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to Model Breakable Railway
Ballast
A discrete element approach to assess degradation processes in ballast beds is presented.
Firstly, a discrete element model describing strength and failure of strong rock is intro-
duced. For this purpose a granular solid is created by bonding of adjacent particles. A
method to define angular ballast stones made from the granular solid is proposed. The
strength of these stones is evaluated by compression between parallel platens. Comparing
these results to published experimental data yields very good qualitative and reasonable
quantitative agreement. Finally, the failure of aggregates of breakable stones is investi-
gated by simulation of oedometric compression tests and indentation of a sleeper into a
ballast bed. [DOI: 10.1115/1.4006731]

1 Introduction

Ballast degradation and track settlement have become increas-
ingly important problems due to higher train speeds and axle
loads. Methods that increase lateral stresses in tracks have been
proposed to reduce settlement and ballast degradation. Such meth-
ods are, e.g., the insertion of geogrids [1] or the use of winged
sleepers or lateral restraints between the sleepers [2]. However, it
is expensive and time consuming to conduct experiments that are
necessary to develop an in-depth understanding of the phenomena
occurring inside of the ballast and that help in designing improved
reinforcement devices. By numerical simulation the behavior of
the ballast can be assessed up to some level of detail, if an
adequate model is provided. While finite element or multibody
models allow for simulation of the track with respect to vehicle
dynamics (see, e.g., Refs. [3–6]), models that account for the dis-
crete nature of the ballast are required to compute phenomena
occurring inside of the track bed.

The discrete element method (DEM) [7] has previously been
applied to investigate the behavior of railway ballast [8–10]. Pub-
lished simulation approaches are often based on geometrically
simple shapes, i.e., disks or spheres, of the breakable bodies [8,9].
Different approaches to create complex shaped stones have been
proposed [11,12], but they are not able to consider breaking or
degradation processes. In this contribution, a discrete element
model is presented, which models ballast as a set of angular stones
that themselves are made of breakable rock material. Thus, the
presented model unites both aforementioned aspects by considera-
tion of breakable bodies of complex shape. Ballast fouling by
breakage and abrasion of the stones is inherently present in the
model.

The paper is organized as follows. Firstly, a discrete element
model is described, which captures strength and failure properties
of strong rock by creation of a granular solid consisting of bonded
spherical particles. Then, an approach to generate angular ballast
stones made from this granular solid is proposed. The strength of
these stones is investigated by compression between parallel plat-
ens and compared to experimental results from literature. Finally,
aggregates of breakable stones are constructed and the degrada-
tion processes in typical load cases are simulated.

2 Discrete Element Modeling of Strong Rock

The DEM can be easily extended to the simulation of granular
solids by introducing lasting particle bonds that generate forces
even in case of negative overlap, i.e., a gap, between two bonded
particles. A variety of particle bonding concepts was developed in
the last 10 to 15 years and applied to different problems mainly in
geomechanics and physics; see, e.g., Refs. [13–19]. Modeling of
rock material by using breakably bonded spherical particles is
usually considered the most viable approach [8,13,15,18–23] and
also pursued in this research.

A granular solid is generally created by bonding adjacent par-
ticles from a dense packing. Fracture and failure phenomena can
be easily incorporated in these models by removal or weakening
of bonds based on suitable failure criteria. The advantage of this
approach is that multiple fractures at arbitrary locations of the
solid may happen. It is not necessary to initiate cracks as it is often
the case in extended finite element methods [24]. The crack path
is only limited by the discretization, i.e., fracture occurs on the
level of bonds between unbreakable particles. For sufficiently
small particles this states no serious limitation. Bond breakage
based on the loading condition and system dynamics causes
cracks to propagate, bifurcate, or coalesce. The simulations are
performed on a meso-scale in order to capture the global behavior
of the breakable ballast, while the micromechanical details of
crack propagation are not of interest.

2.1 Dense Sphere Packings. The generation of a suitable ini-
tial configuration is the first step of every DEM simulation. In
case of simulations dealing with bonded particles this initial con-
figuration is a dense packing of particles that is then bonded. A
variety of approaches exists for the generation of such a packing;
see, e.g., Ref. [25] and references therein. A homogeneous and
isotropic sphere packing can be obtained by compression of the
volume containing the particles or by expansion of the particles
inside of a fixed domain.

