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Abstract: Development and application of artificial neural network
(ANN) pedotransfer functions for estimating soil hydraulic properties
(SHP) have become popular in the last two decades. However, limited
availability of SHP training data often constrains the full potential of
improved SHP estimation with ANN in many practical situations. In
many situations, SHP data are limited and could be biased by samples
from a restricted portion of the data population. Artificial neural net-
work pedotransfer functions developed under such situations are likely to
yield biased estimates. We proposed a direct approach to minimize mean
estimation errors (bias) in such situations and developed a regularized
ANN algorithm. The new algorithm revised the ANN error function and
its gradients with respect to neural network outputs. We applied the new
algorithm to synthetically generated SHP data representing different data
availability situations and found that the newly developed algorithms
were effective in reducing bias. Training with both the new and con-
ventional mean square error functions resulted in equally good results in
test phases when ANN models were trained with randomly sampled un-
biased data. However, when ANN was trained with and applied to SHP
data with respectively different means (biased sample), the proposed reg-
ularized ANNwas highly effective in minimizing the bias when compared
with ANN with the conventional mean square error function.

Key words: Artificial neural network, mean square error, regularized
training, revised error function.
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T he soil hydraulic property (SHP) pedotransfer functions
(hereafter called pedotransfer function or PTF) relate SHP

to readily available soil texture and other data and are a via-
ble, practical approach for the estimation of SHP (Rawls and
Brankensiek, 1985; van Genuchten and Leij, 1992; Koekkoek
and Bootlink, 1999; Wösten et al., 2001). Although earlier PTF
were essentially based on statistical linear regression (e.g., Rawls
and Brankensiek, 1985; Saxton et al., 1986 etc.), artificial neu-
ral network (ANN)Ybased nonlinear regressions are on a rapid
rise since the mid-1990s (e.g., Pachepsky et al., 1996; Schaap
and Bouten, 1996; Tamari et al., 1996; Schaap et al., 1998; Schaap
and Leij, 1998; Minasny et al., 1999; Schaap et al., 2001;
Minasny and McBratney, 2002; Nemes et al., 2003; BLrgesen
and Schaap, 2005; Merdun et al., 2006; Ye et al., 2007; Stumpp
et al., 2009; among others). This surge in ANN application stems

from the ability of ANN to capture potential nonlinear rela-
tionships between SHP and their predictors (soil texture and
other properties; Schaap et al., 2001), the lack of required
a priori models in ANN modeling (Pachepsky and Schaap,
2004), and better predictive power (Minasny, 2007). Despite
such advantages, the ANN PTF, like its other statistical coun-
terparts, faces a serious practical constraint in its applicability
because of limited availability of SHP data.

For accurate prediction, ANN requires a large SHP data
set for training and validation. In many practical situations, SHP
data are limited, and available SHP data could be biased samples
from a restricted portion of the data population. The ANNmodel
trained (calibrated) and validated on such data would result in
biased predictions.

Reported approaches to bias correction use an indirect, two-
stage scheme (Jana et al., 2007; Jana et al., 2008) in which ANN
is trained without considering potential future (test area) data,
and then bias correction is applied to ANN model output using
statistical techniques such as bias correction and cumulative
frequency distribution mapping (Ines and Hansen, 2006). In this
study, we present an alternative, direct approach in which the
bias correction process is embedded in the ANN algorithm itself
under the premise that more-representative hydraulic parameters
means are available or can be determined for the area in which
PTF has to be developed. However, as demonstrated later (see
An Illustrative Example), our algorithm is applicable to both
cases: with and without bias.

In many instances, hydraulic properties used in ANN de-
velopment are determined from soil samples that may not be
representative of an entire population for which the model is in-
tended; however, mean SHP may be estimated based on soil type
or from expert elicitation. Several compiled databases (UNSODA,
HYPRES, WISE, USDA; Wösten et al., 2001) are available for
soil texture and SHP in different regions of the world. A reason-
able prior mean for any study area may be obtained from these
regional databases. There are other occasions where mean hy-
draulic properties may be derived from upscaling algorithms for
large areas based on remote sensing of soil moisture. But as SHP
data are determined in a specific zone such as those used in the
ANN development, the data can be used to update the prior mean
to obtain the target mean required in the ANN development
proposed in this study. This target mean might be different from
either the sample mean estimated by the neural network or the
prior mean, but we believe is more representative of the actual
mean and could be used as the target mean in ANN algorithm
development. Although we did not explore such updating in our
study, the Bayesian updating approach (e.g., Meyer et al., 1997;
Ye et al., 2007; Woodbury, 1989) shows such a possibility.

