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Let 𝐾 be a closed, convex, and nonempty subset of a real 𝑞-uniformly smooth Banach space 𝐸, which is also uniformly convex.
For some 𝜅 > 0, let 𝑇

𝑖
: 𝐾 → 𝐸 𝑖 ∈ N and 𝐴 : 𝐾 → 𝐸 be family of nonexpansive maps and 𝜅-inverse strongly accretive map,

respectively. Let 𝐺 : 𝐾 ×𝐾 → R be a bifunction satisfying some conditions. Let 𝑃
𝐾
be a nonexpansive projection of 𝐸 onto𝐾. For

some fixed real numbers 𝛿 ∈ (0, 1), 𝜆 ∈ (0, (𝑞𝜅/𝑑
𝑞
)
1/(𝑞−1)

), and arbitrary but fixed vectors 𝑥
1
, 𝑢 ∈ 𝐸, let {𝑥

𝑛
} and {𝑦

𝑛
} be sequences

generated by𝐺(𝑦
𝑛
, 𝜂)+(1/𝑟)⟨𝜂−𝑦

𝑛
, 𝑗
𝑞
(𝑦
𝑛
−𝑥
𝑛
)⟩ ≥ 0, ∀𝜂 ∈ 𝐾, 𝑥

𝑛+1
= 𝛼
𝑛
𝑢+(1−𝛿)(1−𝛼

𝑛
)𝑥
𝑛
+𝛿∑
𝑖≥1
𝜎
𝑖𝑛
𝑇
𝑖
𝑃
𝐾
(𝑦
𝑛
−𝜆𝐴𝑦

𝑛
), 𝑛 ≥ 1, where

𝑟 ∈ (0, 1) is fixed, and {𝛼
𝑛
}, {𝜎
𝑖,𝑛
} ⊂ (0, 1) are sequences satisfying appropriate conditions. If 𝐹 := [∩∞

𝑖=1
𝐹(𝑇
𝑖
)]∩VI(𝐾, 𝐴)∩EP(𝐺) ̸= 0,

under some mild conditions, we prove that the sequences {𝑥
𝑛
} and {𝑦

𝑛
} converge strongly to some element in 𝐹.

1. Introduction

Let 𝐸 be a real normed space and 𝐸∗ its dual space. For some
real number 𝑞 (1 < 𝑞 < ∞), the generalized duality mapping
𝐽
𝑞
: 𝐸 → 2

𝐸
∗

is defined by

𝐽
𝑞 (𝑥) = {𝑓

∗
∈ 𝐸
∗
: ⟨𝑥, 𝑓

∗
⟩ = ‖𝑥‖

𝑞
,
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩 = ‖𝑥‖

𝑞−1
} , (1)

where ⟨⋅, ⋅⟩ denotes the pairing between elements of 𝐸 and
elements of 𝐸∗.

For 𝑞 = 2, 𝐽
2
usually denoted by 𝐽 is called the normalised

duality mapping.
Let𝐸 be a real Banach space; amap𝐴 : 𝐷(𝐴) → 𝐸 is said

to be accretive if for all 𝑥, 𝑦 ∈ 𝐷(𝐴), there exists 𝑗
𝑞
(𝑥 − 𝑦) ∈

𝐽
𝑞
(𝑥 − 𝑦) such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗
𝑞
(𝑥 − 𝑦)⟩ ≥ 0. (2)

For some real number 𝜅 > 0,𝐴 is called 𝜅-inverse strongly
accretive if for all𝑥, 𝑦 ∈ 𝐷(𝐴), there exists 𝑗

𝑞
(𝑥−𝑦) ∈ 𝐽

𝑞
(𝑥−𝑦)

such that

⟨𝐴𝑥 − 𝐴𝑦, 𝑗
𝑞
(𝑥 − 𝑦)⟩ ≥ 𝜅

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩

𝑞
. (3)

Observe that a 𝜅-inverse strongly accretive map is 1/𝜅-
Lipschitzian.

Let𝐾 be a nonempty, closed, and convex subset of 𝐸, and
let 𝐴 : 𝐾 → 𝐸 be an accretive mapping. A variational
inequality problem is, searching for 𝑥∗ ∈ 𝐾 such that for
some 𝑗

𝑞
(V − 𝑥∗) ∈ 𝐽

𝑞
(V − 𝑥∗)

⟨𝐴𝑥
∗
, 𝑗
𝑞
(V − 𝑥

∗
)⟩ ≥ 0, ∀V ∈ 𝐾. (4)

Let 𝐺 : 𝐾 × 𝐾 → R be a bifunction on a closed convex
nonempty subset 𝐾 of a real Banach space 𝐸; an equilibrium
problem is searching for 𝑥∗ ∈ 𝐾 such that

𝐺 (𝑥
∗
, V) ≥ 0, ∀V ∈ 𝐾. (5)

A set of solutions of the problems (4) and (5) are denoted
by VI(𝐾, 𝐴) and EP(𝐺), respectively.

Let 𝑃 be a mapping of 𝐸 onto 𝐾. Then, 𝑃 is said to be
sunny if 𝑃(𝑃𝑥 + 𝑡(𝑥 − 𝑃𝑥)) = 𝑃𝑥 for all 𝑥 ∈ 𝐸 and 𝑡 ≥ 0. A
mapping 𝑃 of 𝐸 into 𝐸 is said to be a retraction if 𝑃2 = 𝑃. If
a mapping 𝑃 is a retraction, then 𝑃𝑧 = 𝑧 for every 𝑧 ∈ 𝑅(𝑃),
range of𝑃. A subset𝐾 is said to be sunny nonexpansive retract
of 𝐸 if there exists a sunny nonexpansive retraction of 𝐸 onto
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𝐾. A retraction𝑃 is said to be orthogonal if for each𝑥,𝑥−𝑃(𝑥)
is normal to𝐾 in the sense of James [1].

It is well known (see [2]) that if 𝐸 is a Banach space;
a projection mapping is a sunny nonexpansive retraction
𝑃 of 𝐸 onto 𝐾. If 𝐸 is uniformly smooth and there exists
a nonexpansive retraction of 𝐸 onto 𝐾, then there exists a
nonexpansive projection of 𝐸 onto 𝐾. If 𝐸 is a real smooth
Banach space, then 𝑃 is an orthogonal retraction of 𝐸 onto𝐾
if and only if 𝑃(𝑥) ∈ 𝐾 and ⟨𝑃(𝑥) − 𝑥, 𝑗

𝑞
(𝑃(𝑥) − 𝑦)⟩ ≤ 0 for

all 𝑦 ∈ 𝐾. It then follows that, for 𝑥, 𝑦 ∈ 𝐾, we have ⟨𝑃(𝑥) −
𝑥, 𝑗
𝑞
(𝑃(𝑥) − 𝑃(𝑦))⟩ ≤ 0 and ⟨𝑃(𝑦) − 𝑦, 𝑗

𝑞
(𝑃(𝑦) − 𝑃(𝑥))⟩ ≤ 0

which implies

󵄩󵄩󵄩󵄩𝑃 (𝑥) − 𝑃 (𝑦)
󵄩󵄩󵄩󵄩

𝑞
≤ ⟨𝑥 − 𝑦, 𝑗

𝑞
(𝑃 (𝑥) − 𝑃 (𝑦))⟩ . (6)

An accretive mapping 𝐴 is said to be maximal if its
graph GF(𝐴) is not contained in the graph of any other
accretive map. Equivalently, 𝐴 is maximal accretive if for
every (V

0
, 𝑤
0
) ∈ 𝐸×𝐸 such that ⟨𝑤−𝑤

0
, 𝑗
𝑝
(V−V
0
)⟩ ≥ 0 holds

for all 𝑤 ∈ 𝐴V, V ∈ 𝐾; then, 𝑤
0
∈ 𝐴V
0
. A mapping 𝑇 with

domain 𝐷(𝑇) and range 𝑅(𝑇) in 𝐸 is said to be demiclosed
at 𝑝 if whenever {𝑥

𝑛
} is a sequence in 𝐷(𝑇) such that 𝑥

𝑛
⇀

𝑥
∗
∈ 𝐷(𝑇) and 𝑇𝑥

𝑛
→ 𝑝; then, 𝑇𝑥∗ = 𝑝. The following

proposition is known to hold; see, for example, [3].

Proposition 1. Let 𝐴 : 𝐾 → 𝐸 be a 𝜅-inverse strongly
accretive map. Let𝑀 be defined by

𝑀V = {
𝐴V + 𝑁

𝐾
V, V ∈ 𝐾,

0, V ∉ 𝐾,
(7)

where 𝑁
𝐾
V = {𝑤 ∈ 𝐸 : ⟨𝑤, 𝑗

𝑞
(V − 𝑢)⟩ ≥ 0, for all 𝑢 ∈ 𝐾};

then, 𝑀 is maximal accretive and 𝑢 ∈ 𝑀
−1
(0) if and only if

𝑢 ∈ VI(𝐾, 𝐴).

Recently,Maingé [4] studied theHalpern-type scheme for
approximation of a common fixed point of countable infinite
family of nonexpansive mappings in a real Hilbert space.