It is proposed in Ref. [26] to employ a radius expansion scheme
that introduces a dependency of a particle’s individual normalized
growth rate _rðtÞ=rðtÞ on its coordination number cn. The scheme
reads

_rðtÞ=rðtÞ ¼ max _R 1� cnðtÞ=ĉn½ �; 0
� �

(1)

where _R is the maximal growth rate and ĉn denotes a “desired”
coordination number that serves as a further control parameter for
the inflation procedure. It was shown in Ref. [27] that this scheme
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leads to an increase of the average coordination number compared
to standard procedures while particle overlap, i.e., stored deforma-
tion energy, is kept small.

2.2 Bonding Concept. Particle bonds usually correspond to
force laws that act in restricting at least one degree of freedom of
the relative motion of the bonded particles. In this study, the
bonds are limited to the normal direction and are represented by
springs that act between the centers of the bonded particles, i.e., a
central force model is considered. Shear, bending, and twisting
are not inhibited [16,28]. For a detailed description of this model
see Ref. [27]. All simulations described in this paper are per-
formed using the software package Pasimodo [29,30].

Bonds are created between particles that overlap in the very
first time step at time t ¼ 0. The contact force results from the
bond as long as it is intact. For particles that are not or no longer
bonded a repulsive interaction is applied. In both cases the contact
or bond force is calculated as a linear function of overlap and rela-
tive normal velocity. Bond breakage is allowed in tension and
compression with different strengths.

In contrast to real rock, bonded particle models do not feature
singular stress concentrations near crack tips and instable crack
propagation [15]. Therefore, a progressive failure model is intro-
duced [27,31]. This failure model locally accumulates damage in
such a way that the strength Rm of a bond between two particles i
and j is calculated according to

RmðtÞ ¼ R̂m
nc; iðtÞnc; jðtÞ

nc; i;ð0Þnc; jð0Þ

� �a

(2)

where R̂m is the bond strength in undamaged material and nc; i,
i ¼ i; j is the number of a particle’s bonds. The exponent a is cho-
sen as the limited, weighted sum of the involved particles’ number
of broken bonds

a ¼ min a½nb; iðtÞ þ nb; jðtÞ�; b
� �

(3)

where a is a weighting factor, b denotes a maximal exponent, and
the number of broken bonds is nb;iðtÞ ¼ nc;ið0Þ � nc;iðtÞ. Thus,
breakage of the bonds of a particle will successively reduce the
strength of the remaining bonds of this particle.

This concept inverts the idea of singular stress peaks, as it
reduces the material strength near a point where a stress singular-
ity should appear but cannot in simulation due to the particulate
nature of the material. Nevertheless, the result is comparable, as
in both cases the probability of further damage occurring near this
point is increased.

In addition to the progressive failure model, unbreakable par-
ticle clusters are introduced in order to generate local heteroge-
neity, i.e., deformation incompatibilities, while keeping on the
large scale homogeneity and isotropy [27]. Intracluster stiffness
is chosen five times higher than between particles that do not
belong to the same cluster or that are not part of any cluster.
The higher intracluster stiffness assures that the deformation
concentrates at the interfaces between clusters or in the nonclus-
tered areas. Thus, the probability of failure is increased in these
regions. An even higher intracluster stiffness is not necessary
for this purpose and is avoided in order not to increase the par-
ticle eigenfrequencies requiring smaller time step sizes for nu-
merical time integration.

2.3 Model Behavior. The strength of the granular solid cre-
ated from bonding a dense ensemble of spheres is investigated in
uniaxial and triaxial compression; see Refs. [27,32] for more
details on the simulation setup and an in-depth analysis of the fail-
ure process. The model is calibrated and compared to granite as
an example of a strong rock, which is widely used as ballast in
railway track beds.

Stress-strain curves of an unconfined and a series of confined
compression test simulations are depicted in Fig. 1. The curves do
not start at zero stress for zero strain, i.e., rðe ¼ 0Þ 6¼ 0, as the
specimen is generated in a nonequilibrium state with unbalanced
internal stresses. Upon presence of internal stresses the failure
behavior of the model is slightly more realistic as compared to a
model that is created in an equilibrium state.