This study is intended to make full use of available infor-
mation in developing ANN models of SHP estimates, by inte-
grating measured SHP with prior information on mean SHP. The
main contribution of the proposed method is that it can incor-
porate a reasonable target mean into ANN development in a
formal way. In this study, we focus mainly on developing the new
ANN training algorithm. To the best of our knowledge, such a
training algorithm has not been reported in soil literature before.

TECHNICAL ARTICLE

Soil Science & Volume 176, Number 11, November 2011 www.soilsci.com 1

1Division of Hydrologic Sciences, Desert Research Institute, Nevada System
of Higher Education, Las Vegas, NV 89119. Dr. Mahesh R. Gautam is
corresponding author. E-mail: mahesh.gautam@dri.edu
2Department of Scientific Computing, Florida State University, Tallahassee, FL.
Received March 25, 2011.
Accepted for publication August 4, 2011.
Financial Disclosures/Conflicts of Interest: This study was financially supported
by the U.S. Department of Energy under grant DE-FG02-06ER46265, the U.S.
Geological Survey grant 06HQGR0098, the Applied Research Initiative of
Nevada, and Maki Chair Program at Desert Research Institute.
Copyright * 2011 by Lippincott Williams & Wilkins
ISSN: 0038-075X
DOI: 10.1097/SS.0b013e3182316c93



It should be noted that the proposed neural network algorithm
needs the same input and output variables as the conventional
one, but uses a revised error function (EF) (objective function)
that includes a penalty or regularization term in addition to the
mean square error (MSE), a widely used ANN error minimiza-
tion function (see New Approach in Neural Network Model
Development). Our proposed approach imposes a penalty on
calculated statistics (e.g., mean) used in network estimation so
that deviation from known statistics is penalized. Since new
forms of EF are used, new gradients of the EF with respect to the
neural network weights are required. In this article, we present
our new approach and formulation and demonstrate the effec-
tiveness through an illustrative ANN experiment with synthetic
data. Although only the ANN development for correction of tar-
get mean is presented in this article, the development method can
be extended for correction of higher moments such as variance,
skewness, and kurtosis.

MATERIALS AND METHODS
The study was designed with a synthetic soil texture data

set and resulting SHP, discussed in detail in An Illustrative Ex-
ample. A brief description of the SHP, derivation of new training
algorithm, and ANN modeling approach are discussed in this
section.

Hydraulic Properties
We used the van Genuchten (1980) model and Mualem

(1976) model to represent SHP. The van Genuchten (1980) model
for the soil-water retention curve combined with the hydraulic
conductivity function (Mualem, 1976; Vereecken et al., 2010)
can be expressed as follows:

5ðhÞ ¼ 5r þ ð5s �5rÞ½1þ ð>hÞn��m ð1Þ

KðhÞ ¼ Ksf1� ð>hÞmn½1þ ð>hÞn ��mg2½1þ ð>hÞn � �m=2 ð2Þ
where h is the soil-water suction head [cm]; 5 is the soil-water
content (cm3 cmj3); 5r is the residual water content
(cm3 cmj3); 5s is the saturated water content (cm3 cmj3); Ks

is the saturated hydraulic conductivity (cm hj1); > is the shape
factor, approximately equal to the inverse of the air entry value
(cmj1); n is the pore size distribution index [j]; and m is the
empirical constant, which can be related to n by m = 1 j 1 / n.

New Approach in Neural Network
Model Development

Artificial neural network training involves finding optimal
weights in the network mapping inputs to outputs. For this pur-
pose, conventional neural networkYbased PTF utilize the MSE EF
(Eq. 3), which is the weighted sum of squared errors of neural
network predicted soil hydraulic parameters.