The present author [3] proved a strong convergence
theorem for family of nonexpansive maps and solution of
variational inequality problems. Kumam and Jaiboon [5]
studied a hybrid iterative method for mixed equilibrium
problem and variational inequality problem in the framework
of a real Hilbert space.

Various numerous authors studied the problem of
approximating solutions of equilibrium and fixed point
problems in the framework of a real Hilbert space; see, for
example, [5–18] and the references contained therein. In
[19], Ceng et al. studied this problem in the framework of a
uniformly smooth and uniformly convex Banach space.

Takahashi and Zembayashi [20] (see also [21–23]) studied
the problem of approximating solutions of equilibrium prob-
lems and fixed points of some nonlinear maps in the frame-
work of real Banach spaces. It is our purpose in this paper to
introduce a new hybrid iterative method for approximating a
common element in the intersection of the set of fixed points
of countable infinite family of nonexpansive mappings, the
set of solutions of variational inequality problem, and the set
of solutions of equilibrium problem in Banach spaces. Our

theorems extend and improve some recent important results,
and our method of proof in this paper is of independent
interest.

2. Preliminaries

Let 𝑆 := {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1} denote a unit sphere of the
real Banach space 𝐸. 𝐸 is said to have a Gâteaux differentiable
norm if the limit

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(8)

exists for each 𝑥, 𝑦 ∈ 𝑆; 𝐸 is said to have a uniformly Gâteaux
differentiable norm if for each 𝑦 ∈ 𝑆, the limit is attained
uniformly for 𝑥 ∈ 𝑆. Let 𝐸 be a normed space with dim𝐸 ≥ 2.
The modulus of smoothness of𝐸 is the function 𝜌

𝐸
: [0,∞) →

[0,∞) defined by

𝜌
𝐸 (𝜏) := sup{

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2
− 1 : ‖𝑥‖ = 1;

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 𝜏} .

(9)

The space 𝐸 is called uniformly smooth if and only if
lim
𝑡→0
+(𝜌
𝐸
(𝑡)/𝑡) = 0. For some constant 𝑞 > 1, 𝐸 is called

𝑞-uniformly smooth if there exists a constant 𝑐 > 0 such that
𝜌
𝐸
(𝑡) ≤ 𝑐𝑡

𝑞, 𝑡 > 0.
The modulus of convexity of 𝐸 is the function 𝛿

𝐸
:

(0, 2] → [0, 1] defined by

𝛿
𝐸 (𝜖) = inf {1 −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 + 𝑦

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 1, 𝜖 =

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩} .

(10)

𝐸 is called uniformly convex if and only if 𝛿
𝐸
(𝜖) > 0 for all

𝜖 ∈ (0, 2].
ABanach space𝐸 is said to be strictly convex if ‖𝑥−𝑦‖/2 <

1 for 𝑥, 𝑦 ∈ 𝐸 with ‖𝑥‖ = 1 = ‖𝑦‖ and 𝑥 ̸= 𝑦.
It is well known that if 𝐸 is smooth then the duality

mapping is singled valued, and if 𝐸 has uniformly Gâteaux
differentiable norm then the duality mapping is norm-to-
weak∗ uniformly continuous on bounded subset of 𝐸. Also,
every 𝑞-uniformly smooth space is uniformly smooth and
has a uniformly Gâteaux differentiable norm, and every
uniformly convex space is strictly convex.

In the sequel, we will make use of the following results.

Lemma 2 (see Petryshyn [24]). Let 𝐸 be a real normed linear
space. Then, the following inequality holds:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

2
≤ ‖𝑥‖

2
+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩

∀𝑥, 𝑦 ∈ 𝐸, 𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(11)

Theorem 3 (see Goebel and Kirk [25]). Let 𝐸 be a real
uniformly convex Banach space, 𝐾 a closed convex subset of
𝐸, and 𝑇 : 𝐾 → 𝐸 a nonexpansive mapping. Then, (𝐼 − 𝑇) is
demiclosed at zero, where 𝐼 denotes the identity map.

Lemma 4 (see Suzuki [26]). Let {𝑥
𝑛
} and {𝑦

𝑛
} be bounded

sequences in a Banach space 𝐸, and let {𝛽
𝑛
} be a sequence
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in [0, 1] with 0 < lim inf 𝛽
𝑛
≤ lim sup𝛽

𝑛
< 1. Suppose

that 𝑥
𝑛+1

= 𝛽
𝑛
𝑦
𝑛
+ (1 − 𝛽

𝑛
)𝑥
𝑛
for all integers 𝑛 ≥ 0 and

lim sup(‖𝑦
𝑛+1

−𝑦
𝑛
‖−‖𝑥
𝑛+1

−𝑥
𝑛
‖) ≤ 0.Then, lim ‖𝑦

𝑛
−𝑥
𝑛
‖ = 0.

Lemma 5 (see Xu [27]). Let {𝑎
𝑛
} be a sequence of nonnegative

real numbers satisfying the following relation:

𝑎
𝑛+1

≤ (1 − 𝛼
𝑛
) 𝑎
𝑛
+ 𝛼
𝑛
𝜎
𝑛
+ 𝛾
𝑛
, 𝑛 ≥ 0, (12)

where (i) {𝛼
𝑛
} ⊂ [0, 1], ∑𝛼

𝑛
= ∞; (ii) lim sup𝜎

𝑛
≤ 0; (iii)

𝛾
𝑛
≥ 0; (𝑛 ≥ 0), ∑𝛾

𝑛
< ∞. Then, 𝑎

𝑛
→ 0 as 𝑛 → ∞.

Lemma 6 (see Xu [28]). Let 𝐸 be a real q-uniformly smooth
Banach space for some 𝑞 > 1; then, there exists some positive
constant 𝑑

𝑞
such that

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩

𝑞
≤ ‖𝑥‖

𝑞
+ 𝑞 ⟨𝑦, 𝑗

𝑞 (𝑥)⟩ + 𝑑𝑞
󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑞 (13)

for all 𝑥, 𝑦 ∈ 𝐸 and 𝑗
𝑞
(𝑥) ∈ 𝐽

𝑞
(𝑥).

Lemma7 (see Kamimura andTakahashi [29]). Let𝐸 be a real
smooth and uniformly convex Banach space, and let 𝑅 > 0.
Then, there exists a strictly increasing, continuous, and convex
function 𝑔 : [0, 2𝑅] → R such that 𝑔(0) = 0 and 𝑔(‖𝑥−𝑦‖) ≤
‖𝑥‖
2
− 2⟨𝑥, 𝑗𝑦⟩ + ‖𝑦‖

2 for all 𝑥, 𝑦 ∈ 𝐵
𝑅
.

The following conditions are required on the bifunction
𝐺 : 𝐾 × 𝐾 → R for solving equilibrium problems with
respect to 𝐺:

(A1) 𝐺(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐾;
(A2) 𝐺 is monotone; that is, 𝐺(𝑥, 𝑦) + 𝐺(𝑦, 𝑥) ≤ 0 for all

𝑥, 𝑦 ∈ 𝐾;
(A3) for all 𝑥, 𝑦, 𝑧 ∈ 𝐾, lim sup

𝑡→0
+ 𝐺(𝑡𝑧 + (1 − 𝑡)𝑥, 𝑦) ≤

𝐺(𝑥, 𝑦);
(A4) for all 𝑥 ∈ 𝐾,𝐺(𝑥, ⋅) is convex and lower semicontin-

uous.

Lemma 8 (see Blum and Oettli [30]). Let 𝐸 be a real smooth,
strictly convex, and reflexive Banach space. Let𝐺 : 𝐾×𝐾 → R

be a bifunction satisfying (A1)–(A4), and let𝑥 ∈ 𝐸, 𝑟 > 0.Then,
there exists 𝑧 ∈ 𝐾 such that

𝐺 (𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑗 (𝑧 − 𝑥)⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (14)

Lemma 9. Let𝐾 be a closed convex nonempty subset of a real
uniformly smooth and strictly convex Banach space 𝐸. Let 𝐺 :

𝐾 × 𝐾 → R be a bifunction satisfying (A1)–(A4). For 𝑟 > 0

and 𝑥 ∈ 𝐸, define a map 𝑇
𝑟
: 𝐸 → 𝐾 by

𝑇
𝑟
𝑥 = {𝑧 ∈ 𝐾 : 𝐺 (𝑧, 𝑦)

+
1

𝑟
⟨𝑦 − 𝑧, 𝑗 (𝑧 − 𝑥)⟩ ≥ 0, ∀𝑦 ∈ 𝐾} .

(15)

Then, the following hold:

(i) 𝑇
𝑟
is single-valued;

(ii) 𝐹𝑖𝑥(𝑇
𝑟
) = 𝐸𝑃(𝐺);

(iii) if 𝑇
𝑟
is firmly nonexpansive-type, that is, for 𝑥, 𝑦 ∈ 𝐸,

⟨𝑇
𝑟
𝑥 − 𝑇
𝑟
𝑦, 𝑗 (𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦)⟩ ≤ ⟨𝑥 − 𝑦, 𝑗 (𝑇

𝑟
𝑥 − 𝑇
𝑟
𝑦)⟩ , (16)

then 𝐸𝑃(𝐺) is closed and convex.