The unconfined compressive strength of C0 � 200 MPa and
Young’s modulus of E � 65 GPa are in agreement with typical
values reported for granite [33]. A nearly complete brittle fracture
is observed after a short interrupt of the failure process just after
initiation of macroscopic failure. This indicates that the model
exhibits so-called class II behavior as usually observed for granite
[33,34]. The recovery of stress up to r � 50 MPa after macro-
scopic fracture in uniaxial compression is due to the facts that a
small portion of the cross section remains intact and that the crack
surfaces of the two fragments are pressed against each other for
continued loading. The latter is even more important for confined
compression where it is related to the strength of the broken rock
mass [32,35].

The increase of strength with confining pressure can be expressed
in terms of Mohr-Coulomb friction angles [36]. In Table 1 the fric-
tion angles for low to medium confining pressures are compared to
experimental values [33] and results from published 3D DEM simu-
lations [19]. While for r3 ¼ 1 MPa the friction angle is rather close
to the experimental one, it is significantly lower for r3 ¼ 10 MPa. A
similar value was found in other DEM simulations using bonded
spheres [19]. Thus, it might be suspected that a friction angle
U � 30 deg is an inherent property of bonded spheres DEM as long
as the stress state is not explicitly considered for bond strength as in
Refs. [37,38]. Despite these deficiencies, the model is considered to
be useful for investigation of ballast strength as the loading condi-
tions that cause failure of individual stones are not too far from uni-
axial compression; see also Sec. 4.

3 Generation of Breakable Angular Ballast Stones

It is well known that the strength of an aggregate, e.g., of ballast
stones, depends strongly on the shape and especially angularity of

Fig. 1 Stress-strain curves for different confining pressures r3

Table 1 Comparison of friction angles U

Confinement r3 Granite [33] Here PFC3D [19]

1 MPa 61 deg 49 deg –
10 MPa 58 deg 31 deg 32 deg
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these ballast stones [39–43]. Furthermore, breakage of ballast
stones plays an important role in degradation of ballasted beds.
Thus, for numerical simulation a model is required that captures
the shape as well as the strength of single ballast stones. A method
is proposed here to generate angular ballast stones made from the
breakable granular solid that is described in Sec. 2.

Single ballast stones are extracted from a large sphere packing
by removal of the unnecessary particles. A method to find a math-
ematical description of the ballast stones is proposed, which is
based on tangent planes on ellipsoids. A two-dimensional sketch
of this procedure is depicted in Fig. 2. The starting point for
generation of the tangent planes is the intersection points of the
ellipsoid with its axes (1). In order to account for the irregular
shape of real stones these intersection points are moved randomly
on the surface of the ellipsoid and in normal direction (2). Finally,
tangent planes are constructed in the shifted points (3) and the
stone is defined as the volume that is enclosed by all of these
planes (4). It is found that the double application of the procedure
with six planes on the same ellipsoid results in realistic shape and
angularity (5). However, the use of even more tangent planes at
one time would result in more rounded stones as the base points
are then more uniformly distributed.

This approach is motivated from the finding that ballast stones
usually feature quite planar faces; see Fig. 3. Comparison of the
sketch and the photo indicates that the described procedure is
likely to generate realistically shaped ballast stones. Here, it is
assumed that cutting through an irregular arrangement of spheres
will produce a surface whose roughness is comparable to real
ballast stones. It was noted in Ref. [42] that, with regard to aggre-

gate strength, shape is much more important than roughness and
friction. Yet, for further studies, it might be desirable to account
explicitly for surface roughness and corrugation as in Ref. [12],
where unbreakable clumps of overlapping spheres were con-
structed based on image analysis of real stones. Likewise, the
shape of the stones could be refined using, e.g., image processing
techniques. Two typical realizations of stones generated with the
described approach are depicted in Fig. 4. It is apparent that planar
faces and sharp edges are formed. The sharpness of the edges is
blurred to a small extend by model resolution, i.e., particle size.
The projection of the DEM-stones is clearly polygonal and com-
pares well to the general shape of real stones.

The described procedure allows for simultaneous investigation
of aspects that are mostly considered separately in current
research papers. Breakable bonded particle DEM is convention-
ally applied to problems involving one breakable body of material
such as excavations in rock; see, e.g., Ref. [19]. Applications to
media composed of several breakable agglomerates are typically
limited to geometrically simple shapes like disks or spheres [8,9].
Different approaches to create complex shaped agglomerates have
been proposed [11,12], but they are limited to unbreakable materi-
als as the particle arrangement is chosen according to the

Fig. 2 Two-dimensional sketch of the ballast stone shaping
approach

Fig. 3 A typical ballast stone

Fig. 4 Two realizations of ballast stones. Distance from the ori-
gin (located approximately at the center of the stones) color
coded in order to clarify the shape.
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agglomerate geometry and not with respect to material behavior.
The approach presented here unites elements of all mentioned
areas on a mesoscopic level of detail. Yet, it allows studying the
influence of particle breakage in ballast settlement and degrada-
tion with increased profundity.