MSE EF ¼ ~
Ns

i¼1
~
No

j¼1
AijðŶij � YijÞ2 ð3Þ

where Ns is number of samples; No is number of output pa-
rameters (i.e., log10Ks, 5r, log10>, and log10n); Yij is the mea-
sured value of the j-th hydraulic parameter of the i-th sample, Ŷij
is the corresponding predicted hydraulic parameter based on the
ANN model; and Aij is a weighting coefficient assigned based
on the confidence level of Yij that is not adjusted in the neural
network training process. In this study, we developed new ANN
models that incorporate statistical properties, such as mean hy-
draulic parameter data, by modifying the MSE as follows. The
second term in Eq. 4 is expected to result in bias correction:

the correction of the estimated mean from the actual one (target
mean). Thus, for the bias correction, we use the following re-
vised EF (REF, Eq. 4).

REF ¼ ~
Ns

i¼1
~
No

j¼1
AijðŶij � YijÞ2 þ ~

No

j¼i
FjðK̂j �KjÞ

2 ð4Þ

where, Fj is a preassigned weighting coefficient for the mean; K̂j

and Kj, respectively, are the mean of SHP estimated by neural
networks and the target mean, assumed to be known a priori
from processes mentioned earlier. As we discussed earlier, REF
may be more useful than the conventional MSE in practical
applications where bias of SHP data may occur when the
hydraulic parameter data were sampled in only part of the
SHP population. Artificial neural network estimations based
on the conventional EF (MSE) will introduce biased statistics
of the predicted variables. The proposed REF (Eq. 4) pena-
lizes differences between the ANN estimated mean and the
a priori known target mean value.

With the nonconventional EF, a new neural network train-
ing algorithm is needed. Computation of derivatives of the EF
with respect to the neural network weights is a key step in im-
plementation of neural network models for derivative-based error
minimization. In MATLAB’s Neural Network Toolbox, this can
be accomplished by redefining the EF as in Eq. 4 and then de-
riving the derivative of the EF with respect to output hydraulic
parameters. The derivations of the derivatives are shown below.
The derivative of the first term in REF (Eq. 4) with respect to the
output hydraulic parameter is as follows:

¯

¯Ŷkl
~
Ns

i¼1
~
No

j¼1
AijðŶij �YijÞ2

¼ ~
Ns

i¼1
~
No

j¼1

¯

¯ Ŷkl
fAijðŶij �YijÞ2g

¼ ~
Ns

i¼1
~
No

j¼1
2AijðŶij �YijÞ

¯Ŷij

¯Ŷkl

 !

¼ ~
Ns

i¼1
~
No

j¼1
2AijðŶij �YijÞCijCjl

¼ 2AklðŶkl �YklÞ

ð5Þ

Derivative of the second term in REF (Eq. 4) with respect
to the output hydraulic parameter is as follows:

¯

¯ Ŷkl
~
No

j¼1
FjðK̂j � KjÞ

2

¼ ~
No

j¼1

¯

¯ Ŷkl
fðFjðK̂j �KjÞ

2g

¼ ~
No

j¼1
2FjðK̂�KjÞ

¯ K̂j

¯ Ŷkl

 !

¼ ~
No

j¼1
2FjðK̂j �KjÞ

¯

¯ Ŷkl

1
Ns

~
Ns

m¼1
Ŷjm

� �

¼ ~
No

j¼1
2FjðK̂ j �KjÞ

1
Ns

¯

¯Ŷkl
ð ~Ns

m¼1
Ŷ jmÞ

¼ ~
No

j¼1
2FjðK̂j �KjÞ

1
Ns

Cjk

¼ 2
Ns

FkðK̂k �KkÞ

Where Cik, Cjl are the Kronecker deltas, with properties Cik = 1
for i = k and Cjl = 1 for j = l and zero elsewhere.

The chosen EF (MSE or REF) were implemented by
specifying them as parameters of the ‘‘newff’’ function in

(6)
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a MATLAB script written to implement the feed-forward
back-propagation ANN. For the regularized ANN, a revised
MSE (‘‘REF function’’) had to be implemented rather than
MSE. The mean of the min-maxYscaled values of the output
of the test phase (assumed to be known a priori) was speci-
fied in the REF function that implemented Eqs. 5 and 6.
Values for weighting coefficients A and F were specified
within the REF function.

