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Abstract

Given a family of graphs F , a graph G is F-saturated if no element of F is a subgraph of
G, but for any edge e in G, some element of F is a subgraph of G + e. Let sat(n,F) denote
the minimum number of edges in an F-saturated graph of order n, which we refer to as the
saturation number or saturation function of F . If F = {F}, then we instead say that G is
F -saturated and write sat(n, F ).

For graphs G,H1, . . . ,Hk, we write that G → (H1, . . . ,Hk) if every k-coloring of E(G)
contains a monochromatic copy of Hi in color i for some i. A graph G is (H1, . . . ,Hk)-Ramsey-
minimal if G→ (H1, . . . ,Hk) but for any e ∈ G, (G−e) 6→ (H1, . . . ,Hk). Let Rmin(H1, . . . ,Hk)
denote the family of (H1, . . . ,Hk)-Ramsey-minimal graphs.

In this paper, motivated in part by a conjecture of Hanson and Toft [Edge-colored saturated
graphs, J. Graph Theory 11 (1987), 191–196], we prove that

sat(n,Rmin(m1K2, . . . ,mkK2)) = 3(m1 + . . .+mk − k)

for m1, . . . ,mk ≥ 1 and n > 3(m1 + . . .+mk−k), and we also characterize the saturated graphs
of minimum size. The proof of this result uses a new technique, iterated recoloring, which
takes advantage of the structure of Hi-saturated graphs to determine the saturation number of
Rmin(H1, . . . ,Hk).
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1 Introduction

All graphs considered in this paper are simple, undirected and finite. For any undefined terminology
or notation, please see [7]. Given an edge coloring φ of a graph G let Gφ denote the edge-colored
graph obtained by applying φ to G, and let Gφ[i] denote the spanning subgraph of Gφ induced by
all edges of color i. When the context is clear, we will simply write G and G[i] in place of the more
cumbersome Gφ and Gφ[i].
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Given a family of graphs F , a graph G is F-saturated if no element of F is a subgraph of G,
but for any edge e in G, some element of F is a subgraph of G+ e. If F = {F}, then we say that
G is F -saturated. The classical extremal function ex(n,F) is the maximum number of edges in an
F-saturated graph of order n.

In this paper, we are concerned with sat(n, F ), the minimum number of edges in an F-saturated
graph of order n. We refer to sat(n,F) as the saturation number or saturation function of F . This
parameter was introduced by Erdős, Hajnal and Moon in [2], wherein they determined sat(n,Kt)
and characterized the unique saturated graphs of minimum size. Here “ ∨ ” denotes the standard
graph join.

Theorem 1. If n and t are positive integers such that n ≥ t, then

sat(n,Kt) =

(
t− 2

2

)
+ (t− 2)(n− t+ 2).

Furthermore, Kt−2 ∨Kn−t+2 is the unique Kt-saturated graph of order n with minimum size.

Subsequently, sat(n,F) has been determined for a number of families of graphs and hypergraphs.
We refer the interested reader to the dynamic survey of Faudree, Faudree and Schmitt [3], which
gives a thorough overview of the area.

For graphs G,H1, . . . ,Hk, we write that G→ (H1, . . . ,Hk) if every k-coloring of E(G) contains
a monochromatic copy of Hi in color i for some i. The (classical) Ramsey number r(H1, . . . ,HK) is
the smallest positive integer n such that Kn → (H1, . . . ,Hk). A graph G is (H1, . . . ,Hk)-Ramsey-
minimal if G → (H1, . . . ,Hk) but for any e ∈ G, (G − e) 6→ (H1, . . . ,Hk). Let Rmin(H1, . . . ,Hk)
denote the family of (H1, . . . ,Hk)-Ramsey-minimal graphs.

Here we are interested in the following general problem.

Problem 1. Let H1, . . . ,Hk be graphs, each with at least one edge. Determine

sat(n,Rmin(H1, . . . ,Hk)).