4 Statistical Evaluation of Single Stone Strength

The strength of single ballast stones whose shape is obtained
from the described approach and that consist of granular solid that
resembles granite is investigated by compression between parallel
platens [26]. This serves to verify that the model is able to predict
the crushing strength of ballast stones. An extensive experimental
study of the strength of single ballast stones is presented in
Ref. [44]. There, the strengths of six types of ballast for various
size fractions were investigated and quantified using Weibull sta-
tistics. For a given ballast and a given size fraction, the strengths
are reported to follow the Weibull distribution [45] reasonably
well. A characteristic strength is defined as the ratio of applied
force F and the diameter d of the particle [44], i.e., platen distance
at failure, as

rchar ¼ F=d2: (4)

For spherical bodies loaded with small contact areas this is a mea-
sure of the tensile stress acting in the central portion of the particle
and it is obtained from elasticity theory [46]. An average strength
r0 is defined as the value of the characteristic stress such that
1=e ¼ 1=2:718::: � 37 % of the particles survive [44].

In simulations, the contact areas of stone and platens can be
extracted, which is not possible in experiments. Therefore, the
smallest convex polygon enclosing a point-discretization of
the perimeters of all contact particles is calculated yielding an
estimate of the contact area. Figure 5 shows a typical plot of lower
and upper contact areas. Due to the procedure similar to experi-
ments of placing the stone between the platens, the lower contact
area is usually larger than the upper one. The polygonal area is
found to be approximately twice the cross-sectional area of all
particles in contact with the loading platens. The polygonal area is
considered to be the relevant quantity since the stress is distrib-
uted to adjacent particles and spacing between contact particles is
usually less than two particle diameters. This means that it is
assumed that a more homogeneous loading state over an area cor-
responding to the polygon is obtained slightly below the surface
of the stone and that the loading conditions in this region are rele-
vant for bulk fracture.

Four sets of 20 stones comprising different numbers of particles
were tested and subjected to a statistical analysis as described in
Ref. [44]. The strength rchar is calculated according to Eq. (4) and
the contact pressures pmin ¼ F=Amax and pavg ¼ 2F=ðAmin þ AmaxÞ
are determined using the larger and the average contact area,
respectively. Thereby, Amax and Amin denote the larger and smaller
contact area between stone and platens, respectively. The average
contact area is the mean value of the large and small contact area
of one stone. The corresponding values are sorted in ascending
order in a list, and for each failure stress a survival probability is
calculated according to

Ps ¼ 1� k=ðM þ 1Þ (5)

where k is the rank of the stone in the list and M the total number
of samples. If Weibull statistics apply, a plot of lnðlnð1=PsÞÞ
against the logarithm of stress yields a straight line whose slope
determines the Weibull modulus m, i.e. variability of strength.

The data points of a series of tests on 20 stones with about
N ¼ 700 particles and the lines of best fit are plotted in Fig. 6.
The results indicate that the behavior of the DEM stones is not
exactly Weibullian but reasonably close. Especially at lower
strengths the data deviates a bit from the Weibull best fit. The
shape of the plots of all measures of strength is comparable. Gen-
erally, a slight curvature to the right of especially rchar and pavg,
but also pmin, is observed. This is in excellent agreement with the
experimental results presented in Ref. [44]. The deviation for
lower stresses is interpreted as a minimum strength, below which
the probability of failure is zero.

The average strengths r0, pmin; 0 and pavg; 0; the corresponding
Weibull moduli m; and coefficients of correlation R2 for tests on
stones comprising different numbers N of particles are given in
Table 2. The poor correlation of pmin for N ¼ 700 is caused by
one extremely strong stone in this particular measurement. Disre-
garding this stone, R2

p;min ¼ 0:94 is obtained.
The characteristic strength r0 clearly decreases with increasing

particle numbers N. For N ¼ 700 and N ¼ 1000 values of about

Fig. 5 Upper (dashed-dotted) and lower (dash) contact areas
in a single stone compression test

Fig. 6 Weibull plots of different measures of strength for
N ¼ 700

Table 2 Statistics of strength. Units of r0 and pmin=avg;0 are
MPa.