It should be noted that, although not implemented here, the
approach can be extended to include bias corrections of other
moments (e.g., S.D., skewness, and kurtosis) by introducing
suitable regularization terms in the EF and similarly finding
derivatives of the EF with respect to the neural network weights.
The mathematics, however, is more sophisticated, and more
numerical experiments are required. Practically, the information
on these higher-order moments required for the ANN training
would be much more difficult to obtain than for the mean. The
current form of ANN implementation with only a penalty term
resembles linear bias correction as in Jana et al. (2007), but the
advantage of this approach is that bias correction can be achieved
through an ANN training in a single-stage process.

Modeling Approach
A back-propagation type, two-layer feed-forward ANN

(Bishop, 1995) with an input layer (with NI nodes corresponding
to the number of input variables viz. S, C, 5s; see An Illustrative
Example), a hidden layer (with K nodes), and an output layer
(with No nodes corresponding to output variables) was adopted
in the study. Outputs considered in our study consisted of all
four hydraulic parameters, namely, log10Ks, 5r, log10>, and
log10n (see An Illustrative Example). A single-layer network has
been recommended and is used in practice in both surface and
sub-surface hydrology, including ANN PTF cases, because a
single layer is considered sufficient for generalization (Hornik
et al., 1989). Although a number of heuristics are available (Maier
and Dandy, 2000), the determination of an optimal number of
hidden nodes is essentially a trial-and-error process. Although a
small number of hidden nodes cannot generalize, a larger num-
ber of hidden nodes can be computationally burdensome and
may overfit, particularly if no independent validation data set is
available. For a data set of moderate size like that in our study, and
with a rough intuition gained through some quick, preliminary
experiments, we adopted six hidden nodes for the hidden layer.
As ANN PTF application deals with a prediction-type problem,
we used a hyperbolic tangent for nodes in the hidden layer and
a linear function for nodes in the output layer (Masters, 1993).
We adopted an early stopping approach (Bishop, 1995) to avoid
overfitting. The training data sets were divided into two groups:
75% of the data set was allocated for training, and 25% was
allocated for validation. Training stopped when the validation data
sets started showing an increase in error level. The ANN experi-
ments were carried out in MATLAB’s Neural Network Toolbox
(Demuth and Beale, 1992).

Training for the MSE EF is straightforward when no prior
information about mean and other statistics is available. How-
ever, training for REF that accounts for prior information is
complicated and poses some difficulty. The conjugate gradient
optimization algorithm commonly used in ANN training process
is a local optimization approach, and error descent in the train-
ing is highly dependent on the initial starting point in the error
surface. This, in turn, depends on the initial weight generated.
Considering these complications, we applied 10 random weight
generations for each ANN training and retained the best result
for the training phase. As penalty terms are included in the REF
to get better results in the test phase, training allows ANN re-
sults in the training phase to be different from the actual out-
put. Because the test phase data are presumed to be unavailable,
training is stopped based on training data (cross-validation error)
or maximum number of epochs, whichever is reached earlier.
The weighting coefficients A and F in the REF (Eq. 4) are de-
termined based on trial and error. The REF cannot capture var-
iability of the output if a high weight (F) is applied to the mean
difference only. In other words, a large weight on the bias term
would mean that variability of the output would not be preserved
even if the simulated mean might come closer to the target one.
On the other hand, if a very low weight is applied to the mean
difference, bias correction would not be effective. Thus, a bal-
ance is required between these two terms. Without an exhaus-
tive search for these coefficients, we could fix them after a few
sample trials. A relatively largeweight of 0.7 is used for the MSE
part of the REF to preserve overall variability of the predicted
parameters. For consistency, we used weighting coefficients A =
0.7 and F = 0.3 in (Eq. 4) for all analyses. Note that these
weighting coefficients are imposed on the statistics derived from
the min-maxYscaled values of the output.

