Ramsey-Minimal Saturation Numbers for Matchings

Michael Ferrara ${ }^{1,3,4}$, Jaehoon Kim 2,5 and Elyse Yeager ${ }^{2,3}$

June 27, 2013

Abstract

Given a family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if no element of \mathcal{F} is a subgraph of G, but for any edge e in \bar{G}, some element of \mathcal{F} is a subgraph of $G+e$. Let $\operatorname{sat}(n, \mathcal{F})$ denote the minimum number of edges in an \mathcal{F}-saturated graph of order n, which we refer to as the saturation number or saturation function of \mathcal{F}. If $\mathcal{F}=\{F\}$, then we instead say that G is F-saturated and write sat (n, F).

For graphs G, H_{1}, \ldots, H_{k}, we write that $G \rightarrow\left(H_{1}, \ldots, H_{k}\right)$ if every k-coloring of $E(G)$ contains a monochromatic copy of H_{i} in color i for some i. A graph G is $\left(H_{1}, \ldots, H_{k}\right)$-Ramseyminimal if $G \rightarrow\left(H_{1}, \ldots, H_{k}\right)$ but for any $e \in G,(G-e) \nrightarrow\left(H_{1}, \ldots, H_{k}\right)$. Let $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$ denote the family of $\left(H_{1}, \ldots, H_{k}\right)$-Ramsey-minimal graphs.

In this paper, motivated in part by a conjecture of Hanson and Toft [Edge-colored saturated graphs, J. Graph Theory 11 (1987), 191-196], we prove that $$
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)\right)=3\left(m_{1}+\ldots+m_{k}-k\right)
$$ for $m_{1}, \ldots, m_{k} \geq 1$ and $n>3\left(m_{1}+\ldots+m_{k}-k\right)$, and we also characterize the saturated graphs of minimum size. The proof of this result uses a new technique, iterated recoloring, which takes advantage of the structure of H_{i}-saturated graphs to determine the saturation number of $\mathcal{R}_{\text {min }}\left(H_{1}, \ldots, H_{k}\right)$.

Keywords: saturated graph, Ramsey-minimal graph, matching

1 Introduction

All graphs considered in this paper are simple, undirected and finite. For any undefined terminology or notation, please see [7]. Given an edge coloring ϕ of a graph G let G_{ϕ} denote the edge-colored graph obtained by applying ϕ to G, and let $G_{\phi}[i]$ denote the spanning subgraph of G_{ϕ} induced by all edges of color i. When the context is clear, we will simply write G and $G[i]$ in place of the more cumbersome G_{ϕ} and $G_{\phi}[i]$.

[^0]Given a family of graphs \mathcal{F}, a graph G is \mathcal{F}-saturated if no element of \mathcal{F} is a subgraph of G, but for any edge e in \bar{G}, some element of \mathcal{F} is a subgraph of $G+e$. If $\mathcal{F}=\{F\}$, then we say that G is F-saturated. The classical extremal function $\operatorname{ex}(n, \mathcal{F})$ is the maximum number of edges in an \mathcal{F}-saturated graph of order n.

In this paper, we are concerned with sat (n, F), the minimum number of edges in an \mathcal{F}-saturated graph of order n. We refer to $\operatorname{sat}(n, \mathcal{F})$ as the saturation number or saturation function of \mathcal{F}. This parameter was introduced by Erdős, Hajnal and Moon in [2], wherein they determined sat $\left(n, K_{t}\right)$ and characterized the unique saturated graphs of minimum size. Here " \vee " denotes the standard graph join.

Theorem 1. If n and t are positive integers such that $n \geq t$, then

$$
\operatorname{sat}\left(n, K_{t}\right)=\binom{t-2}{2}+(t-2)(n-t+2) .
$$

Furthermore, $K_{t-2} \vee \bar{K}_{n-t+2}$ is the unique K_{t}-saturated graph of order n with minimum size.
Subsequently, $\operatorname{sat}(n, \mathcal{F})$ has been determined for a number of families of graphs and hypergraphs. We refer the interested reader to the dynamic survey of Faudree, Faudree and Schmitt [3], which gives a thorough overview of the area.