N r0 mr R2
r pmin; 0 mp;min R2

p;min pavg; 0 mp; avg R2
p; avg

300 81.45 2.43 0.97 156.83 2.32 0.93 279.14 2.85 0.97
500 70.38 2.20 0.92 181.30 2.59 0.90 251.24 3.41 0.98
700 53.36 2.66 0.93 132.71 2.93 0.81 270.16 2.82 0.90
1000 49.65 2.30 0.97 134.80 2.27 0.95 289.56 2.93 0.91
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r0 � 50 MPa are obtained, while the characteristic strength r0 is
significantly higher for smaller particle numbers N. From uniaxial
compression tests with varying cross section it is concluded that at
least 700 particles per loaded volume element are required to
assure discretization independent strength in the present model
[27]. These numbers are confirmed by the single stone tests with
respect to r0. As some of the particles do not contribute to the
strength in diametral loading, the total number of particles per
stone has to be somewhat higher. The minimum contact pressure
pmin; 0 shows no clear trend, but a possible effect is weaker than
for the characteristic strength r0, and it seems that convergence is
reached at lower particle numbers. No dependence on particle
numbers is detected for pavg; 0, but the values fluctuate to some
extent. Thus, the simulations indicate that the values of pmin; 0 and
pavg; 0 are less sensitive to particle numbers than r0.

The magnitude of r0 is higher here than reported in experi-
ments on granite but comparable to small sized granodiorite
ballast [44]. The simulations yield r0 ¼ 50 MPa. In Ref. [44] ex-
perimental results are reported for granite and granodiorite, which
is similar to granite in mineralogical composition and usually
assumed to be slightly weaker than granite in terms of compres-
sive strength. Thereby, r0 ¼ 12� 33 MPa and r0 ¼ 24� 55 MPa
is obtained for large and small ballast stones, respectively. This
means that the simulations show a tendency to overestimate the
strength as compared to full size ballast. This might be due to two
reasons. Firstly, the material model used here is calibrated to a
compressive strength of C0 ¼ 200 MPa. But in DEM tensile
strength is usually overestimated [15], which is important if the
single particle crushing test evaluates tensile strength. In this
model Brazilian tensile strength is approximately 20 MPa,
whereas for granite tensile strength is about 10 MPa. Furthermore,
in Ref. [44] no values of compressive strength are reported, so
that it is not clear if the rocks tested there are as strong as assumed
here. If tensile failure would be identified as the true mode of frac-
ture, calibration could be made with respect to tensile strength.

The average contact area is about 600 mm2 for stones compris-
ing at least 500 particles, which would correspond to a contact
radius of approximately 14 mm for a circular contact area. As the
diameter of the stones is about 50 mm, the contact area is at the
limit of being considered small according to Refs. [44,46]. Thus,
fracture caused by tensile stresses might not be the determining
mode of failure in these simulations.

The values of minimal and average contact pressure are found
to be somewhat lower and higher than uniaxial compressive
strength C0 ¼ 200 MPa, respectively. The finding that pavg; 0 > C0

is reasonable, since this pressure acts near the loaded surface, and
will have diminished slightly below the surface or in the center,
where failure usually initiates. Hence, it might be suspected, that
compressive strength and failure play a role in single particle
crushing. As shown in Refs. [47,48], compressive failure in brittle

rocks (and the DEM model, see Ref. [27]) is initiated by extensile
cleavage parallel to the direction of maximum compression,
which makes distinction between compressive and tensile failure
awkward. Furthermore, it is pointed out in Ref. [49] that point
load tests on spheres, which are similar to the ballast stone tests to
some extent, provide a much more reliable estimate of the com-
pressive strength than the tensile strength. This supports the
notion that the contact pressures are related to the compressive
strength and are of comparable magnitude.

The ratio of bonds failing in compression might serve as an in-
dicator of the loading state, since compressive bond failure was
identified as a means of fracture propagation, which is sensitive to
loading conditions [27]. The percentage of compressive bond fail-
ure is about 30% for the single particle crushing tests, while it is
40% in uniaxial compression and 20% in uniaxial tension, respec-
tively. Thus, it is concluded that failure of the stones does not
occur in purely tensile conditions but that compressive stresses
and strength are also important.