AN ILLUSTRATIVE EXAMPLE
To evaluate the proposed approach, a numerical experiment

was carried out using a synthetically generated data set. We used
a statistical multiple regression equation developed by Rawls
and Brankensiek (1985) and Carsel and Parrish (1988) to gen-
erate synthetic data for this purpose. The input data required to
estimate hydraulic parameters are saturated water content (5s

in cm3 cmj3), sand content (S in percentage), and clay content
(C in percentage). The output parameters (i.e., the hydraulic
parameters to be estimated) are the van Genuchten parameters
5r, >, n, and Ks. The form of general regression model (Carsel
and Parrish, 1988) is as follows,

f ðS;C;5sÞ ¼ b0 þ b1S þ b2C þ b35S þ b11S
2 þ b22C

2

þ b335
2
S þ b12SC þ b13S5S þ b23C5S

þ b112S
2C þ b223C

25S þ b113S
25S

þ b112SC
2 þ b233C5

2
S þ b1133S

25
2
S

þ b2233 þ C25
2
S

where f denotes any of the variables ln(Ks),5r, ln(>
j1), or ln(nj1).

TABLE 1. Mean of Outputs in Training and Test Phases

Training Phase Test Phase

5r Log10Ks Log10n Log10> 5r Log10Ks Log10n Log10>

Case 1 0.042 j0.573 0.128 j1.507 0.072 0.666 0.153 j1.026
Case 2 0.085 1.129 0.170 j0.827 0.058 0.099 0.139 j1.252
Case 3 0.067 0.435 0.145 j1.125 0.065 0.278 0.149 j1.167
Case 4 (random) 0.066 0.346 0.147 j1.164 0.064 0.362 0.147 j1.137

(7)
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We considered a case of sandy loam soil with the follow-
ing distribution characteristics (mean and S.D.) from Carsel
and Parrish (1988): S̄ = 63.4%, RS = 7.9%; C̄ = 11.1%, RC =
4.8%; 5̄s = 0.41, R5s = 0.09. Using these statistics for the input
parameters, we generated 300 data points for S, C, and 5s based
on normal distributions using the Latin hypercube sampling
method (McKay et al., 1979).

Saturated hydraulic conductivity and water retention pa-
rameters for the van Genuchten model were derived using the
multiple-regression model (Eq.7) based on generated S, C, and
5s. The obtained parameters were converted into commonly used
forms: log10Ks, 5r, log10>, and log10n. We also generated white
noise for each parameter with mean of zero and S.D. equal to
10% of the parameter’s S.D. and added output from Eq. 7 as
measurement error.

Although our focus here is on development of an algorithm,
we must account for the different cases of bias (see paragraph 2).
Therefore, we applied our algorithm to hypothetical cases of
biases as considered in the following cases.
(i) Biased data (biased sampling)

& Case 1: Data from the first quartile is used for training
(n = 75) and from other quartiles (n = 225) for testing.

& Case 2: Data from the last quartile (n = 75) is used for
training and from other quartiles (n = 225) for testing.

& Case 3: Data from an inter-quartile range (n = 150)
is used for training, while assigning remaining data
(n = 150) for testing.

Note that Cases 1 and 2 represent extreme biased
examples.

(ii) Unbiased data (random sampling)
& Case 4: 100 data points were randomly picked from the
whole distribution (300 data points) for training and rest
(200 data points) for testing.

Output target means from both biased and random data
used for training and testing are shown in Table 1. The absolute
difference of target means in the test phase as compared with
the training phase (in percentage) is given in Table 2. As can be
seen, there are distinct differences in the target mean for the
biased data sets, particularly for Cases 1 and 2, for all param-
eters. Interestingly, unlike other parameters, log10Ks also showed
considerable difference in target mean between training and test
phase data (about 36%) in Case 3. A closer look at the proba-
bility distribution of the parameter revealed that it had longer tail
to the left compared with the other parameters. A D’Agostino-
Pearson’s K2 test (D’Agostino et al., 1990) showed that log10Ks

data, and the other parameters, did not pass the normality test
at 5% significance level. The inputs of the regression equation
(Eq. 7) were normally distributed, so the regression equation
accounts for the distribution of the parameters. A nonparametric
Wilcoxon rank sum test was applied to the training and test data.
The test showed that all parameters showed statistically significant
(at 5% significance level) mean differences for Cases 1 and 2.
For Case 3, again only log10Ks showed statistically significant