It is straightforward to prove that G→ (H1, . . . ,Hk) if and only if G contains an (H1, . . . ,Hk)-
Ramsey-minimal subgraph. Hence Problem 1 is equivalent to finding the minimum size of a graph
G of order n such that there is some k-edge-coloring of G that contains no copy of Hi in color i for
any i, yet for any e ∈ G every k-edge-coloring of G + e contains a monochromatic copy of Hi in
color i for some i. We observe as well that

sat(n,Rmin(H,K2, . . . ,K2)) = sat(n,H),

so that Problem 1 not only represents an interesting juxtaposition of classical Ramsey theory and
graph saturation, but is also a direct extension of the problem of determining sat(n,H). Problem
1 is inspired by the following 1987 conjecture of Hanson and Toft [4].

Conjecture 1. Let r = r(Kt1 ,Kt2 , . . . ,Ktk) be the standard Ramsey number for complete graphs.
Then

sat(n,Rmin(Kt1 , . . . ,Ktk)) =


(
n
2

)
n < r(

r−2
2

)
+ (r − 2)(n− r + 2) n ≥ r.
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In [1] it was shown that
sat(n,Rmin(K3,K3)) = 4n− 10

for n ≥ 54, thereby verifying the first nontrivial case of Conjecture 1. At this time, however, it
seems that a complete resolution of the Hanson-Toft conjecture remains elusive. As such, one goal
of the study of Problem 1 is to develop a collection of techniques that might be useful in attacking
Conjecture 1.

Here, we solve Problem 1 completely in the case where each Hi is a matching, and further
completely characterize all saturated graphs of minimum size. Specifically, we prove the following.

Theorem 2. If m1, . . . ,mk ≥ 1 and n > 3(m1 + . . .+mk − k), then

sat(n,Rmin(m1K2, . . . ,mkK2)) = 3(m1 + . . .+mk − k).

If mi ≥ 3 for some i, then the unique saturated graphs of minimum size consist solely of vertex-
disjoint triangles and independent vertices. If mi ≤ 2 for every i, then the graphs achieving equality
are unions of edge-disjoint triangles and independent vertices.

As noted in [5], a result of Mader [6], which we utilize below, implies that the unique minimum
saturated graph of order n ≥ 3m − 3 for H = mK2 is (m − 1)K3 ∪ (n − 3m + 3)K1. Hence,
the minimum saturated graphs in Theorem 2 are precisely a union of miK2-saturated graphs of
minimum size. This provides an interesting contrast to both Conjecture 1 and the main result in
[1] which posit and demonstrate, respectively, a stronger relationship between r(Kt1 ,Kt2 , . . . ,Ktk)
and sat(n,Rmin(Kt1 , . . . ,Ktk)).

The proof of Theorem 2 uses iterated recoloring, a new technique that utilizes the structure of
Hi-saturated graphs to gain insight into the properties of Rmin(H1, . . . ,Hk)-saturated graphs. We
describe this approach next.

1.1 Iterated Recoloring

Given graphs G,H1, . . . ,Hk−1 and Hk, a k-edge coloring φ of G is an (H1, . . . ,Hk)-coloring if Gφ
contains no monochromatic copy of Hi in color i, but for any e in G and any i ∈ [k], the addition
of e to G in color i creates a monochromatic copy of Hi in color i. Central to our approach here is
the following observation.

Observation 1. If G is an Rmin(H1, . . . ,Hk)-saturated graph, then every k-edge-coloring of G
that contains no monochromatic copy of Hi in color i for any i is an (H1, . . . ,Hk)-coloring. In
particular, G has at least one (H1, . . . ,Hk)-coloring.

An (H1, . . . ,Hk)-coloring of a graph G is i-heavy if for any edge e in G with color not equal to
i, recoloring e with color i creates a monochromatic copy of Hi in color i. The next proposition
connects the structure of Hi-saturated graphs with the monochromatic subgraph G[i] in an i-heavy
(H1, . . . ,Hk)-coloring of G.