Proof. (i) Let 𝑧
1
, 𝑧
2
∈ 𝑇
𝑟
, then

𝐺 (𝑧
1
, 𝑧
2
) +

1

𝑟
⟨𝑧
2
− 𝑧
1
, 𝑗 (𝑧
1
− 𝑧
2
)⟩ ≥ 0,

𝐺 (𝑧
2
, 𝑧
1
) +

1

𝑟
⟨𝑧
1
− 𝑧
2
, 𝑗 (𝑧
2
− 𝑧
1
)⟩ ≥ 0.

(17)

Adding these inequalities and using (A2), we get

⟨𝑧
2
− 𝑧
1
, 𝑗 (𝑧
1
− 𝑧
2
)⟩ ≥ 0, (18)

which implies 𝑧
1
= 𝑧
2
. Consider

(ii)

𝑧 ∈ 𝐹 (𝑇
𝑟
) ⇐⇒ 𝑧 = 𝑇

𝑟
𝑧

⇐⇒ 𝐺(𝑧, 𝑦) +
1

𝑟
⟨𝑦 − 𝑧, 𝑗 (𝑧 − 𝑧)⟩ ≥ 0,

∀𝑦 ∈ 𝐾,

⇐⇒ 𝐺(𝑧, 𝑦) ≥ 0, ∀𝑦 ∈ 𝐾,

⇐⇒ 𝑧 ∈ 𝐸𝑃 (𝐺) .

(19)

(iii) EP(𝐺) is closed and convex follows from (ii) and the
fact that every firmly nonexpansive map is nonexpansive and
the fixed point set of nonexpansive map is closed and convex.

Let 𝐸 be a real 𝑞-uniformly smooth Banach space, and
for some 𝜆 > 0, let 𝐼 : 𝐾 → 𝐾 and 𝐴 : 𝐾 → 𝐸

be the identity and 𝜅-inverse strongly accretive mappings,
respectively. Then, for the map (𝐼 − 𝜆𝐴) : 𝐾 → 𝐸, we have
the following estimates:

󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴) 𝑥 − (𝐼 − 𝜆𝐴) 𝑦
󵄩󵄩󵄩󵄩

𝑞

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦 − 𝜆 (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑞
− 𝑞𝜆 ⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩

+ 𝑑
𝑞
𝜆
𝑞󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑞
− 𝜆 (𝑞𝜅 − 𝑑

𝑞
𝜆
𝑞−1
)
󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

𝑞
.

(20)

If 𝜆 is chosen such that 0 ≤ 𝜆 ≤ (𝑞𝜅/𝑑
𝑞
)
1/(𝑞−1), we then have

󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴) 𝑥 − (𝐼 − 𝜆𝐴) 𝑦
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , (21)

and so (𝐼−𝜆𝐴) become a nonexpansive mapping of𝐾 into 𝐸.



4 Journal of Mathematics

For 𝐿
𝑝
(1 < 𝑝 < ∞) spaces, we have the following

relation: if 𝜆 ∈ (0, 2𝜅/(𝑝 − 1)),

󵄩󵄩󵄩󵄩(𝐼 − 𝜆𝐴) 𝑥 − (𝐼 − 𝜆𝐴) 𝑦
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑥 − 𝑦 − 𝜆 (𝐴𝑥 − 𝐴𝑦)

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
− 2𝜆 ⟨𝐴𝑥 − 𝐴𝑦, 𝑗 (𝑥 − 𝑦)⟩

+ (𝑝 − 1) 𝜆
2󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
− 𝜆 (2𝜅 − (𝑝 − 1) 𝜆)

󵄩󵄩󵄩󵄩𝐴𝑥 − 𝐴𝑦
󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2
.

(22)

Also if𝐸 is aHilbert space andwe choose 𝜆 ∈ (0, 2𝜅), then
(𝐼 − 𝜆𝐴) is nonexpansive.

3. Path Convergence Theorems

In the sequel, we assume for each 𝑡 ∈ (0, 1) that the sequence
{𝜎
𝑖,𝑡
}
𝑖
satisfies∑

𝑖≥1
𝜎
𝑖,𝑡
= 1−𝑡 and the sequences {𝛼

𝑛
}, {𝜎
𝑖,𝑛
}
𝑖
⊂

(0, 1), satisfy∑
𝑖≥1

𝜎
𝑖,𝑛
= 1 − 𝛼

𝑛
.

For a countable family of nonexpansive mappings {𝑇
𝑖
} of

𝐸, we denote a setNI := {𝑖 ∈ N : 𝑇
𝑖
̸= 𝐼} (𝐼 being the identity

mapping on 𝐸).
Let 𝐾 be a nonempty closed and convex subset of a real

𝑞-uniformly smooth Banach space 𝐸 and 𝑃
𝐾
a nonexpansive

projection of 𝐸 onto 𝐾. For some real number 𝜅 > 0, let 𝐴 :

𝐾 → 𝐸 be a 𝜅-inverse strongly accretive mapping. For some
real numbers 𝛿 ∈ (0, 1), 𝜆 ∈ (0, (𝑞𝜅/𝑑

𝑞
)
1/(𝑞−1)

), and 𝑟 > 0

arbitrarily chosen but fixed and for each 𝑡 ∈ (0, 1), define a
map 𝑇

𝑡
: 𝐸 → 𝐸 by 𝑢 ∈ 𝐸, arbitrary and fixed

𝐺 (𝑦, 𝜂) +
1

𝑟
⟨𝜂 − 𝑦, 𝑗 (𝑦 − 𝑥)⟩ ≥ 0, ∀𝜂 ∈ 𝐾,

𝑇
𝑡
𝑥 = 𝑡𝑢 + (1 − 𝛿) (1 − 𝑡) 𝑥 + 𝛿∑

𝑖≥1

𝜎
𝑖,𝑡
𝑇
𝑖
𝑃
𝐾
(𝑦 − 𝜆𝐴𝑦) ,

∀𝑥 ∈ 𝐸.

(23)

Then, 𝑇
𝑡
is a strict contraction on 𝐸.

For 𝑥1, 𝑥2 ∈ 𝐸, 𝑦1 = 𝑇
𝑟
𝑥
1, 𝑦2 = 𝑇

𝑟
𝑥
2, we have

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑡
𝑥
1
− 𝑇
𝑡
𝑥
2󵄩󵄩󵄩󵄩󵄩
≤ (1 − 𝑡) (1 − 𝛿)

󵄩󵄩󵄩󵄩󵄩
𝑥
1
− 𝑥
2󵄩󵄩󵄩󵄩󵄩

+ 𝛿∑

𝑖≥1

𝜎
𝑖,𝑡

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
𝑃
𝐾
(𝑦
1
− 𝜆𝐴𝑦

1
)

−𝑇
𝑖
𝑃
𝐾
(𝑦
2
− 𝜆𝐴𝑦

2
)
󵄩󵄩󵄩󵄩󵄩

= (1 − 𝑡) (1 − 𝛿)
󵄩󵄩󵄩󵄩󵄩
𝑥
1
− 𝑥
2󵄩󵄩󵄩󵄩󵄩

+ 𝛿∑

𝑖≥1

𝜎
𝑖,𝑡

󵄩󵄩󵄩󵄩󵄩
𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥

1

−𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥

2󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝑡)
󵄩󵄩󵄩󵄩󵄩
𝑥
1
− 𝑥
2󵄩󵄩󵄩󵄩󵄩
.

(24)

Thus, for each 𝑡 ∈ (0, 1), there exists a unique 𝑧
𝑡
∈ 𝐸 such

that

𝐺 (𝑦, 𝜂) +
1

𝑟
⟨𝜂 − 𝑦, 𝑗 (𝑦 − 𝑧

𝑡
)⟩ ≥ 0, ∀𝜂 ∈ 𝐾,

𝑧
𝑡
= 𝑡𝑢 + (1 − 𝛿) (1 − 𝑡) 𝑧𝑡 + 𝛿∑

𝑖≥1

𝜎
𝑖,𝑡
𝑇
𝑖
𝑃
𝐾
(𝑦 − 𝜆𝐴𝑦) .

(25)

Lemma 10. Let 𝐸 be a real 𝑞-uniformly smooth Banach space
which is also uniformly convex. Let 𝐾 be a closed, convex, and
nonempty subset of 𝐸. For 𝑡 ∈ (0, 1), let {𝑧

𝑡
} be a net satisfying

(25), and assume thatF := ⋂
∞

𝑖=1
𝐹(𝑇
𝑖
𝑃
𝐾
(𝐼−𝜆𝐴)𝑇

𝑟
) ̸= 0. Then,

{𝑧
𝑡
} is bounded and admits at most one accumulation point in

F as 𝑡 → 0.