TABLE 3. Performance of MSE and REF in Training and Test Phases in Biased and Random Sampling Cases for Soil Hydraulic
Parameters (i) 5r, (ii) log10Ks, (iii) log10n, and (iv) log10>

R2 Normalized Bias

Training Test Training Test

MSE REF MSE REF MSE REF MSE REF

(i) 5r

Case 1 0.996 0.998 0.688 0.885 0.000 0.198 0.164 0.079
Case 2 0.997 0.995 0.770 0.865 0.000 0.095 0.117 0.059
Case 3 0.999 0.998 0.966 0.963 0.000 0.010 0.009 0.019
Case 4 1.000 0.997 0.998 0.974 0.000 0.007 0.002 0.002

(ii) Log10Ks

Case 1 1.000 0.986 0.719 0.912 0.004 0.657 0.637 0.097
Case 2 0.998 0.991 0.731 0.775 0.001 0.275 4.765 1.489
Case 3 0.998 1.000 0.929 0.966 0.002 0.108 0.340 0.037
Case 4 0.999 0.998 0.994 0.987 0.007 0.016 0.002 0.027

(iii) Log10n
Case 1 0.997 0.990 0.628 0.656 0.000 0.062 0.073 0.031
Case 2 0.996 0.996 0.646 0.748 0.000 0.055 0.043 0.026
Case 3 0.993 0.995 0.928 0.944 0.000 0.008 0.022 0.014
Case 4 0.964 0.975 0.969 0.971 0.003 0.011 0.001 0.013

(iv) Log10>
Case 1 0.999 0.991 0.685 0.821 0.000 0.096 0.143 0.055
Case 2 0.997 0.983 0.440 0.715 0.000 0.155 0.082 0.018
Case 3 0.993 0.991 0.951 0.947 0.000 0.011 0.040 0.009
Case 4 0.999 0.995 0.983 0.970 0.000 0.010 0.000 0.010

TABLE 2. Difference (in Percentage) of Mean of Outputs in
Test Phase Data Set Compared With Training Phase Data Set

5r Log10Ks Log10n Log10>

Case 1 71.43 216.23 19.53 31.92
Case 2 31.76 91.23 18.23 51.40
Case 3 2.98 36.09 2.76 3.73
Case 4 3.03 4.51 0.000 2.32
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difference in the mean. The other parameters in Case 3, and all
parameters in Case 4, did not have statistically significant differ-
ences in target means between training and test phases.

Prediction error can be generally disaggregated into sys-
tematic and random errors. Thus, the goodness of fit is ex-
pressed with performance metrics that represent both errors.
In this study, we used the coefficient of determination (R2,
a measure of random prediction error) and normalized mean
absolute error bias (a measure of systematic prediction error)
as performance metrics. The coefficient of determination and
normalized absolute mean error (simply referred to as bias
hereafter) are, respectively, defined in Eqs. 8 and 9:

R2 ¼ ~ðŶ�Y Þ2

~Y 2 � nȲ 2
ð8Þ

Normalized mean absolute error ¼ j Ȳ̂�Ȳ

Ȳ

0
@

1
Aj ð9Þ

where Ŷ and Y are the ANN-estimated and actual output, re-
spectively, and Ȳ̂and Ȳ are their respective means.

The results of the ANN training and testing for the four cases
are shown in Tables 3AYD. The results for biased data (Case 1

through Case 3) (Tables 3AYD) show that the MSE (conven-
tional ANN) performs very well in training, as shown by high
R2 (close to one) and low bias (close to zero). However, the re-
sults for the test phases deteriorate as test data are sampled dif-
ferently than the training data from the sample space (total data
set). Case 3 in general has relatively better performances for all
parameters (in terms of higher R2 and lower biases) compared
with Cases 1 and 2. The R2 value dipped mainly for Cases 1 and
2 with values as low as 0.628 (Case 1; log10n; Table 3iii). Per-
formance in terms of the bias analogous to the R2 performance:
There are larger biases in the test phase for most of the cases
(mostly greater than one order of magnitude) compared with
the training phases (Tables 3AYD). The observed dip in perfor-
mance statistics (R2) in test phases of Cases 1 and 2 compared
with Case 3 is consistent with the differences in the mean of
the parameters (output data) in training and test phases in these
three cases (Table 2).