The average breakage strain, i.e., the relative difference of
platen distance at the beginning and at failure, of stones consisting
of at least 500 particles is approximately 4%. For the granite bal-
last investigated in Ref. [44] relative differences of 3.0%, 3.4%,
and 5.6% are found for large, medium sized, and small ballast,
respectively. Slightly higher values are reported for different gran-
odiorite ballasts. The influence of contact stiffness in simulations
and grinding of contact surface asperities in experiments on these
values is not readily accessible. But from analysis of the simula-
tion results it is estimated that, at least in simulations, the corre-
sponding uncertainty is not exceeding 0.5%. Thus, the values of
breakage strain obtained in simulations compare very well to the
mentioned experiments. This gives further evidence of the sound
calibration of the model and validates the simulative setup for sin-
gle particle tests.

5 Failure of Ballast Aggregates

Aggregates of stones consisting of granular solid are con-
structed and loaded in order to verify the applicability of the pre-
sented simulation approach to assess degradation processes in
ballast beds. Note, that in the presented model the ballast stones
may break if their strength is exceeded. The shape of the stones
changes due to the broken off fragments, which stay inside the
simulation, i.e., fouling due to breakage and abrasion is captured
by the simulation model.

5.1 Oedometric Compression of a Small Aggregate. As a
first example, the oedometric compression of a small aggregate of
stones is considered. In oedometric compression the aggregate is
vertically loaded while lateral deformation is prohibited by rigid
walls; see Fig. 7 left.

Fig. 7 Snapshot of an aggregate of 90 stones at the onset of catastrophic failure in oedo-
metric compression. In the right picture only those particles are shown that have been
involved in two or more bond breakage events.
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The aggregate is constructed by gravitational sedimentation and
subsequent compaction at a constant vertical stress of 0:25 MPa.
During the sedimentation process damping of the absolute motion
of the particles is applied in order to speed up equilibration by
increased dissipation at low frequencies [50,51]. The aggregate
comprises 90 stones, each consisting of approximately 175 par-
ticles so that the total number of particles is about 15,800. The
particle numbers are chosen to achieve reasonable computation
times for first fundamental investigations of the model. Material
parameters on bond level are adjusted to account for the particle
number dependence of stiffness and strength that exists for break-
able agglomerates with low particle numbers; see also Sec. 4 and
Ref. [27].

The stiffness between spheres and walls is chosen as twice
the stiffness between bonded spheres that do not belong to the
same cluster in order to keep the overlap between spheres and
walls small. Friction between particles and walls is not consid-
ered, as in experiments it is usually attempted to reduce wall
friction due to its effect of making the strength measurement
less reliable [52]. Also, friction between the stones is present
only due to the roughness of their surfaces; an explicit friction
coefficient is not introduced. For further research it is desirable
to calibrate interstone friction based on experimental results.
However, it is pointed out in Ref. [42] that the strength of an ag-
gregate depends to a much larger extent on the shape of its con-
stituents than on their roughness and friction. As for the present
study the focus is on demonstrating the potential of the modeling
approach, and the inherent roughness can be considered as suffi-
cient to represent friction.

The aggregate is loaded with a continuously increasing vertical
stress of up to 10 MPa. Vertical strain and the number of breaking
particle bonds are recorded and plotted in Fig. 8. A further com-
paction of the aggregate is observed until the stress reaches
0.5 MPa. Then, up to a stress of 5 MPa strain increases linearly
with stress and only an insignificant number of particle bonds is
broken. Deformation of the specimen seems to be mostly resilient
in this range. More frequent bond breakage events lead to a higher
deformation rate between 5 and 6.5 MPa. At about 7 MPa the ag-
gregate starts to collapse in a catastrophic manner until at 9 MPa
the stones are almost completely crushed and no further breakage
occurs. The final deformation is based on compaction of the bro-
ken fragments.

Figure 7 shows two pictures of the aggregate at a state when the
specimen has just begun to collapse (r ¼ 7:5 MPa, e ¼ 5:1%). On
the left-hand side of Fig. 7 all particles are depicted, while on the
right-hand side only those particles are shown, which have lost at
least two bonds. It is found that most of the stones have not suf-
fered any breakage, while some stones show minor damage and a
few stones have been completely destroyed.