Proof. Let 𝑥∗ ∈ F. Then, using (25), we have

󵄩󵄩󵄩󵄩𝑧𝑡 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= ⟨𝑡 (𝑢 − 𝑥
∗
) + (1 − 𝑡) (1 − 𝛿) (𝑧𝑡 − 𝑥

∗
)

+ 𝛿∑

𝑖≥1

𝜎
𝑖,𝑡
(𝑇
𝑖
𝑃
𝐾
(𝑇
𝑟
𝑧
𝑡
− 𝜆𝐴𝑇

𝑟
𝑧
𝑡
) − 𝑥
∗
) ,

𝑗 (𝑧
𝑡
− 𝑥
∗
)⟩ ≤ 𝑡 ⟨𝑢 − 𝑥

∗
, 𝑗 (𝑧
𝑡
− 𝑥
∗
)⟩

+ (1 − 𝑡) (1−𝛿)
󵄩󵄩󵄩󵄩𝑧𝑡−𝑥

∗󵄩󵄩󵄩󵄩

2
+𝛿∑

𝑖≥1

𝜎
𝑖,𝑡

󵄩󵄩󵄩󵄩𝑧𝑡 − 𝑥
∗󵄩󵄩󵄩󵄩

2

= 𝑡 ⟨𝑢 − 𝑥
∗
, 𝑗 (𝑧
𝑡
− 𝑥
∗
)⟩ + (1 − 𝑡)

󵄩󵄩󵄩󵄩𝑧𝑡 − 𝑥
∗󵄩󵄩󵄩󵄩

2
,

(26)

which implies
󵄩󵄩󵄩󵄩𝑧𝑡 − 𝑥

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢 − 𝑥

∗󵄩󵄩󵄩󵄩 . (27)

Thus, {𝑧
𝑡
} is bounded.

Now, assume for the sake of contradiction that 𝑥󸀠 and 𝑥∗
are two distinct accumulation points of {𝑧

𝑡
} inF; then, there

exists a subnet {𝑧
𝑡
𝑠

} of {𝑧
𝑡
} such that 𝑧

𝑡
𝑠

→ 𝑥
󸀠 as 𝑠 → ∞,

and so we have the following estimates:

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑠

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

= ⟨𝑡
𝑠
(𝑢 − 𝑥

∗
) + (1 − 𝑡

𝑠
) (1 − 𝛿) (𝑧𝑡

𝑠

− 𝑥
∗
)

+𝛿∑

𝑖≥1

𝜎
𝑖,𝑡
(𝑇
𝑖
𝑃
𝐾
(𝑧
𝑡
𝑠

− 𝜆𝐴𝑧
𝑡
𝑠

) − 𝑥
∗
) , 𝑗 (𝑧

𝑡
𝑠

− 𝑥
∗
)⟩

≤ 𝑡
𝑠
⟨𝑢 − 𝑥

∗
, 𝑗 (𝑧
𝑡
𝑠

− 𝑥
∗
)⟩ + (1 − 𝑡

𝑠
)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑠

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

(28)

so that
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑠

− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑢 − 𝑥
∗
, 𝑗 (𝑧
𝑡
𝑠

− 𝑥
∗
)⟩ , (29)

and since 𝑧
𝑡
𝑠

→ 𝑥
󸀠 as 𝑠 → ∞, we get from (29)

󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠
− 𝑥
∗󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑢 − 𝑥
∗
, 𝑗 (𝑥
󸀠
− 𝑥
∗
)⟩ . (30)
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Applying similar argument to 𝑥
∗ as an accumulation

point of {𝑧
𝑡
} inF, we also get
󵄩󵄩󵄩󵄩󵄩
𝑥
∗
− 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑢 − 𝑥
󸀠
, 𝑗 (𝑥
∗
− 𝑥
󸀠
)⟩ . (31)

Adding these last two inequalities, we get

2
󵄩󵄩󵄩󵄩󵄩
𝑥
∗
− 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
∗
− 𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

2

, (32)

a contradiction, and thus 𝑥󸀠 = 𝑥
∗. This completes the proof.

Lemma 11. Let 𝐸 be a real 𝑞-uniformly smooth Banach space
which is also uniformly convex. Let 𝐾 be a closed, convex, and
nonempty subset of 𝐸. Let 𝑟 ∈ (0, 1) be fixed and {𝑡

𝑛
} ⊂ (0, 1)

such that lim
𝑛→∞

𝑡
𝑛
= 0 and lim

𝑛→∞
(𝑡
𝑛
/𝜎
𝑖,𝑛
) = 0 for all

𝑖 ∈ NI. Let {𝑧𝑡
𝑛

} be a sequence satisfying (25), and let F :=

⋂
∞

𝑖=1
𝐹(𝑇
𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
) ̸= 0. Then, lim

𝑛→∞
‖𝑧
𝑡
𝑛

− (𝑇
𝑖
𝑃
𝐾
(𝐼 −

𝜆𝐴))𝑇
𝑟
𝑧
𝑡
𝑛

‖ = 0, for all 𝑖 ∈ N.

Proof. For 𝑖 ∈ N and 𝑥∗ ∈ F, we have the following estimates
(using Lemma 7 establishing the existence of 𝑔):

𝑔 (
󵄩󵄩󵄩󵄩󵄩
(𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

− 𝑧
𝑡
𝑛

󵄩󵄩󵄩󵄩󵄩
)

= 𝑔 (
󵄩󵄩󵄩󵄩󵄩
[𝑥
∗
− (𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟z𝑡

𝑛

] − [𝑥
∗
− 𝑧
𝑡
𝑛

]
󵄩󵄩󵄩󵄩󵄩
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
∗
− (𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥
∗
− (𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

, 𝑗 (𝑥
∗
− 𝑧
𝑡
𝑛

)⟩

+
󵄩󵄩󵄩󵄩󵄩
𝑥
∗
− 𝑧
𝑡
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
∗
− 𝑧
𝑡
𝑛

󵄩󵄩󵄩󵄩󵄩

2

− 2

×⟨𝑥
∗
− 𝑧
𝑡
𝑛

+ 𝑧
𝑡
𝑛

−(𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

, 𝑗 (𝑥
∗
− 𝑧
𝑡
𝑛

)⟩

+
󵄩󵄩󵄩󵄩󵄩
𝑥
∗
− 𝑧
𝑡
𝑛

󵄩󵄩󵄩󵄩󵄩

2

= 2 ⟨𝑧
𝑡
𝑛

− (𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩ .

(33)

Using (25), we have

⟨𝑧
𝑡
𝑛

− 𝑥
∗
, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩

= 𝑡
𝑛
⟨𝑢 − 𝑥

∗
, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩

+ (1 − 𝑡
𝑛
) (1 − 𝛿) ⟨𝑧𝑡

𝑛

− 𝑥
∗
, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩ + 𝛿∑

𝑖≥1

𝜎
𝑖,𝑛

×⟨(𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

−𝑧
𝑡
𝑛

+𝑧
𝑡
𝑛

− 𝑥
∗
, 𝑗 (𝑧
𝑡
𝑛

−𝑥
∗
)⟩

= 𝑡
𝑛
⟨𝑢 − 𝑥

∗
, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩

+ 𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
⟨(𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

−𝑧
𝑡
𝑛

, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩

+ (1 − 𝑡
𝑛
) ⟨𝑧
𝑡
𝑛

− 𝑥
∗
, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩

(34)

which implies

𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
⟨𝑧
𝑡
𝑛

− (𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩

= 𝑡
𝑛
⟨𝑢 − 𝑧

𝑡
𝑛

, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩ .

(35)

Using this and (33), we get

𝛿

2
∑

𝑖≥1

𝜎
𝑖,𝑛
𝑔 (

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

− 𝑧
𝑡
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤ 𝑡
𝑛
⟨𝑢 − 𝑧

𝑡
𝑛

, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩ .

(36)

Thus,
𝛿

2
𝑔 (

󵄩󵄩󵄩󵄩󵄩
(𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛

− 𝑧
𝑡
𝑛

󵄩󵄩󵄩󵄩󵄩
)

≤
𝑡
𝑛

𝜎
𝑖,𝑛

⟨𝑢 − 𝑧
𝑡
𝑛

, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
∗
)⟩ , ∀𝑖 ∈ N.

(37)

Since {𝑧
𝑡
𝑛

} is bounded and 𝑡
𝑛
/𝜎
𝑖,𝑛

→ 0 as 𝑛 → ∞, we have
lim
𝑛→∞

𝑔(‖(𝑇
𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴))𝑇

𝑟
𝑧
𝑡
𝑛

− 𝑧
𝑡
𝑛

‖) = 0 for all 𝑖 ∈ N. By
property of 𝑔, lim

𝑛→∞
‖(𝑇
𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴))𝑇

𝑟
𝑧
𝑡
𝑛

− 𝑧
𝑡
𝑛

‖ = 0 for all
𝑖 ∈ N. This completes the proof.

Theorem 12. Let𝐸 be a real 𝑞-uniformly smooth Banach space
which is also uniformly convex. Let 𝐾 be a closed, convex, and
nonempty subset of 𝐸. Let 𝑟 ∈ (0, 1) be fixed and {𝑡

𝑛
} ⊂ (0, 1)

such that lim
𝑛→∞

𝑡
𝑛
= 0 and lim

𝑛→∞
(𝑡
𝑛
/𝜎
𝑖,𝑛
) = 0 for all

𝑖 ∈ NI. Let {𝑧𝑡
𝑛

} be a sequence satisfying (25), and let F :=

⋂
∞

𝑖=1
𝐹(𝑇
𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
) ̸= 0. If the duality mapping 𝑗 of 𝐸 is

weakly sequentially continuous, then {𝑧
𝑡
𝑛

} converges strongly to
an element inF.