The REF (regularized ANN), which penalizes difference in
target means in the test phase, improves the statistics of the
test phase as compared with the MSE (conventional ANN), as
shown in Tables 3AYD. Although improvement in R2 value
could be seen in all biased cases (with the exception of Case 3;
5r), the improvement is apparent mainly for the first two cases
with up to 62.5% improvement in R2 value (Case 2; log10>) over
training phase. Similarly, the performance of regularized ANN

FIG. 1. Comparison of actual and predicted residual water content (5r) in test phase (A) Case 1, (B) Case 2, (C) Case 3, and (D) Case-4.
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is better through reduction of bias by 40% to 85% compared
with the conventional ANN. Obviously, as the training targets
to retain statistical properties of the test phases through pen-
alty terms, the effect of introducing a mean penalty term is to
correct the bias in the test phase, while introducing bias to the
training result. Thus, the bias in the training phase is much
lower in the conventional ANN compared with the regular-
ized one. The improvement in the bias in the test phase of the
regularized ANN is largely found to be dependent on differ-
ences in parameter mean values between training and testing
phases. Improvements are superior for cases where differences
in mean between training and test phases are higher (e.g.,
Cases 1 and 2; see Table 3iYiv). For Case 3, such differences
in mean are the lowest among the biased cases; thus, both ANN
are satisfactory. However, the regularized ANN shows better
results in test phase for log10n, log10>, and log10Ks in terms
of both R2 value and bias (Table 3).

Figures 1A, 2A, 3A, and 4A illustrate results for test phases
of Case 1 for parameters 5r, log10Ks, log10n, and log10>, re-
spectively. Although results in test phases are not perfect for
either MSE or REF and bias is present, the reduction of bias
is apparent in REF results. For the higher values of test data
(within the considered cases), the estimated values in the con-
ventional ANN tend to reach saturation (i.e., estimated value
stay to a maximum and does not increase with actual value; e.g.,

Fig. 1A). This is attributed to the inherent limitation of ANN
to predict beyond what it has learned in training phase and is
related to both data scaling (min-max) and the nature of the
sigmoid function (Minns and Hall, 1996). Literature in flood
forecasting (where forecasting beyond training phase is of par-
ticular interest) shows a few studies devoted to such issues. While
having a clipped linear function in the output node is considered
to have beneficial effects on this problem (Karunanithi et al.,
1994), reduced scaling in the training phase data (i.e., scaling
training data to lie in a reduced range of sigmoidal activation
function [e.g., by 10%Y20%] to account for potential change in
the test phase) has been recommended by many researchers (e.g.,
Imrie et al., 2007). The results, however, have not been effective
with the conventional ANN training (Imrie et al., 2000). Because
in Case 1 (Figs. 1A, 2A, 3A, and 4A) training is with the first
quartile data (lower data range), the conventional ANN is unable
to match higher value in test phases and thus tends to underes-
timate. Also, saturation of estimated parameter values is seen for
the upper range of actual parameter values within the same
quartile. The regularized ANN, on the other hand, is seen to
reduce bias and improve results with some overestimation in
the lower and underestimation for the higher range of observed
values. Although saturation in the conventional ANN also oc-
curs with the regularized ANN (Figs. 1A, 2A, 3A, and 4A), bias
correction relatively minimizes the effect. The saturation pattern

FIG. 2. Comparison of actual and predicted saturated hydraulic conductivity (log10Ks) in test phase (A) Case 1, (B) Case 2, (C) Case 3,
and (D) Case-4.
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is altered through upward shifting of estimated values to mini-
mize bias (Figs. 3A and 4A) and occurs at relatively higher
actual parameter values (Figs. 1A and 2A).