Lemma 3. If G is an Rmin(H1, . . . ,Hk)-saturated graph and φ is an i-heavy (H1, . . . ,Hk)-coloring
of G for some i ∈ [k], then Gφ[i] is Hi-saturated.
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Proof. Throughout the proof, it suffices to treatG[i] as an uncolored graph. As φ is an (H1, . . . ,Hk)-
coloring of G, it follows that G[i] contains no subgraph isomorphic to Hi. It remains to prove that
for any edge e ∈ E(G[i]), G[i] + e has a subgraph isomorphic to Hi.

If e ∈ E(G)− E(G[i]), then φ(e) 6= i. Because φ is i-heavy, changing e to color i in Gφ creates
a copy of Hi in color i. Therefore, adding e to G[i] creates a subgraph isomorphic to Hi. On the
other hand, if e ∈ E

(
G
)
, then the fact that φ is an (H1, . . . ,Hk)-coloring of G implies that adding

e to Gφ in color i creates a copy of Hi in color i. Consequently, Hi ⊆ G[i] + e.

The general technique is as follows. Starting with an (H1, . . . ,Hk)-coloring φ of anRmin(H1, . . . ,Hk)-
saturated graph G, we iteratively recolor edges in Gφ to obtain a 1-heavy (H1, . . . ,Hk)-coloring φ1,
and then recolor edges in Gφ1 to obtain a 2-heavy coloring φ2, and so on until we have successively
created i-heavy (H1, . . . ,Hk)-colorings φi for every i ∈ [k].

By Lemma 3, the monochromatic subgraph G[i] corresponding to each φi is Hi-saturated. The
goal is to then use any knowledge we may have about (uncolored) Hi-saturated graphs to force
additional extra structure within G.

For instance, here we will use the following characterization of large enough mK2-saturated
graphs due to Mader [6]. A dominating vertex in a graph G of order n is a vertex of degree n− 1.

Theorem 4. If G is an mK2-saturated graph of order n ≥ 2m− 1, then:

1. G is disconnected and every component is an odd clique, or

2. G has a dominating vertex v and G− v is (m− 1)K2-saturated.

2 Proof of Theorem 2

If k = 1, the result follows from the traditional saturation number for matchings, given in [5], so we
may assume k ≥ 2. Further, as sat(Rmin(K2, H1, . . . ,Hk) = sat(Rmin(H1, . . . ,Hk), we may also
assume that each mi ≥ 2. We begin by proving the upper bound in Theorem 2.

Proposition 5. sat(n,Rmin(m1K2, . . . ,mkK2)) ≤ 3(m1 + . . .+mk−k) whenever n > 3(m1 + . . .+
mk − k).

Proof. Let G be the vertex-disjoint union of (m1+. . .+mk−k) triangles and n−3(m1+. . .+mk−k)
independent vertices. We can create an (m1K2, . . . ,mkK2)-coloring φ of G by coloring the edges
of mi − 1 triangles with color i, for each i. A monochromatic matching can use at most one edge
from each triangle, so for any i, the size of the largest matching in color i is mi − 1.

Note that in any coloring of G containing no monochromatic miK2 in color i for any i, each
triangle is monochromatic and each color i is used in exactly mi−1 triangles. Further, there are at
most mi − 1 triangles containing an edge of color i, lest there exist an i-colored miK2. Therefore,
by the pigeonhole principle, the only way, up to isomorphism, to color G without creating one of
the forbidden subgraphs is φ.

Consequently, for any e = uv in G, Gφ contains a copy of (mi − 1)K2 in color i that is disjoint
from u and v. Given a k-edge coloring of G+e in which G does not contain a copy of miK2 in color
i, it then follows that e lies in a monochromatic copy of mφ(e)K2. Thus, G is Rmin(H1, . . . ,Hk)-
saturated.