Proof. Since {𝑧
𝑡
𝑛

} is bounded, there exists a subsequence say
{𝑧
𝑡
𝑛
𝑘

} of {𝑧
𝑡
𝑛

} that converges weakly to some point 𝑧 ∈ 𝐾.
Using demiclosedness property of [𝐼 − (𝑇

𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴))𝑇

𝑟
] at

0 for 𝑖 ∈ N, and the fact that lim
𝑘→∞

‖(𝑇
𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴))𝑇

𝑟
𝑧
𝑡
𝑛
𝑘

−

𝑧
𝑡
𝑛
𝑘

‖ = 0, we get that 𝑧 is a point inF. We also observe from
(33) that
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛
𝑘

− z
󵄩󵄩󵄩󵄩󵄩󵄩

2

= ⟨𝑡
𝑛
𝑘

(𝑢 − 𝑧) + (1 − 𝑡𝑛
𝑘

) (1 − 𝛿) (𝑧𝑡
𝑛
𝑘

− 𝑧)

+𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
𝑘

((𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)) 𝑇𝑟𝑧𝑡

𝑛
𝑘

− 𝑧) , 𝑗 (𝑧
𝑡
𝑛
𝑘

− 𝑧)⟩

≤ 𝑡
𝑛
𝑘

⟨𝑢 − 𝑧, 𝑗 (𝑧
𝑡
𝑛
𝑘

− 𝑧)⟩ + (1 − 𝑡
𝑛
𝑘

) (1 − 𝛿)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛
𝑘

− 𝑧
󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛
𝑘

− 𝑧
󵄩󵄩󵄩󵄩󵄩󵄩

2

= 𝑡
𝑛
𝑘

⟨𝑢 − 𝑧, 𝑗 (𝑧
𝑡n
𝑘

− 𝑧)⟩ + (1 − 𝑡
𝑛
𝑘

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛
𝑘

− 𝑧
󵄩󵄩󵄩󵄩󵄩󵄩

2

(38)
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which implies

󵄩󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛
𝑘

− 𝑧
󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨𝑢 − 𝑧, 𝑗 (𝑧
𝑡
𝑛
𝑘

− 𝑧)⟩ . (39)

Since 𝑗 admits weak sequential continuity, the last
inequality implies that the subsequence {𝑧

𝑡
𝑛
𝑘

} converges
strongly to 𝑧, and since {𝑧

𝑡
𝑛

} admits unique accumulation
point in F, then it converges strongly to 𝑧. This completes
the proof.

The following corollary follows fromTheorem 12.

Corollary 13. Let 𝐸 be a real 𝐿
𝑝
space, (1 < 𝑝 < ∞). Let 𝐾,

{𝑡
𝑛
}, F, and {𝑧

𝑡
𝑛

} be as in Theorem 12. Then, {𝑧
𝑡
𝑛

} converges
strongly to an element ofF.

Theorem 14. Let𝐸 be a real 𝑞-uniformly smooth Banach space
which is also uniformly convex. Let 𝐾 be a closed, convex, and
nonempty subset of𝐸. Let 𝑟 ∈ (0, 1) be fixed and {𝑡

𝑛
} a sequence

in (0, 1) such that lim
𝑛→∞

𝑡
𝑛
= 0 and lim

𝑛→∞
(𝑡
𝑛
/𝜎
𝑖,𝑛
) = 0

for all 𝑖 ∈ NI. Let {𝑧𝑡
𝑛

} be a sequence satisfying (25), and let
F := ⋂

∞

𝑖=1
𝐹(𝑇
𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
) ̸= 0. If for at least one 𝑖 in N,

𝑇
𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
is demicompact, then {𝑧

𝑡
𝑛

} converges strongly
to an element ofF.

Proof. For some fixed 𝑗
0

∈ N, let 𝑇
𝑗
0

𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
be

demicompact. Since lim
𝑛→∞

‖𝑇
𝑗
0

𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
𝑧
𝑡
𝑛

− 𝑧
𝑡
𝑛

‖ = 0,
there exists a subsequence say {𝑧

𝑡
𝑛
𝑘

} of {𝑧
𝑡
𝑛

} that converges
strongly to some point 𝑧 ∈ 𝐸. By continuity of𝑇

𝑖
𝑃
𝐾
(𝐼−𝜆𝐴)𝑇

𝑟

for all 𝑖 ∈ N, we have that 𝑧 ∈ F. But the sequence {𝑧
𝑡
𝑛

} admits
unique accumulation point inF; so, it converges strongly to
𝑧.

The following corollaries follow fromTheorem 14.

Corollary 15. Let 𝐸 be a real 𝐿
𝑝
space, (1 < 𝑝 < ∞). Let 𝐾,

{𝑡
𝑛
},F, and {𝑧

𝑡
𝑛

} be as in Theorem 14. If for at least one 𝑖 ∈ N,
the map 𝑇

𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
is demicompact, then {𝑧

𝑡
𝑛

} converges
strongly to an element ofF.

Corollary 16. Let𝐾 be a closed, convex, and nonempty subset
of a real Hilbert space 𝐻. Let {𝑡

𝑛
}, F, and {𝑧

𝑡
𝑛

} be as in
Theorem 14. Then, {𝑧

𝑡
𝑛

} converges strongly to an element ofF.

4. Iterative Convergence Theorem

We now state and prove the following theorem.

Theorem 17. Let𝐸 be a real 𝑞-uniformly smooth Banach space
which is also uniformly convex. Let 𝐾 be a closed, convex,
and nonempty subset of 𝐸. For some 𝜅 > 0, let 𝑇

𝑖
: 𝐾 →

𝐸𝑖 ∈ N and 𝐴 : 𝐾 → 𝐸 be a family of nonexpansive
maps and a 𝜅-inverse strongly accretive map, respectively. Let
𝐺 : 𝐾 × 𝐾 → R be a bifunction satisfying (𝐴1)–(𝐴4). Let
𝑃
𝐾
be a nonexpansive projection of 𝐸 onto 𝐾. For some fixed

real numbers 𝑟, 𝛿 ∈ (0, 1) and 𝜆 ∈ (0, (𝑞𝜅/𝑑
𝑞
)
1/(𝑞−1)

), define a
sequence {𝑥

𝑛
} iteratively by 𝑥

1
, 𝑢 ∈ 𝐸 and 𝑛 ∈ N as

𝐺 (𝑦
𝑛
, 𝜂) +

1

𝑟
⟨𝜂 − 𝑦

𝑛
, 𝑗 (𝑦
𝑛
− 𝑥
𝑛
)⟩ ≥ 0, ∀𝜂 ∈ 𝐾,

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + (1 − 𝛿) (1 − 𝛼𝑛) 𝑥𝑛 + 𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
𝑇
𝑖
𝑃
𝐾

× (𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
) ,

(40)

where {𝛼
𝑛
}, {𝜎
𝑖,𝑛
} ⊂ (0, 1) are sequences satisfying the following

conditions:

(i) lim
𝑛→∞

𝛼
𝑛
= 0,

(ii) ∑∞
𝑛=1

𝛼
𝑛
= ∞,

(iii) lim
𝑛→∞

∑
𝑖≥1

|𝜎
𝑖,𝑛+1

− 𝜎
𝑖,𝑛
| = 0.

Let𝐹 := [⋂∞
𝑖=1

𝐹(𝑇
𝑖
)]⋂EP(𝐺)⋂VI(𝐾, 𝐴) ̸= 0. If either the

duality map 𝑗 of 𝐸 is weakly sequentially continuous or for at
least one 𝑖 ∈ N, 𝑇

𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
is demicompact, then {𝑥

𝑛
}

converges strongly to some element in 𝐹.

Proof. Let 𝑥∗ ∈ F then, we claim that ‖𝑥
𝑛
− 𝑥
∗
‖ ≤ max{‖𝑢 −

𝑥
∗
‖, ‖𝑥
1
−𝑥
∗
‖} for all 𝑛 ≥ 1. It is clear that the claim is true for

𝑛 = 1. Assume that it is true for 𝑛 = 𝑘 for some 𝑘 ≥ 1, 𝑘 ∈ N.
Then,

󵄩󵄩󵄩󵄩𝑥𝑘+1 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑘) (1 − 𝛿)

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

+ 𝛿∑

𝑖≥1

𝜎
𝑖,𝑘

󵄩󵄩󵄩󵄩𝑇𝑖𝑃𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥𝑘 − 𝑇𝑖𝑃𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥
∗󵄩󵄩󵄩󵄩

≤ 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩 + (1 − 𝛼𝑘)

󵄩󵄩󵄩󵄩𝑥𝑘 − 𝑥
∗󵄩󵄩󵄩󵄩

≤ max {󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
∗󵄩󵄩󵄩󵄩} .

(41)

Hence, the result, and so {𝑥
𝑛
} is bounded. Furthermore, {𝑦

𝑛
},

{𝑇
𝑖
𝑃
𝐾
(𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
)}, and {𝐴𝑦

𝑛
} are each bounded.