A complete breakdown of the aggregate is not observed in ex-
perimental tests. Here, it is attributed to the low resolution of the
stones, which implicates a somewhat rude representation of fail-
ure processes. Furthermore, the stress controlled loading proce-
dure boosts the collapse, whereas with strain controlled loading
no breakdown would be observed. The simulation provides a yield
stress of 7 MPa. This is somewhat higher than in experiments,
where about 3 MPa are found [8,53]. However, the order of mag-
nitude is caught approximately. Yet, the resolution of 4.5 stones
per side of the cubic oedometer cell is too small to give resolution
independent results. Thus, it cannot be expected to obtain equal
stress values from simulation and experiments at higher size ratios
and the fair agreement of simulative and experimental results is
reasonable.

This demonstrates that the presented simulation approach is
generally capable of describing the deterioration of ballast beds.
An adequate resolution on both particle-stone and stone-aggregate
level has to be assured in order to obtain quantitatively reliable
results and to gain further insight into the failure process.

5.2 Indentation of a Sleeper in a Ballast Bed. Now the in-
dentation of a sleeper in a ballast bed is investigated with a simpli-
fied model, which is based on the oedometer test. The box
containing the ballast has a size of 0:495� 0:33� 0:33 m and is
loaded by a sleeper of length 0.2 m that covers the entire width;
see Fig. 9. The top surface of the ballast beside the sleeper is
uncovered to allow for rearrangement processes as in a ballasted
railway track.

The aggregate consists of 324 stones each comprising slightly
more than 1000 particles in average, resulting in a total of
331,000 particles. Stiffness and strength of the stones are shown
in Sec. 4 and Ref. [27] to be widely independent of the particle
number at a resolution of 1000 particles per stone.

The single stones are generated as described in Secs. 2 and 3.
The collection of stones is then generated by an inflation
procedure, which expands the single stones out of a dilute, non-
overlapping cubic arrangement until the pressure on the surround-
ing walls starts to raise, i.e., when the aggregate is dense. The
coordination number based growth rate approach as described in
Sec. 2.1 is not applied here, instead all stones are expanded at the
same rate. To save computation time, every stone is treated as one
rigid body during specimen generation. The particles it consists of
are only used for contact detection and calculation of contact
forces. The equations of motion are numerically integrated for
substitute particles with inertia properties calculated from the par-
ticles forming the stone. As in the sedimentation procedure damp-
ing of the absolute motion is applied.

Fig. 8 Development of strain and breaking of bonds during
stress controlled oedometric compression

Fig. 9 Simulation of a ballast bed loaded by a sleeper
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It was noticed, that the initial dilute arrangement of the stones
has an impact on the structure of the resulting aggregate, although
the stones are free to move in either direction upon first contacts
during expansion. This means that the initial cubic arrangement
will be reflected in the final specimen by the formation of columns
of stones, which is unrealistic. Therefore, a random initial velocity
of moderate magnitude is assigned to each stone so that the or-
dered arrangement is dissolved. The choice of the velocity
magnitude is crucial as a too small velocity has no sufficient
effect, whereas a high velocity is numerically problematic and
will slow down the equilibration process. A maximal magnitude
of 0:1

ffiffiffi
3
p

m/s with uniform distribution and random direction of
velocities was chosen here.

After these preparations the intended simulations can be started.
For this simulation sphere to wall stiffness is chosen as 1/100 of
bond stiffness in order to save computation time. With this lower
stiffness overlap between particles and walls is still reasonably
small. Regarding friction, the remarks from Sec. 5.1 apply here as
well. The sleeper is slowly pressed into the ballast at a constant
rate until a vertical strain of 15% is reached. The vertical strain is
measured as the ratio of sleeper displacement to the initial height
of the aggregate. Rotation of the sleeper is prevented. The devel-
opment of the resultant stress (calculated using the area of the
sleeper) and breakage of bonds are depicted in Fig. 10. As some
preload results from the specimen generation procedure by expan-
sion and as the contact stiffness is changed when the stones are
converted to a granular solid, a small number of bonds is broken
in the very first time steps. The effects of this breakage might be
compared to the damage produced by vibration compaction in bal-
last installation.

Stress increases linearly with deformation until a maximum of
4.7 MPa is reached at 0.6% strain. Thereafter, the stress decreases
and fluctuates between about 2 and 4 MPa while the number of
broken bonds increases very slowly until the strain reaches 9%.
This means that the deformation is based on densification and
rearrangement of the stones. The stress level observed here is in
agreement with the yield stresses in experimental oedometer tests
[8,53].