4



We note that if each mi = 2, then there are minimum saturated graphs aside from kK3.
Indeed, let n ≥ 8 and let G be the disjoint union of K7 and n − 7 isolated vertices. Note K7

is the edge-disjoint union of seven triangles, so that any (m1K2, . . . ,m7K2)-coloring necessarily
assigns a distinct color to each triangle. Then for any e ∈ E(G), G + e → (H1, . . . ,Hk), so G is
Rmin(H1, . . . ,Hk)-saturated.

To prove the upper bound in Theorem 2, we will utilize the iterated recoloring technique de-
scribed in Section 1.1. Assume that G is an Rmin(m1K2, . . . ,mkK2)-saturated graph of order
n > 3(m1+· · ·+mk−k) with at most 3(m1+· · ·+mk−k) edges. If G has a dominating vertex, then
necessarily G is a star of order 3(m1+· · ·+mk−k)+1, which is clearly not Rmin(m1K2, . . . ,mkK2)-
saturated when k ≥ 2. Hence we may assume that G contains no dominating vertex.

The following claims establish several important properties of G. The first follows immediately
from Lemma 3 and the fact that G has no dominating vertex.

Proposition 6. If φ is an i-heavy (m1K2, . . . ,mkK2)-coloring of G, then G[i] is the disjoint union
of odd cliques.

Next we show that no component of any G[i] arising from an (m1K2, . . . ,mkK2)-coloring can
have a cut edge.

Proposition 7. If φ is an (m1K2, . . . ,mkK2)-coloring of G, then each component of G[i] is 2-
edge-connected. In particular, each component C of G[i] has at least |V (C)| edges.

Proof. Suppose φ is an (m1K2, . . . ,mkK2)-coloring of G and that C is a component of G[i] with
cut-edge uv. As Gφ contains no mi-matching in color i, every (mi − 1)-matching assigned color i
in Gφ necessarily uses either u or v. Let C − uv = C1 ∪ C2 for disjoint subgraphs C1 and C2 of C
with u ∈ C1 and v ∈ C2.

Because G has no dominating vertex, there exist (not necessarily distinct) vertices x and y such
that ux, vy ∈ E(G). By the saturation of G, if we extend φ to G + ux or G + vy by assigning
φ(ux) = i or φ(vy) = i, respectively, then we create an mi-matching in color i. Let Mu be an
mi-matching in color i in G + ux that uses n1 edges from C1 − u and n2 edges from C2. Then
Mu restricted to G gives an (mi − 1)-matching that does not use u, and so uses v. Indeed, any
matching on C2 that has n2 edges must use v.

Now let Mv be an mi-matching in color i in G + vy. Mv restricted to G does not use v, so
C2 − v contributes at most n2 − 1 edges to Mv. Then C1 contributes at least n1 + 1 edges. Now,
if we take the matching formed by restricting Mv to C1 and Mu to C2, then G has a matching in
color i with at least n1 + 1 + n2 = mi edges, a contradiction.

The assertion that C has at least as many edges as vertices then follows from the fact that C
has no leaves.

Let φ be an (H1, . . . ,Hk)-coloring of a graph G. An edge e in G is inflexible if changing the
color of e to any j 6= φ(e) creates a monochromatic copy of Hj . The next proposition follows
immediately from Proposition 7.

Proposition 8. If φ is an (m1K2, . . . ,mkK2)-coloring of G, and H is a component of some G[i]
that is isomorphic to a triangle, then every edge of H is inflexible.
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Let φ be an (m1K2, . . . ,mkK2)-coloring of G, and let C be a component of Gφ[i]. If ψ is a color-
ing of G obtained from φ by iteratively recoloring edges of G in a manner such that each successive
coloring is an (m1K2, . . . ,mkK2)-coloring, then we say that ψ is obtained from φ by flexing, or that
we flex φ to ψ. In particular, it is always possible to flex to an i-heavy (m1K2, . . . ,mkK2)-coloring
of G from any other (m1K2, . . . ,mkK2)-coloring of G.