We now show that lim
𝑛→∞

‖𝑥
𝑛+1

− 𝑥
𝑛
‖ = 0. Note that

𝑦
𝑛
= 𝑇
𝑟
𝑥
𝑛
, 𝑦
𝑛+1

= 𝑇
𝑟
𝑥
𝑛+1

, so that

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑇𝑟𝑥𝑛+1 − 𝑇𝑟𝑥𝑛
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 .

(42)

Define two sequences {𝛽
𝑛
} and {𝑤

𝑛
} by 𝛽

𝑛
:= (1−𝛿)𝛼

𝑛
+𝛿

and 𝑤
𝑛
:= (𝑥
𝑛+1

− 𝑥
𝑛
+ 𝛽
𝑛
𝑥
𝑛
)/𝛽
𝑛
. Then,

𝑤
𝑛
=
𝛼
𝑛
𝑢 + 𝛿∑

𝑖≥1
𝜎
𝑖,𝑛
𝑇
𝑖
𝑃
𝐾
(𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
)

𝛽
𝑛

. (43)
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Observe that {𝑤
𝑛
} is bounded and that

󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤𝑛
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼
𝑛+1

𝛽
𝑛+1

−
𝛼
𝑛

𝛽
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

‖𝑢‖ +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛿 (1 − 𝛼
𝑛+1

)

𝛽
𝑛+1

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩

+
𝛿𝑀

𝛽
𝑛+1

∑

𝑖≥1

󵄨󵄨󵄨󵄨𝜎𝑖,𝑛+1 − 𝜎𝑖,𝑛
󵄨󵄨󵄨󵄨

+
𝛿𝑀

𝛽
𝑛+1

𝛽
𝑛

󵄨󵄨󵄨󵄨𝛽𝑛 − 𝛽𝑛+1
󵄨󵄨󵄨󵄨 ,

(44)

for some positive real number𝑀. This implies

lim sup
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑤𝑛+1 − 𝑤𝑛

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩) ≤ 0, (45)

and by Lemma 4, lim
𝑛→∞

||𝑤
𝑛
− 𝑥
𝑛
|| = 0. Hence,

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛
󵄩󵄩󵄩󵄩 = 𝛽𝑛

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞. (46)

From (42) and (46), we have

󵄩󵄩󵄩󵄩𝑦𝑛+1 − 𝑦𝑛
󵄩󵄩󵄩󵄩 󳨀→ 0 as 𝑛 󳨀→ ∞. (47)

From (40), we have 𝑥
𝑛+1

− 𝑥
𝑛

= 𝛼
𝑛
(𝑢 − 𝑥

𝑛
) +

𝛿∑
𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑃
𝐾
(𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
) − 𝑥
𝑛
] which implies

𝛿

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑃
𝐾
(𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
) − 𝑥
𝑛
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥𝑛

󵄩󵄩󵄩󵄩 + 𝛼𝑛
󵄩󵄩󵄩󵄩𝑢 − 𝑥𝑛

󵄩󵄩󵄩󵄩 ,

(48)

and thus lim
𝑛→∞

‖∑
𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑃
𝐾
(𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
) − 𝑥
𝑛
]‖ = 0.

Let {𝑡
𝑛
} be a real sequence in (0, 1) satisfying the following

conditions:

lim
𝑛→∞

𝑡
𝑛
= 0, ∑

𝑖≥1

𝜎
𝑖,𝑛
= (1 − 𝑡

𝑛
) ,

lim
𝑛→∞

󵄩󵄩󵄩󵄩∑𝑖≥1 𝜎𝑖,𝑛 [𝑇𝑖𝑃𝐾 (𝑦𝑛 − 𝜆𝐴𝑦𝑛) − 𝑥𝑛]
󵄩󵄩󵄩󵄩

𝑡
𝑛

= 0.

(49)

Let 𝑧
𝑡
𝑛

∈ 𝐾 be the unique fixed point satisfying (25) for
each 𝑛 ∈ N, and let 𝑧

𝑡
𝑛

→ 𝑧 ∈ F as 𝑛 → ∞. Using (25) and
Lemma 2, we have the following estimates:

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛿) (1 − 𝑡𝑛) (𝑧𝑡
𝑛

− 𝑥
𝑛
)

+ 𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
(𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑧𝑡

𝑛

− 𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥𝑛

+𝑇
𝑖
𝑃
𝐾 (𝐼−𝜆𝐴)𝑇𝑟𝑥𝑛−𝑥𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+2𝑡
𝑛
⟨𝑢−𝑥

𝑛
, 𝑗 (𝑧
𝑡
𝑛

−𝑥
𝑛
)⟩

≤ [(1 − 𝛿) (1 − 𝑡𝑛)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩
+ 𝛿 (1 − 𝑡

𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥𝑛 − 𝑥𝑛]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

]

2

+ 2𝑡
𝑛
⟨𝑢 − 𝑥

𝑛
, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
𝑛
)⟩

= [(1 − 𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥𝑛 − 𝑥𝑛]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

]

2

+ 2𝑡
𝑛
⟨𝑢 − 𝑥

𝑛
, 𝑗 (𝑧
𝑡
𝑛

− 𝑥
𝑛
)⟩ .

(50)

This implies

⟨𝑢 − 𝑧
𝑡
𝑛

, 𝑗 (𝑥
𝑛
− 𝑧
𝑡
𝑛

)⟩

≤
𝑡
𝑛

2

󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡
𝑛

− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ (1 − 𝑡
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑧
𝑡n
− 𝑥
𝑛

󵄩󵄩󵄩󵄩󵄩

× (
𝛿
󵄩󵄩󵄩󵄩∑𝑖≥1 𝜎𝑖,𝑛 [𝑇𝑖𝑃𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥𝑛 − 𝑥𝑛]

󵄩󵄩󵄩󵄩

𝑡
𝑛

)

+
𝛿
2󵄩󵄩󵄩󵄩∑𝑖≥1 𝜎𝑖,𝑛 [𝑇𝑖𝑃𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥𝑛 − 𝑥𝑛]

󵄩󵄩󵄩󵄩

2

2𝑡
𝑛

,

(51)

and, hence,

lim sup
𝑛→∞

⟨𝑢 − 𝑧
𝑡
𝑛

, 𝑗 (𝑥
𝑛
− 𝑧
𝑡
𝑛

)⟩ ≤ 0. (52)

Moreover,

⟨𝑢 − 𝑧
𝑡
𝑛

, 𝑗 (𝑥
𝑛
− 𝑧
𝑡
𝑛

)⟩ = ⟨𝑢 − 𝑧, 𝑗 (𝑥
𝑛
− 𝑧)⟩

+ ⟨𝑢 − 𝑧, 𝑗 (𝑥
𝑛
− 𝑧
𝑡
𝑛

) − 𝑗 (𝑥
𝑛
− 𝑧)⟩

+ ⟨𝑧 − 𝑧
𝑡
𝑛

, 𝑗 (𝑥
𝑛
− 𝑧
𝑡
𝑛

)⟩ ,

(53)
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and since 𝑗 is norm-to-weak∗ uniformly continuous on
bounded sets, we have

lim sup
𝑛→∞

⟨𝑢 − 𝑧, 𝑗 (𝑥
𝑛
− 𝑧)⟩ ≤ 0. (54)

From the recursion formula (40) and Lemma 2, we have
the following:

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑧
󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛 (𝑢 − 𝑧) + (1 − 𝛼𝑛) (1 − 𝛿) (𝑥𝑛 − 𝑧)

+𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥𝑛 − 𝑇𝑖𝑃𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑧]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(1 − 𝛼
𝑛
) (1 − 𝛿) (𝑥𝑛 − 𝑧)

+𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑥𝑛 − 𝑇𝑖𝑃𝐾 (𝐼 − 𝜆𝐴)𝑇𝑟𝑧]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑧, 𝑗 (𝑥

𝑛+1
− 𝑧)⟩ ≤ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑧, 𝑗 (𝑥

𝑛+1
− 𝑧)⟩ ,

(55)

and by Lemma 5, we get that {𝑥
𝑛
} converges strongly to 𝑧 ∈

F.
To complete the proof, we show that 𝑧 ∈ EP(𝐺) ∩

VI(𝐾, 𝐴).
We start by showing that 𝑧 ∈ EP(𝐺).
Let 𝑥∗ ∈ 𝐹; then,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑇𝑟𝑥𝑛 − 𝑇𝑟𝑥

∗󵄩󵄩󵄩󵄩

2

≤ ⟨𝑇
𝑟
𝑥
𝑛
− 𝑇
𝑟
𝑥
∗
, 𝑗 (𝑥
𝑛
− 𝑥
∗
)⟩ = ⟨𝑦

𝑛
− 𝑥
∗
, 𝑗 (𝑥
𝑛
− 𝑥
∗
)⟩

≤
1

2
[
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− 𝑔 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩)] ;

(56)

thus,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− 𝑔 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩) .

(57)

Using (40) and (57), we have
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
(𝑢 − 𝑥

∗
) + (1 − 𝛼

𝑛
) (1 − 𝛿) (𝑥𝑛 − 𝑥

∗
)

+𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑃
𝐾 (𝐼 − 𝜆𝐴) 𝑦𝑛 − 𝑇𝑖𝑃𝐾 (𝐼 − 𝜆𝐴) 𝑥

∗
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛼

𝑛
) (1 − 𝛿)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝛿 (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛼

𝑛
) (1 − 𝛿)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ 𝛿 (1 − 𝛼
𝑛
) [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− 𝑔 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩)] .

(58)

This implies

𝛿 (1 − 𝛼
𝑛
) 𝑔 (

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2
≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1

󵄩󵄩󵄩󵄩 [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩] ,

(59)

and thus lim
𝑛→∞

𝛿(1 − 𝛼
𝑛
)𝑔(‖𝑥
𝑛
− 𝑦
𝑛
‖) = 0. Using property

of 𝑔, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (60)

From (60), we have 𝑦
𝑛
→ 𝑧 and 𝑗(𝑥

𝑛
−𝑦
𝑛
) → 0 as 𝑛 → ∞.

Since 𝑦
𝑛
= 𝑇
𝑟
𝑥
𝑛
, we have

𝐺 (𝑦
𝑛
, 𝜂) +

1

𝑟
⟨𝜂 − 𝑦

𝑛
, 𝑗 (𝑦
𝑛
− 𝑥
𝑛
)⟩ ≥ 0, ∀𝜂 ∈ 𝐾, (61)

It follows from (A2) that

⟨𝜂 − 𝑦
𝑛
,
𝑗 (𝑦
𝑛
− 𝑥
𝑛
)

𝑟
⟩ ≥ 𝐺 (𝜂, 𝑦

𝑛
) , (62)

and so using (A4), we have 𝐺(𝜂, 𝑧) ≤ 0 for all 𝜂 ∈ 𝐾. For real
number 𝑡, 0 < 𝑡 ≤ 1, and 𝜂 ∈ 𝐾, let 𝜂

𝑡
= 𝑡𝜂 + (1 − 𝑡)𝑧. Clearly,

𝜂
𝑡
∈ 𝐾. So, using (A1) and (A4), we have

0 = 𝐺 (𝜂
𝑡
, 𝜂
𝑡
) ≤ 𝑡𝐺 (𝜂

𝑡
, 𝜂) + (1 − 𝑡) 𝐺 (𝜂𝑡, 𝑧) ≤ 𝑡𝐺 (𝜂𝑡, 𝜂) .

(63)

This implies𝐺(𝜂
𝑡
, 𝜂) ≥ 0, and using this and (A3), we have

that 𝐺(𝑧, 𝜂) ≥ 0 for all 𝜂 ∈ 𝐾; hence, 𝑧 ∈ EP(𝐺).
Next, we show that 𝑧 ∈ VI(𝐾, 𝐵).
Let 𝑥∗ ∈ 𝐹 and 𝑏

𝑛
:= 𝑃
𝐾
(𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
); then,

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞
=
󵄩󵄩󵄩󵄩𝑃𝐾 (𝑦𝑛 − 𝜆𝐴𝑦𝑛) − 𝑃𝐾 (𝑥

∗
− 𝜆𝐴𝑥

∗
)
󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗
− 𝜆 (𝐴𝑦

𝑛
− 𝐴𝑥
∗
)
󵄩󵄩󵄩󵄩

𝑞

≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

𝑞
+ 𝜆 (𝑑

𝑞
𝜆
𝑞−1

− 𝑞𝜅)
󵄩󵄩󵄩󵄩𝐴𝑦𝑛 − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

𝑞
.

(64)
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Using recursion formula (40), we have the following
estimates:

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
(𝑢 − 𝑥

∗
) + (1 − 𝛼

𝑛
) (1 − 𝛿) (𝑥𝑛 − 𝑥

∗
)

+𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑏
𝑛
− 𝑥
∗
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑞

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞

+ (1 − 𝛼
𝑛
) (1 − 𝛿)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞

+ (1 − 𝛼
𝑛
) 𝛿
󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

𝑞
≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞

+ (1 − 𝛼
𝑛
) (1 − 𝛿)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞
+ (1 − 𝛼

𝑛
) 𝛿

× [
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

𝑞
+ 𝜆 (𝑑

𝑞
𝜆
𝑞−1

− 𝑞𝜅)
󵄩󵄩󵄩󵄩𝐴𝑦𝑛 − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

𝑞
]

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞
+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

𝑞
+ (1 − 𝛼

𝑛
) 𝛿𝜆 (𝑑

𝑞
𝜆
𝑞−1

− 𝑞𝜅)

×
󵄩󵄩󵄩󵄩𝐴𝑦𝑛 − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

𝑞
,

(65)

which implies, by Mean ValueTheorem, that

− (1 − 𝛼
𝑛
) 𝛿𝜆 (𝑑

𝑞
𝜆
𝑞−1

− 𝑞𝜅)
󵄩󵄩󵄩󵄩𝐴𝑦𝑛 − 𝐴𝑥

∗󵄩󵄩󵄩󵄩

𝑞

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞
+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

𝑞
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

𝑞

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞
+ 𝑞𝜎
𝑞−1

𝑛

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

𝑞
+ 𝑞𝜎
𝑞−1

𝑛

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥𝑛+1
󵄩󵄩󵄩󵄩 ,

(66)

where 𝜎
𝑛
is some nonnegative real number between ‖𝑥

𝑛
−𝑥
∗
‖

and ‖𝑥
𝑛+1

− 𝑥
∗
‖ for each 𝑛. Since {𝑥

𝑛
} is bounded, 𝛼

𝑛
→ 0,

and ‖𝑥
𝑛
−𝑥
𝑛+1

‖ → 0 as 𝑛 → ∞, we have ‖𝐴𝑦
𝑛
−𝐴𝑥
∗
‖ → 0

as 𝑛 → ∞.
We also have the following:

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑃𝐾 (𝑦𝑛 − 𝜆𝐴𝑦𝑛) − 𝑃𝐾 (𝑥

∗
− 𝜆𝐴𝑥

∗
)
󵄩󵄩󵄩󵄩

2

≤ ⟨𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
− (𝑥
∗
− 𝜆𝐴𝑥

∗
) , 𝑗 (𝑏

𝑛
− 𝑥
∗
)⟩

= ⟨𝑦
𝑛
− 𝑥
∗
, 𝑗 (𝑏
𝑛
− 𝑥
∗
)⟩ − 𝜆 ⟨𝐴𝑦

𝑛
− 𝐴𝑥
∗
, 𝑗 (𝑏
𝑛
− 𝑥
∗
)⟩

≤
1

2
[
󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− 𝑔 (

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩)]

− 𝜆 ⟨𝐴𝑦
𝑛
− 𝐴𝑥
∗
, 𝑗 (𝑏
𝑛
− 𝑥
∗
)⟩

(67)

so that

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− 𝑔 (

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩)

− 2𝜆 ⟨𝐴𝑦
𝑛
− 𝐴𝑥
∗
, 𝑗 (𝑏
𝑛
− 𝑥
∗
)⟩ .

(68)

We then have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
∗󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝛼
𝑛
(𝑢 − 𝑥

∗
) + (1 − 𝛼

𝑛
) (1 − 𝛿) (𝑥𝑛 − 𝑥

∗
)

+𝛿∑

𝑖≥1

𝜎
𝑖,𝑛
[𝑇
𝑖
𝑏
𝑛
− 𝑥
∗
]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
) (1 − 𝛿)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛼

𝑛
) 𝛿
󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛼

𝑛
) (1 − 𝛿)

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
) 𝛿 [

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩

2
− 𝑔 (

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑥𝑛
󵄩󵄩󵄩󵄩)

− 2𝜆 ⟨𝐴𝑦
𝑛
− 𝐴𝑥
∗
, 𝑗 (𝑏
𝑛
− 𝑥
∗
)⟩]

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+ (1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
− (1 − 𝛼

𝑛
)

×𝛿𝑔 (
󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑦𝑛

󵄩󵄩󵄩󵄩)−2𝛿𝜆 (1 − 𝛼𝑛) ⟨𝐴𝑦𝑛− 𝐴𝑥
∗
, 𝑗 (𝑏
𝑛
− 𝑥
∗
)⟩ ,

(69)

and so

(1 − 𝛼
𝑛
) 𝛿𝑔 (

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩)

≤ 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑢 − 𝑥
∗󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩

2
−
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

∗󵄩󵄩󵄩󵄩

2

− 2𝛿𝜆 (1 − 𝛼
𝑛
) ⟨𝐴𝑦
𝑛
− 𝐴𝑥
∗
, 𝑗 (𝑏
𝑛
− 𝑥
∗
)⟩ .

(70)

As 𝛼
𝑛
→ 0, ‖𝑥

𝑛
− 𝑥
𝑛+1

‖ → 0 and ‖𝐴𝑥
𝑛
− 𝐴𝑥
∗
‖ → 0 as

𝑛 → ∞, we get

lim
𝑛→∞

(1 − 𝛼
𝑛
) 𝛿𝑔 (

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩) = 0, (71)

which implies

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑏𝑛 − 𝑦𝑛
󵄩󵄩󵄩󵄩 = 0. (72)

Let

𝑀V = {
𝐴V + 𝑁

𝐾
V, V ∈ 𝐾,

0, V ∉ 𝐾.
(73)

Then, 𝑀 is maximal accretive. Let GF(𝑀) denote the
graph of𝑀.