For graphs G, H_{1}, \ldots, H_{k}, we write that $G \rightarrow\left(H_{1}, \ldots, H_{k}\right)$ if every k-coloring of $E(G)$ contains a monochromatic copy of H_{i} in color i for some i. The (classical) Ramsey number $r\left(H_{1}, \ldots, H_{K}\right)$ is the smallest positive integer n such that $K_{n} \rightarrow\left(H_{1}, \ldots, H_{k}\right)$. A graph G is $\left(H_{1}, \ldots, H_{k}\right)$-Ramseyminimal if $G \rightarrow\left(H_{1}, \ldots, H_{k}\right)$ but for any $e \in G,(G-e) \nrightarrow\left(H_{1}, \ldots, H_{k}\right)$. Let $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$ denote the family of $\left(H_{1}, \ldots, H_{k}\right)$-Ramsey-minimal graphs.

Here we are interested in the following general problem.
Problem 1. Let H_{1}, \ldots, H_{k} be graphs, each with at least one edge. Determine

$$
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)\right)
$$

It is straightforward to prove that $G \rightarrow\left(H_{1}, \ldots, H_{k}\right)$ if and only if G contains an $\left(H_{1}, \ldots, H_{k}\right)$ -Ramsey-minimal subgraph. Hence Problem 1 is equivalent to finding the minimum size of a graph G of order n such that there is some k-edge-coloring of G that contains no copy of H_{i} in color i for any i, yet for any $e \in \bar{G}$ every k-edge-coloring of $G+e$ contains a monochromatic copy of H_{i} in color i for some i. We observe as well that

$$
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(H, K_{2}, \ldots, K_{2}\right)\right)=\operatorname{sat}(n, H)
$$

so that Problem 1 not only represents an interesting juxtaposition of classical Ramsey theory and graph saturation, but is also a direct extension of the problem of determining sat (n, H). Problem 1 is inspired by the following 1987 conjecture of Hanson and Toft [4].
Conjecture 1. Let $r=r\left(K_{t_{1}}, K_{t_{2}}, \ldots, K_{t_{k}}\right)$ be the standard Ramsey number for complete graphs. Then

$$
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)\right)= \begin{cases}\binom{n}{2} & n<r \\ \binom{r-2}{2}+(r-2)(n-r+2) & n \geq r\end{cases}
$$

In [1] it was shown that

$$
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{3}, K_{3}\right)\right)=4 n-10
$$

for $n \geq 54$, thereby verifying the first nontrivial case of Conjecture 1. At this time, however, it seems that a complete resolution of the Hanson-Toft conjecture remains elusive. As such, one goal of the study of Problem 1 is to develop a collection of techniques that might be useful in attacking Conjecture 1.

Here, we solve Problem 1 completely in the case where each H_{i} is a matching, and further completely characterize all saturated graphs of minimum size. Specifically, we prove the following.

Theorem 2. If $m_{1}, \ldots, m_{k} \geq 1$ and $n>3\left(m_{1}+\ldots+m_{k}-k\right)$, then

$$
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)\right)=3\left(m_{1}+\ldots+m_{k}-k\right)
$$

If $m_{i} \geq 3$ for some i, then the unique saturated graphs of minimum size consist solely of vertexdisjoint triangles and independent vertices. If $m_{i} \leq 2$ for every i, then the graphs achieving equality are unions of edge-disjoint triangles and independent vertices.

As noted in [5], a result of Mader [6], which we utilize below, implies that the unique minimum saturated graph of order $n \geq 3 m-3$ for $H=m K_{2}$ is $(m-1) K_{3} \cup(n-3 m+3) K_{1}$. Hence, the minimum saturated graphs in Theorem 2 are precisely a union of $m_{i} K_{2}$-saturated graphs of minimum size. This provides an interesting contrast to both Conjecture 1 and the main result in [1] which posit and demonstrate, respectively, a stronger relationship between $r\left(K_{t_{1}}, K_{t_{2}}, \ldots, K_{t_{k}}\right)$ and $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(K_{t_{1}}, \ldots, K_{t_{k}}\right)\right)$.

The proof of Theorem 2 uses iterated recoloring, a new technique that utilizes the structure of H_{i}-saturated graphs to gain insight into the properties of $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$-saturated graphs. We describe this approach next.

1.1 Iterated Recoloring

Given graphs $G, H_{1}, \ldots, H_{k-1}$ and H_{k}, a k-edge coloring ϕ of G is an $\left(H_{1}, \ldots, H_{k}\right)$-coloring if G_{ϕ} contains no monochromatic copy of H_{i} in color i, but for any e in \bar{G} and any $i \in[k]$, the addition of e to G in color i creates a monochromatic copy of H_{i} in color i. Central to our approach here is the following observation.