Proposition 9. Let φ be an (m1K2, . . . ,mkK2)-coloring of G, and let C be a component of Gφ[i].
If ψ is obtained from from φ by flexing, then V (C) induces a component of Gψ[i].

Proof. Suppose that there is some edge e such that recoloring e causes the order of C to increase
or decrease in G[i]. If recoloring e to color i causes the order of C to increase, then e is necessarily
a cut-edge in G[i]. On the other hand, if recoloring e causes the order of C to decrease, then prior
to recoloring, e was a cut-edge in G[i]. In either case, we have contradicted Proposition 7, and the
proposition follows by induction.

Let φ be an (m1K2, . . . ,mkK2)-coloring of G and flex φ to a 1-heavy (m1K2, . . . ,mkK2)-coloring
φ1. For 2 ≤ i ≤ k, flex φi−1 to an i-heavy (m1K2, . . . ,mkK2)-coloring φi. Consider then the
nontrivial components of Gφi [i], all of which are odd cliques by Proposition 6. In particular, suppose
that these components have order 2xj + 1 for 1 ≤ j ≤ `. Then, as φi is an (m1K2, . . . ,mkK2)-
coloring, we have that x1 + · · ·+ x` = mi − 1. Further, since the components of Gi do not change
order via flexing, a component C of order 2x+ 1 in Gφj [i] must have a maximum matching of size
x.

Propositions 6 and 9 imply that a set X of vertices in G induces a component of Gφi [i] if and
only if X induces a component of Gφj [i] for all i, j ∈ [k]. This, in turn, implies that if φ′ and φ′′

are i-heavy colorings obtained via flexing from φ, then Gφ′ [i] = Gφ′′ [i]. This yields the following
proposition.

Proposition 10. Let C be a component of Gφi [i]. Then there are at least |V (C)| edges e in C
such that φj(e) = i for all 1 ≤ j ≤ k.

Proof. Let S ⊂ E(C) be those edges e in C such that {φj(e) : 1 ≤ j ≤ k} = {i} and suppose that
|S| < |V (C)|. Every edge of C that is not in S lies in some component C ′ of Gφj [j] for some j 6= i.
Iteratively recoloring each e /∈ S with any such j does not create a matching of size m` in color `
for any `, as all edges colored ` lie within some component of Gφ` [`]. However, this means that at
most |S| < |V (C)| edges of C remain colored with color i, contradicting Proposition 9.

Our final proposition shows that no edge in G receives more than two colors under φ1, . . . , φk.

Proposition 11. If Q is a component of Gφi [i] on 2m+ 1 vertices, with m ≥ 1, then any edge of
Q is assigned at most 2 colors under φ1, . . . , φk. Furthermore, if Q is a triangle, then every edge
of Q is inflexible in every Gφi.

Proof. Note first that if m = 1, so that Q is a triangle, then this is the result of Proposition 8.
Hence we will assume that m ≥ 2.

Suppose Q is a component of Gφ1 [1], and an edge uv ∈ E(Q) appears in components Q2 and
Q3 of Gφ2 [2] and Gφ3 [3], respectively. Recall that by Proposition 6, Q2 and Q3 are necessarily odd
cliques.

Let V (Q)− {u, v} = {x1, x2, . . . , x2m−1}. First, we define a coloring ψ′ of Q.
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ψ′(e) :=


2 if e = x2xj
3 if e = x3xj with j 6= 2
1 otherwise

Now:

ψ(e) :=


φ(e) if e /∈ Q ∪Q2 ∪Q3

1 if e is in Q ∪Q2 ∪Q3 and incident to u or v.
ψ′(e) if e is not incident to u, v and e is in Q
2 e is not incident to u or v, and e ∈ Q2 \Q3

3 e is not incident to u or v, and e ∈ Q3

In this coloring, the (2m− 3) vertices {x1, x4, . . . , x2m−1} form a clique of color 1, contributing
at most m−2 edges to any matching in color 1. Further, edges incident to u or v also contribute at
most two matching edges, so any matching in color 1 has at most m edges with an endpoint in Q.
As Proposition 9 implies that the other ` nontrivial components of Gψ[1] − V (Q) are odd cliques
with total order 2m1 − 2m+ `− 2, the maximum size of a matching with color 1 in Gψ is m1 − 1.