Beyond 7% strain the stress shows a generally increasing trend
towards 6.5 MPa at 15% strain. Starting at a strain of about 10%
the deformation is no longer solely based on rearrangement, but
the number of broken bonds increases strongly and the damaged
stones allow for further compaction. Breakage is most prominent
in the area below the sleeper where it is first noticed and then pro-
ceeds towards the bottom of the ballast box, as it might be
expected. The bond breakage events are initially limited to the
surface of the stones. Corners and faces in contact with corners

are especially subject to damage. In an advanced stage of failure
complete diametral breakage of a few stones is also observed.
Again, this is consistent with experience. These processes are
observed by detailed visual analysis of the system. However, due
to the much higher particle numbers a simple picture like Fig. 7
(right) that visualizes the failure process gives no additional
insight.

This second application example further illustrates, that the
bonded particle approach is capable of describing all relevant
stages of ballast bed deterioration starting from rearrangement
over superficial damage to complete breakage of stones. Although
the setup is not completely identical due to the open surface
beside the sleeper, quantitative agreement of stress levels in the
ballast bed simulation and experimental oedometer tests is
observed. This gives evidence that the shape of the ballast stones
and their arrangement in the aggregate are reasonable in the sense
that the strength of the aggregate depends on these parameters as
single particle strength was previously shown to comply with
experimental results.

6 Summary and Conclusions

A discrete element model for the simulation of degradation
processes in ballast beds has been presented. The model considers
interaction and failure of individual ballast stones, which consist
of breakably bonded particles.

The granular solid resembling strong rock, as, e.g., granite, is
generated by bonding of adjacent particles of a dense packing.
Highly dense sphere packings are obtained from a radius expan-
sion procedure, which employs a particle’s coordination number
to control its growth rate. For bonding of particles a central force
approach is applied that is enhanced by a progressive failure
model in order to reproduce strength and failure modes of granite.
The idea behind this model is to reduce the strength of bonds at
particles that have been involved in previous bond breakage in
order to facilitate instable crack propagation, which is no intrinsic
feature of central force bonded granular solids. The model shows
wide agreement of strength and failure properties as compared to
granite.

An approach to generate angular ballast stones made from this
granular solid is proposed. A number of tangent planes on ellip-
soids of appropriate size and aspect ratios are used to define the
volume of the stone. The strength of individual stones is assessed
by diametral compression between parallel platens and compared
to published experimental results. Very good qualitative and
reasonable quantitative agreement is found by statistical evalua-
tion. The stress state and the loading conditions that cause
failure in this test setup are evaluated by analysis of different
measures of strength and the importance of compressive strength
is highlighted.

The applicability of this simulation approach to model ballast
beds is demonstrated. Methods for generation of aggregates of
stones are proposed and the importance of the numerical densifi-
cation procedure is pointed out. Simulations of an oedometer test
and the indentation of a sleeper in a ballast bed reveal that the
model is able to describe rearrangement processes and superficial
damage as well as complete breakage of stones. Thus, all stages
of deterioration are covered by the model.

Research on ballast degradation might serve to develop a more
profound understanding of the occurring phenomena, which helps
to design methods to prevent track deterioration. This is of partic-
ular importance with increasing train speeds as they cause dramat-
ically higher dynamic track loads that abet track failure [54]. The
presented discrete element model is appropriate for this purpose,
especially as simulations allow examination of quantities not
observable in experiments. The procedures to generate ballast
aggregates were identified as crucial and are worth further investi-
gation. Simulations might also serve to assess the efficiency of
reinforcement devices such as geogrids.

Fig. 10 Development of stress and breaking of bonds during
strain controlled loading of a ballast bed
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[21] Hentz, S., Daudeville, L., and Donzé, F., 2004, “Identification and Validation of
a Discrete Element Model for Concrete,” J. Eng. Mech., 130(6), pp. 709–719.

[22] Wang, Y., and Tonon, F., 2011, “Dynamic Validation of a Discrete Element
Code in Modeling Rock Fragmentation,” Int. J. Rock Mech. Min., 48(4), pp.
535–545.

[23] Cheng, Y. P., Nakata, Y., and Bolton, M. D., 2003, “Discrete Element Simula-
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