Observation 1. If G is an $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$-saturated graph, then every k-edge-coloring of G that contains no monochromatic copy of H_{i} in color i for any i is an $\left(H_{1}, \ldots, H_{k}\right)$-coloring. In particular, G has at least one $\left(H_{1}, \ldots, H_{k}\right)$-coloring.

An $\left(H_{1}, \ldots, H_{k}\right)$-coloring of a graph G is i-heavy if for any edge e in G with color not equal to i, recoloring e with color i creates a monochromatic copy of H_{i} in color i. The next proposition connects the structure of H_{i}-saturated graphs with the monochromatic subgraph $G[i]$ in an i-heavy $\left(H_{1}, \ldots, H_{k}\right)$-coloring of G.

Lemma 3. If G is an $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)$-saturated graph and ϕ is an i-heavy $\left(H_{1}, \ldots, H_{k}\right)$-coloring of G for some $i \in[k]$, then $G_{\phi}[i]$ is H_{i}-saturated.

Proof. Throughout the proof, it suffices to treat $G[i]$ as an uncolored graph. As ϕ is an $\left(H_{1}, \ldots, H_{k}\right)-$ coloring of G, it follows that $G[i]$ contains no subgraph isomorphic to H_{i}. It remains to prove that for any edge $e \in E(G[i]), G[i]+e$ has a subgraph isomorphic to H_{i}.

If $e \in E(G)-E(G[i])$, then $\phi(e) \neq i$. Because ϕ is i-heavy, changing e to color i in G_{ϕ} creates a copy of H_{i} in color i. Therefore, adding e to $G[i]$ creates a subgraph isomorphic to H_{i}. On the other hand, if $e \in E(\bar{G})$, then the fact that ϕ is an $\left(H_{1}, \ldots, H_{k}\right)$-coloring of G implies that adding e to G_{ϕ} in color i creates a copy of H_{i} in color i. Consequently, $H_{i} \subseteq G[i]+e$.

The general technique is as follows. Starting with an $\left(H_{1}, \ldots, H_{k}\right)$-coloring ϕ of an $\mathcal{R}_{\text {min }}\left(H_{1}, \ldots, H_{k}\right)$ saturated graph G, we iteratively recolor edges in G_{ϕ} to obtain a 1-heavy $\left(H_{1}, \ldots, H_{k}\right)$-coloring ϕ_{1}, and then recolor edges in $G_{\phi_{1}}$ to obtain a 2-heavy coloring ϕ_{2}, and so on until we have successively created i-heavy $\left(H_{1}, \ldots, H_{k}\right)$-colorings ϕ_{i} for every $i \in[k]$.

By Lemma 3, the monochromatic subgraph $G[i]$ corresponding to each ϕ_{i} is H_{i}-saturated. The goal is to then use any knowledge we may have about (uncolored) H_{i}-saturated graphs to force additional extra structure within G.

For instance, here we will use the following characterization of large enough $m K_{2}$-saturated graphs due to Mader [6]. A dominating vertex in a graph G of order n is a vertex of degree $n-1$.

Theorem 4. If G is an $m K_{2}$-saturated graph of order $n \geq 2 m-1$, then:

1. G is disconnected and every component is an odd clique, or
2. G has a dominating vertex v and $G-v$ is $(m-1) K_{2}$-saturated.

2 Proof of Theorem 2

If $k=1$, the result follows from the traditional saturation number for matchings, given in [5], so we may assume $k \geq 2$. Further, as $\operatorname{sat}\left(\mathcal{R}_{\min }\left(K_{2}, H_{1}, \ldots, H_{k}\right)=\operatorname{sat}\left(\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)\right.\right.$, we may also assume that each $m_{i} \geq 2$. We begin by proving the upper bound in Theorem 2.

Proposition 5. $\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)\right) \leq 3\left(m_{1}+\ldots+m_{k}-k\right)$ whenever $n>3\left(m_{1}+\ldots+\right.$ $\left.m_{k}-k\right)$.