Let Q2 have 2n2 +1 vertices, and let Q3 have 2n3 +1 vertices. Note that in Gφ1 , Q2 contributes
n2 edges to any maximum monochromatic matching of color 2 and Q3 contributes n3 edges to any
maximum monochromatic matching of color 3. As we have recolored all edges in Q∪Q2 ∪Q3 that
are incident to u or v with color 1, for color i ∈ {2, 3}, Qi−u−v contains a matching of size ni−1.
One more edge of color i incident with xi completes a matching of size at most ni in Q ∪Q2 ∪Q3.
Outside Q ∪Q1 ∪Q2, ψ = φ, so ψ is a (H1, . . . ,Hk)-coloring.

If x is a vertex in G that is not adjacent to u, then adding the edge ux to G in color 1 does
not increase the size of a maximum 1-colored matching. Thus G is not Rmin(m1K2, . . . ,mkK2)-
saturated, a contradiction.

We are now ready to prove Theorem 2.

Proof. Let G and φ1, . . . , φk be as given above, and further assume that

|E(G)| = sat(n,Rmin(m1K2, . . . ,mkK2)) ≤ 3(m1 + · · ·+mk − k).

For each i, we let Qi,1, . . . , Qi,pi be the (clique) components of Gφi [i], and suppose that each Qi,j
has 2ti,j + 1 vertices. Recall that

∑pi
j=1 ti,j = mi − 1.

For any e ∈ E(G), we define w(e) = |{φi(e) : 1 ≤ i ≤ k}|. That is, w(e) is the number of
colors assigned to e by the heavy colorings φ1, . . . , φk. Note

|E(G)| =
k∑
i=1

∑
e∈Gi[i]

1

w(e)
.

By Proposition 11, w(e) ≤ 2 for every edge of G. Further, by Proposition 10, w(e) = 1 for at least
|V (Q)| edges of Q. Therefore,

7



|E(G)| =
k∑
i=1

∑
e∈G[i]

1

w(e)

≥
k∑
i=1

pi∑
j=1

(
(2ti,j + 1) +

1

2

[(
2ti,j + 1

2

)
− (2ti,j + 1)

])
(1)

≥
k∑
i=1

pi∑
j=1

3ti,j =

k∑
i=1

3(mi − 1) = 3(m1 + . . .+mk − k).

We therefore conclude that

sat(n,Rmin(m1K2, . . . ,mkK2)) = 3(m1K2 + . . .+mkK2).

Additionally, equality holds in all equations above, leading us to conclude that every component of
every Gφi [i] is a triangle. By Proposition 8, also every component of every Gφi [j] is a triangle.

It remains only to show that if mi ≥ 3 for at least one i, then G consists of triangles that
are vertex disjoint. Suppose not. Then there exists at least one ”bow-tie” B: a subgraph of G
consisting of two triangles that share one vertex. We can create an (H1, . . . ,Hk)-coloring φ of G by
assigning color i to mi− 1 of the edge-disjoint triangles in a triangle decomposition of G. Let φ be
a such a coloring, in which both triangles of B are assigned color i. If we flex φ to be i-heavy, then
Proposition 6 implies that the vertices of B must lie in a clique on at least five vertices. However,
as equality holds throughout (1) and φ was selected arbitrarily, each component of G[i] under any
valid coloring is a triangle, a contradiction.
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