
http:
//docs.nvidia.com/cuda/parallel-thread-execution.

[40] NVIDIA. Summit and Sierra Supercomputers: An
Inside Look at the U.S. Department of Energy’s New
Pre-Exascale Systems. Technical report, 11 2014.

[41] J. Paul, J. He, and B. He. GPL: A GPU-based
Pipelined Query Processing Engine. In SIGMOD,
pages 1935–1950, 2016.

[42] D. Porobic, I. Pandis, M. Branco, P. Tözün, and
A. Ailamaki. OLTP on Hardware Islands. PVLDB,
5(11):1447–1458, 2012.

[43] I. Psaroudakis, F. Wolf, N. May, T. Neumann,
A. Böhm, A. Ailamaki, and K. Sattler. Scaling Up
Mixed Workloads: A Battle of Data Freshness,
Flexibility, and Scheduling. In TPCTC, 2014.

[44] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman.
Compiled Query Execution Engine using JVM. In
ICDE, 2006.

[45] F. M. Schuhknecht, J. Dittrich, and A. Sharma.
RUMA Has It: Rewired User-space Memory Access is
Possible! PVLDB, 9(10):768–779, 2016.

[46] A. Shaikhha et al. How to Architect a Query
Compiler. In SIGMOD, 2016.

[47] S. Tu, W. Zheng, E. Kohler, B. Liskov, and
S. Madden. Speedy transactions in multicore
in-memory databases. In SOSP, 2013.

[48] D. Šidlauskas, C. S. Jensen, and S. Šaltenis. A
Comparison of the Use of Virtual Versus Physical
Snapshots for Supporting Update-intensive
Workloads. In DAMON, 2012.

[49] D. Wentzlaff and A. Agarwal. Factored operating
systems (fos): the case for a scalable operating system
for multicores. OS Review, 43(2):76–85, 2009.

[50] Y. Xu, Y. Du, Y. Zhang, and J. Yang. A Composite
and Scalable Cache Coherence Protocol for Large
Scale CMPs. In ICS, 2011.

[51] Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of
Processing Data Warehousing Queries on GPU
Devices. PVLDB, 6(10):817–828, 2013.