Proof. Let G be the vertex-disjoint union of $\left(m_{1}+\ldots+m_{k}-k\right)$ triangles and $n-3\left(m_{1}+\ldots+m_{k}-k\right)$ independent vertices. We can create an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring ϕ of G by coloring the edges of $m_{i}-1$ triangles with color i, for each i. A monochromatic matching can use at most one edge from each triangle, so for any i, the size of the largest matching in color i is $m_{i}-1$.

Note that in any coloring of G containing no monochromatic $m_{i} K_{2}$ in color i for any i, each triangle is monochromatic and each color i is used in exactly $m_{i}-1$ triangles. Further, there are at most $m_{i}-1$ triangles containing an edge of color i, lest there exist an i-colored $m_{i} K_{2}$. Therefore, by the pigeonhole principle, the only way, up to isomorphism, to color G without creating one of the forbidden subgraphs is ϕ.

Consequently, for any $e=u v$ in \bar{G}, G_{ϕ} contains a copy of $\left(m_{i}-1\right) K_{2}$ in color i that is disjoint from u and v. Given a k-edge coloring of $G+e$ in which G does not contain a copy of $m_{i} K_{2}$ in color i, it then follows that e lies in a monochromatic copy of $m_{\phi(e)} K_{2}$. Thus, G is $\mathcal{R}_{\min }\left(H_{1}, \ldots, H_{k}\right)-$ saturated.

We note that if each $m_{i}=2$, then there are minimum saturated graphs aside from $k K_{3}$. Indeed, let $n \geq 8$ and let G be the disjoint union of K_{7} and $n-7$ isolated vertices. Note K_{7} is the edge-disjoint union of seven triangles, so that any ($m_{1} K_{2}, \ldots, m_{7} K_{2}$)-coloring necessarily assigns a distinct color to each triangle. Then for any $e \in E(\bar{G}), G+e \rightarrow\left(H_{1}, \ldots, H_{k}\right)$, so G is $\mathcal{R}_{\text {min }}\left(H_{1}, \ldots, H_{k}\right)$-saturated.

To prove the upper bound in Theorem 2, we will utilize the iterated recoloring technique described in Section 1.1. Assume that G is an $\mathcal{R}_{\text {min }}\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-saturated graph of order $n>3\left(m_{1}+\cdots+m_{k}-k\right)$ with at most $3\left(m_{1}+\cdots+m_{k}-k\right)$ edges. If G has a dominating vertex, then necessarily G is a star of order $3\left(m_{1}+\cdots+m_{k}-k\right)+1$, which is clearly not $\mathcal{R}_{\text {min }}\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$ saturated when $k \geq 2$. Hence we may assume that G contains no dominating vertex.

The following claims establish several important properties of G. The first follows immediately from Lemma 3 and the fact that G has no dominating vertex.

Proposition 6. If ϕ is an i-heavy $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring of G, then $G[i]$ is the disjoint union of odd cliques.

Next we show that no component of any $G[i]$ arising from an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring can have a cut edge.

Proposition 7. If ϕ is an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring of G, then each component of $G[i]$ is 2-edge-connected. In particular, each component C of $G[i]$ has at least $|V(C)|$ edges.

Proof. Suppose ϕ is an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring of G and that C is a component of $G[i]$ with cut-edge $u v$. As G_{ϕ} contains no m_{i}-matching in color i, every ($m_{i}-1$)-matching assigned color i in G_{ϕ} necessarily uses either u or v. Let $C-u v=C_{1} \cup C_{2}$ for disjoint subgraphs C_{1} and C_{2} of C with $u \in C_{1}$ and $v \in C_{2}$.

Because G has no dominating vertex, there exist (not necessarily distinct) vertices x and y such that $u x, v y \in E(\bar{G})$. By the saturation of G, if we extend ϕ to $G+u x$ or $G+v y$ by assigning $\phi(u x)=i$ or $\phi(v y)=i$, respectively, then we create an m_{i}-matching in color i. Let M_{u} be an m_{i}-matching in color i in $G+u x$ that uses n_{1} edges from $C_{1}-u$ and n_{2} edges from C_{2}. Then M_{u} restricted to G gives an $\left(m_{i}-1\right)$-matching that does not use u, and so uses v. Indeed, any matching on C_{2} that has n_{2} edges must use v.