Similarly, Case 2 (Figs. 1B, 2B, 3B, and 4B) shows a
similar result pattern to Case 1. However, saturation in the ANN
result occurs in the lower actual values, reflecting the limit in
the lower range of data in the training phase (training was with
last quartile data). Although both ANN overestimate true values
for lower actual parameter values, the regularized ANN does
less so. For the upper range of actual values of the parameters,
the regularized ANN underestimates, whereas the conventional
one overestimates. Overall, performance of the regularized ANN
is better as the improvement in the mean error with regularized
ANN is apparent (Figs. 1B, 2B, 3B, and 4B; Table 3).

Case 3, which represents training in the interquartile range
and testing with the first and last quartile data, deviates from
the actual values for both high and low range of actual values
of the parameters (Figs. 1C, 2C, 3C, and 4C). As in the former
cases, the improvement in the mean error is also apparent in
these figures, particularly for log10n, log10Ks, and log10>.

For randomly sampled data (Case 4), however, the results
are good in both test and training phases for both conven-
tional and regularized ANN (Table 3, Case 4) as reflected by
very high R2 (Q0.96 in both training and test phases) and almost
similar low biases. Results for parameters for Case 4 are shown
in Figs. 1D, 2D, 3D, and 4D, which show that both conventional
and regularized ANN estimates followed the 45-degree line

and thus worked equally well. Again, as can be seen from these
figures, minor deviations from the target mean were observed,
which were limited mostly to the extreme (low or high) range of
parameters in the considered cases (Figs. 1D, 2D, and 4D). In the
random sampling mode, data are picked randomly, so the mean
of the sampled data for training is not much different from the
rest (test phase). Thus, conventional MSE works equally well,
and no additional advantage is apparent from REF.

One caveat of the example demonstrated here is that we
have selected two extremely difficult cases where the training
data are very different from test data (Cases 1 and 2). That poses
some additional complications worth mentioning here. As train-
ing progresses, the training algorithm forces the predicted and
actual output data close together. However, this introduces a large
bias in the target mean in the test phase, thus forcing the train-
ing to readjust to new weights that can better take care of the
mean in the test phase data. Thus, as no further improvement
is achieved in the cross-validation data, the training process is
terminated. This introduces bias in the training data set while
correcting at the test or implementation phase (Table 3). This
is not true for the less stringent case (Case 3), where the bias in
the training phase with REF is also low (Table 3).

CONCLUSIONS
In this study, we introduced a new ANN training algorithm

with REF to enable the use of available information on output

FIG. 3. Comparison of actual and predicted parameter log10n in test phase (A) Case 1, (B) Case 2, (C) Case 3, and (D) Case-4.
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variables (e.g., mean). This approach is aimed at directly cor-
recting bias in the test phase. Based on our results of four
cases (three biased and one unbiased) of ANN experiments with
four synthetic SHP data sets, we found the proposed algorithm
to be effective. Specifically, the proposed regularized ANN was
found highly effective in minimizing bias compared with the
conventional ANN, particularly for highly biased data. The
regularized ANN showed 40% to 85% less bias in highly biased
data such as training with data from the first and last quartiles
and testing on, respectively, last and first quartiles, where the
difference in the target mean in the training and test phases
is very high. Although saturation of the estimated values in test
phase for higher and/or lower range of actual data was seen
for both types of ANN, bias correction had the effect of rela-
tively minimizing in results of regularized ANN. The new ANN
training algorithm was found to perform better for those cases
with relatively larger difference in target means of training and
test data sets. However, training with both the regularized and
conventional ANN resulted into equally good results in test
phases when ANN models were trained with unbiased (statisti-
cally inferred fromWilcox rank sum test with G4.5% normalized
mean differences in the training and test phases in the parameter
values) data obtained from random sampling.

The developed algorithm has shown potential for improved
estimation and especially for bias correction in the estimated
values when there are significant differences in the mean in the

training and test phases for a particular soil type and is thus
useful to address problems such as scale-induced bias within
the same soil group, as in Jana et al. (2007). For heterogeneous
soil (different soil groups) with inherently different input-SHP
physical relationships, it can be expected that any improvement
in the mean error might be shadowed by the lower prediction
accuracy (lower R2 value). However, although not presented
here, there is also potential to introduce penalty terms for higher-
order moments in the proposed training algorithm. This should
address some of the limitations arising from the correction on the
target mean (i.e., first-order moment) only.
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