Now let M_{v} be an m_{i}-matching in color i in $G+v y . M_{v}$ restricted to G does not use v, so $C_{2}-v$ contributes at most $n_{2}-1$ edges to M_{v}. Then C_{1} contributes at least $n_{1}+1$ edges. Now, if we take the matching formed by restricting M_{v} to C_{1} and M_{u} to C_{2}, then G has a matching in color i with at least $n_{1}+1+n_{2}=m_{i}$ edges, a contradiction.

The assertion that C has at least as many edges as vertices then follows from the fact that C has no leaves.

Let ϕ be an $\left(H_{1}, \ldots, H_{k}\right)$-coloring of a graph G. An edge e in G is inflexible if changing the color of e to any $j \neq \phi(e)$ creates a monochromatic copy of H_{j}. The next proposition follows immediately from Proposition 7.

Proposition 8. If ϕ is an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring of G, and H is a component of some $G[i]$ that is isomorphic to a triangle, then every edge of H is inflexible.

Let ϕ be an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring of G, and let C be a component of $G_{\phi}[i]$. If ψ is a coloring of G obtained from ϕ by iteratively recoloring edges of G in a manner such that each successive coloring is an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring, then we say that ψ is obtained from ϕ by flexing, or that we flex ϕ to ψ. In particular, it is always possible to flex to an i-heavy ($m_{1} K_{2}, \ldots, m_{k} K_{2}$)-coloring of G from any other ($m_{1} K_{2}, \ldots, m_{k} K_{2}$)-coloring of G.

Proposition 9. Let ϕ be an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring of G, and let C be a component of $G_{\phi}[i]$. If ψ is obtained from from ϕ by flexing, then $V(C)$ induces a component of $G_{\psi}[i]$.

Proof. Suppose that there is some edge e such that recoloring e causes the order of C to increase or decrease in $G[i]$. If recoloring e to color i causes the order of C to increase, then e is necessarily a cut-edge in $G[i]$. On the other hand, if recoloring e causes the order of C to decrease, then prior to recoloring, e was a cut-edge in $G[i]$. In either case, we have contradicted Proposition 7, and the proposition follows by induction.

Let ϕ be an ($m_{1} K_{2}, \ldots, m_{k} K_{2}$)-coloring of G and flex ϕ to a 1-heavy ($m_{1} K_{2}, \ldots, m_{k} K_{2}$)-coloring ϕ_{1}. For $2 \leq i \leq k$, flex ϕ_{i-1} to an i-heavy $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$-coloring ϕ_{i}. Consider then the nontrivial components of $G_{\phi_{i}}[i]$, all of which are odd cliques by Proposition 6. In particular, suppose that these components have order $2 x_{j}+1$ for $1 \leq j \leq \ell$. Then, as ϕ_{i} is an $\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$ coloring, we have that $x_{1}+\cdots+x_{\ell}=m_{i}-1$. Further, since the components of G_{i} do not change order via flexing, a component C of order $2 x+1$ in $G_{\phi_{j}}[i]$ must have a maximum matching of size x.

Propositions 6 and 9 imply that a set X of vertices in G induces a component of $G_{\phi_{i}}[i]$ if and only if X induces a component of $G_{\phi_{j}}[i]$ for all $i, j \in[k]$. This, in turn, implies that if ϕ^{\prime} and $\phi^{\prime \prime}$ are i-heavy colorings obtained via flexing from ϕ, then $G_{\phi^{\prime}}[i]=G_{\phi^{\prime \prime}}[i]$. This yields the following proposition.

Proposition 10. Let C be a component of $G_{\phi_{i}}[i]$. Then there are at least $|V(C)|$ edges e in C such that $\phi_{j}(e)=i$ for all $1 \leq j \leq k$.

Proof. Let $S \subset E(C)$ be those edges e in C such that $\left\{\phi_{j}(e): 1 \leq j \leq k\right\}=\{i\}$ and suppose that $|S|<|V(C)|$. Every edge of C that is not in S lies in some component C^{\prime} of $G_{\phi_{j}}[j]$ for some $j \neq i$. Iteratively recoloring each $e \notin S$ with any such j does not create a matching of size m_{ℓ} in color ℓ for any ℓ, as all edges colored ℓ lie within some component of $G_{\phi_{\ell}}[\ell]$. However, this means that at most $|S|<|V(C)|$ edges of C remain colored with color i, contradicting Proposition 9.

Our final proposition shows that no edge in G receives more than two colors under $\phi_{1}, \ldots, \phi_{k}$.
Proposition 11. If Q is a component of $G_{\phi_{i}}[i]$ on $2 m+1$ vertices, with $m \geq 1$, then any edge of Q is assigned at most 2 colors under $\phi_{1}, \ldots, \phi_{k}$. Furthermore, if Q is a triangle, then every edge of Q is inflexible in every $G_{\phi_{i}}$.

Proof. Note first that if $m=1$, so that Q is a triangle, then this is the result of Proposition 8. Hence we will assume that $m \geq 2$.

Suppose Q is a component of $G_{\phi_{1}}[1]$, and an edge $u v \in E(Q)$ appears in components Q_{2} and Q_{3} of $G_{\phi_{2}}[2]$ and $G_{\phi_{3}}[3]$, respectively. Recall that by Proposition $6, Q_{2}$ and Q_{3} are necessarily odd cliques.

Let $V(Q)-\{u, v\}=\left\{x_{1}, x_{2}, \ldots, x_{2 m-1}\right\}$. First, we define a coloring ψ^{\prime} of Q.

$$
\psi^{\prime}(e):= \begin{cases}2 & \text { if } e=x_{2} x_{j} \\ 3 & \text { if } e=x_{3} x_{j} \\ 1 & \text { otherwise }\end{cases}
$$

Now:

$$
\psi(e):= \begin{cases}\phi(e) & \text { if } e \notin Q \cup Q_{2} \cup Q_{3} \\ 1 & \text { if } e \text { is in } Q \cup Q_{2} \cup Q_{3} \text { and incident to } u \text { or } v . \\ \psi^{\prime}(e) & \text { if } e \text { is not incident to } u, v \text { and } e \text { is in } Q \\ 2 & e \text { is not incident to } u \text { or } v, \text { and } e \in Q_{2} \backslash Q_{3} \\ 3 & e \text { is not incident to } u \text { or } v, \text { and } e \in Q_{3}\end{cases}
$$

In this coloring, the $(2 m-3)$ vertices $\left\{x_{1}, x_{4}, \ldots, x_{2 m-1}\right\}$ form a clique of color 1 , contributing at most $m-2$ edges to any matching in color 1 . Further, edges incident to u or v also contribute at most two matching edges, so any matching in color 1 has at most m edges with an endpoint in Q. As Proposition 9 implies that the other ℓ nontrivial components of $G_{\psi}[1]-V(Q)$ are odd cliques with total order $2 m_{1}-2 m+\ell-2$, the maximum size of a matching with color 1 in G_{ψ} is $m_{1}-1$.

Let Q_{2} have $2 n_{2}+1$ vertices, and let Q_{3} have $2 n_{3}+1$ vertices. Note that in $G_{\phi_{1}}, Q_{2}$ contributes n_{2} edges to any maximum monochromatic matching of color 2 and Q_{3} contributes n_{3} edges to any maximum monochromatic matching of color 3. As we have recolored all edges in $Q \cup Q_{2} \cup Q_{3}$ that are incident to u or v with color 1 , for color $i \in\{2,3\}, Q_{i}-u-v$ contains a matching of size $n_{i}-1$. One more edge of color i incident with x_{i} completes a matching of size at most n_{i} in $Q \cup Q_{2} \cup Q_{3}$. Outside $Q \cup Q_{1} \cup Q_{2}, \psi=\phi$, so ψ is a (H_{1}, \ldots, H_{k})-coloring.

If x is a vertex in G that is not adjacent to u, then adding the edge $u x$ to G in color 1 does not increase the size of a maximum 1 -colored matching. Thus G is not $\mathcal{R}_{\min }\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)$ saturated, a contradiction.

We are now ready to prove Theorem 2.
Proof. Let G and $\phi_{1}, \ldots, \phi_{k}$ be as given above, and further assume that

$$
|E(G)|=\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)\right) \leq 3\left(m_{1}+\cdots+m_{k}-k\right) .
$$

For each i, we let $Q_{i, 1}, \ldots, Q_{i, p_{i}}$ be the (clique) components of $G_{\phi_{i}}[i]$, and suppose that each $Q_{i, j}$ has $2 t_{i, j}+1$ vertices. Recall that $\sum_{j=1}^{p_{i}} t_{i, j}=m_{i}-1$.

For any $e \in E(G)$, we define $w(e)=\left|\left\{\phi_{i}(e): 1 \leq i \leq k\right\}\right|$. That is, $w(e)$ is the number of colors assigned to e by the heavy colorings $\phi_{1}, \ldots, \phi_{k}$. Note

$$
|E(G)|=\sum_{i=1}^{k} \sum_{e \in G_{i}[i]} \frac{1}{w(e)}
$$

By Proposition 11, $w(e) \leq 2$ for every edge of G. Further, by Proposition 10, w(e) $=1$ for at least $|V(Q)|$ edges of Q. Therefore,

$$
\begin{align*}
|E(G)| & =\sum_{i=1}^{k} \sum_{e \in G[i]} \frac{1}{w(e)} \\
& \geq \sum_{i=1}^{k} \sum_{j=1}^{p_{i}}\left(\left(2 t_{i, j}+1\right)+\frac{1}{2}\left[\binom{2 t_{i, j}+1}{2}-\left(2 t_{i, j}+1\right)\right]\right) \tag{1}\\
& \geq \sum_{i=1}^{k} \sum_{j=1}^{p_{i}} 3 t_{i, j}=\sum_{i=1}^{k} 3\left(m_{i}-1\right)=3\left(m_{1}+\ldots+m_{k}-k\right) .
\end{align*}
$$

We therefore conclude that

$$
\operatorname{sat}\left(n, \mathcal{R}_{\min }\left(m_{1} K_{2}, \ldots, m_{k} K_{2}\right)\right)=3\left(m_{1} K_{2}+\ldots+m_{k} K_{2}\right)
$$

Additionally, equality holds in all equations above, leading us to conclude that every component of every $G_{\phi_{i}}[i]$ is a triangle. By Proposition 8 , also every component of every $G_{\phi_{i}}[j]$ is a triangle.

It remains only to show that if $m_{i} \geq 3$ for at least one i, then G consists of triangles that are vertex disjoint. Suppose not. Then there exists at least one "bow-tie" B : a subgraph of G consisting of two triangles that share one vertex. We can create an $\left(H_{1}, \ldots, H_{k}\right)$-coloring ϕ of G by assigning color i to $m_{i}-1$ of the edge-disjoint triangles in a triangle decomposition of G. Let ϕ be a such a coloring, in which both triangles of B are assigned color i. If we flex ϕ to be i-heavy, then Proposition 6 implies that the vertices of B must lie in a clique on at least five vertices. However, as equality holds throughout (1) and ϕ was selected arbitrarily, each component of $G[i]$ under any valid coloring is a triangle, a contradiction.

References

[1] G. Chen, M. Ferrara, R. Gould, C. Magnant and J. Schmitt, Saturation Numbers for Families of Ramsey-minimal Graphs, J. Combinatorics 2 (2011), 435-455.
[2] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory. Amer. Math. Monthly 71 (1964), 1107-1110.
[3] J. Faudree, R. Faudree, and J. Schmitt, A Survey of Minimum Saturated Graphs. Electron. J. Combin. 18 (2011), Dynamic Survey 19, 36 pp.
[4] D. Hanson and B. Toft, Edge-colored saturated graphs, J. Graph Theory 11 (1987), 191-196.
[5] L. Kásonyi and Z. Tuza. Saturated Graphs with Minimal Number of Edges. J. Graph Theory, 10 (1986) 203-210.
[6] Mader, W. 1-Faktoren von Graphen. Math. Ann. 201 (1973), 269-282.
[7] D. West, Introduction to Graph Theory, $2^{n d}$ Edition, (2001), Prentice Hall Inc., Upper Saddle River, NJ.

[^0]: ${ }^{1}$ Dept. of Mathematical and Statistical Sciences, Univ. of Colorado Denver; michael.ferrara@ucdenver.edu
 ${ }^{2}$ Dept. of Mathematics Univ. of Illinois at Urbana-Champaign; \{kim805, yeager2\}@illinois.edu
 ${ }^{3}$ Research supported in part by NSF grant DMS 08-38434, "EMSW21-MCTP: Research Experience for Graduate Students".
 ${ }^{4}$ Research supported in part by Simons Foundation Collaboration Grant \#206692.
 ${ }^{5}$ Research supported in part by Arnold O. Beckman Research Award of the University of Illinois at UrbanaChampaign.