Let (V, 𝑤) ∈ GF(𝑀). Since 𝑤 − 𝐴V ∈ 𝑁
𝐾
V and 𝑏

𝑛
∈ 𝐾, we

have ⟨𝑤 − 𝐴V, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩ ≥ 0 by definition of 𝑁

𝐾
V. Also, as

𝑏
𝑛
= 𝑃
𝐾
(𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
) (using property of the projection 𝑃

𝐾
), we

have

⟨𝑏
𝑛
− (𝑦
𝑛
− 𝜆𝐴𝑦

𝑛
) , 𝑗
𝑞
(V − 𝑏

𝑛
)⟩ ≥ 0 (74)

and, hence,

⟨
𝑏
𝑛
− 𝑦
𝑛

𝜆
+ 𝐴𝑦
𝑛
, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩ ≥ 0. (75)
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Using this, we obtain the following estimates:

⟨𝑤, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩ ≥ ⟨𝐴V, 𝑗

𝑞
(V − 𝑏

𝑛
)⟩

≥ ⟨𝐴V, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩

− ⟨
𝑏
𝑛
− 𝑦
𝑛

𝜆
+ 𝐴𝑦
𝑛
, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩

= ⟨𝐴V −
𝑏
𝑛
− 𝑦
𝑛

𝜆
− 𝐴𝑦
𝑛
, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩

= ⟨𝐴V − 𝐴𝑏
𝑛
, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩

+ ⟨𝐴𝑏
𝑛
− 𝐴𝑦
𝑛
, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩

− ⟨
𝑏
𝑛
− 𝑦
𝑛

𝜆
, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩

≥ ⟨𝐴𝑏
𝑛
− 𝐴𝑦
𝑛
, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩

− ⟨
𝑏
𝑛
− 𝑦
𝑛

𝜆
, 𝑗
𝑞
(V − 𝑏

𝑛
)⟩ ,

(76)

which implies ⟨𝑤, 𝑗
𝑞
(V − 𝑧)⟩ ≥ 0 (letting 𝑛 → ∞).

Since 𝑀 is maximal accretive, we obtained that 𝑧 ∈

𝑀
−1
(0), and, hence, 𝑧 ∈ VI(𝐾, 𝐴). This completes the

proof.

The following corollaries follow fromTheorem 17.

Corollary 18. Let 𝐸 = 𝐿
𝑝
space (1 < 𝑝 < ∞). Let𝐾, 𝑃

𝐾
, 𝛿,𝐴,

𝑟, and 𝑇
𝑖
, 𝑖 = 1, 2, . . . be as inTheorem 17. Let 𝜆 ∈ (0, (2𝜅/(𝑝 −

1))), and define sequences {𝑥
𝑛
} and {𝑦

𝑛
} by (40). Then, {𝑥

𝑛
}

and {𝑦
𝑛
} converge strongly to some element in 𝐹.

Corollary 19. Let 𝐸 = 𝐿
𝑝

space (1 < 𝑝 < ∞). Let 𝐾,
𝑃
𝐾
, 𝛿, 𝐴, 𝑟, and 𝑇

𝑖
, 𝑖 = 1, 2, . . . be as in Theorem 17. Let

𝜆 ∈ (0, (2𝜅/(𝑝 − 1))), and define sequences {𝑥
𝑛
} and {𝑦

𝑛
} by

(40). If for at least one 𝑖 in N,𝑇
𝑖
𝑃
𝐾
(𝐼 − 𝜆𝐴)𝑇

𝑟
is demicompact,

then the sequences {𝑥
𝑛
} and {𝑦

𝑛
} both converge strongly to some

element in 𝐹.

Corollary 20. Let 𝐸 = 𝐻 be a real Hilbert space. Let𝐾, 𝑃
𝐾
, 𝛿,

𝐴, 𝑟, and 𝑇
𝑖
, 𝑖 = 1, 2, . . . be as in Theorem 17. Let 𝜆 ∈ (0, 2𝜅),

and define sequences {𝑥
𝑛
} and {𝑦

𝑛
} by (40).Then, the sequences

{𝑥
𝑛
} and {𝑦

𝑛
} both converge strongly to some element in 𝐹.

Remark 21. Prototypes of the sequences {𝛼
𝑛
} and {𝜎

𝑖,𝑛
} in our

theorems are the following:

𝛼
𝑛
:=

1

𝑛 + 1
, 𝜎

𝑖,𝑛
:=

𝑛

2𝑖 (𝑛 + 1)
, ∀𝑖 ∈ N. (77)
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[4] P.-E. Maingé, “Approximation methods for common fixed
points of nonexpansive mappings in Hilbert spaces,” Journal of
Mathematical Analysis and Applications, vol. 325, no. 1, pp. 469–
479, 2007.

[5] P. Kumam and C. Jaiboon, “A new hybrid iterative method
for mixed equilibrium problems and variational inequality
problem for relaxed cocoercive mappings with application to
optimization problems,” Nonlinear Analysis: Hybrid Systems,
vol. 3, no. 4, pp. 510–530, 2009.

[6] L. Ceng, S. Guu, and J. C. Yao, “Hybrid iterative method for
finding common solutions of generalized mixed equilibrium
and fixed point problems,” Fixed PointTheory and Applications,
vol. 2012, article 92, 2012.

[7] L.-C. Ceng and J.-C. Yao, “Strong convergence theorems for
variational inequalities and fixed point problems of asymptot-
ically strict pseudocontractive mappings in the intermediate
sense,” Acta Applicandae Mathematicae, vol. 115, no. 2, pp. 167–
191, 2011.

[8] L. C. Ceng, Q. H. Ansari, M. M. Wong, and J. C. Yao, “Mann
type hybrid extragradient method for variational inequalities,
variational inclusions and fixed point problems,” Fixed Point
Theory, vol. 13, pp. 403–422, 2012.

[9] P. L. Combettes and S. A. Hirstoaga, “Equilibrium program-
ming in Hilbert spaces,” Journal of Nonlinear and Convex
Analysis, vol. 6, no. 1, pp. 117–136, 2005.

[10] H. He, S. Liu, and H. Zhou, “An explicit method for finding
common solutions of variational inequalities and systems of
equilibrium problems and fixed points of an infinite family of
nonexpansive mappings,” Nonlinear Analysis: Theory, Methods
& Applications, vol. 72, no. 6, pp. 3124–3135, 2010.

[11] P. Kumam and P. Katchang, “A viscosity of extragradient
approximation method for finding equilibrium problems, vari-
ational inequalities and fixed point problems for nonexpansive
mappings,”Nonlinear Analysis: Hybrid Systems, vol. 3, no. 4, pp.
475–486, 2009.

[12] W. Kumam and P. Kumam, “Hybrid iterative scheme by a
relaxed extragradient method for solutions of equilibrium
problems and a general system of variational inequalities
with application to optimization,” Nonlinear Analysis: Hybrid
Systems, vol. 3, no. 4, pp. 640–656, 2009.

[13] H. Y. Li and Y. F. Su, “Strong convergence theorem by a
new hybrid method for equilibrium problems and variational
inequality problems,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 72, no. 2, pp. 847–855, 2010.

[14] Z.Ma, L.Wang, andC.Hua, “Strong convergence of an iteration
method for mixed equilibrium problems and common fixed
point problems of a finite family of nonexpansive mappings in
Hilbert spaces,” International Mathematical Forum, vol. 6, no.
13–16, pp. 723–738, 2011.

[15] G. Marino, L. Muglia, and Y. Yao, “Viscosity methods for
common solutions of equilibrium and variational inequality
problems via multi-step iterative algorithms and common fixed
points,”NonlinearAnalysis:Theory,Methods&Applications, vol.
75, no. 4, pp. 1787–1798, 2012.

[16] D. R. Sahu, N. C. Wong, and J. C. Yao, “A unified hybrid
iterative method for solving variational inequalities involving
generalized pseudocontractive mappings,” SIAM Journal on
Control and Optimization, vol. 50, no. 4, pp. 2335–2354, 2012.



Journal of Mathematics 11

[17] K. Wattanawitoon, T. Jitpeera, and P. Kumam, “A new hybrid
general iterative algorithm for common solutions of generalized
mixed equilibrium problems and variational inclusions,” Jour-
nal of Inequalities and Applications, vol. 2012, article 138, 2012.

[18] D. J. Wen and Y. Chen, “Generalized iterative methods for
generalized equilibrium problems and fixed point problems of
k-strict pseudo-contractions,” Fixed Point Theory and Applica-
tions, vol. 2012, article 125, 2012.

[19] L.-C. Ceng, S.-M. Guu, H.-Y. Hu, and J.-C. Yao, “Hybrid shrink-
ing projection method for a generalized equilibrium problem,
a maximal monotone operator and a countable family of
relatively nonexpansive mappings,” Computers & Mathematics
with Applications, vol. 61, no. 9, pp. 2468–2479, 2011.

[20] W.Takahashi andK. Zembayashi, “Strong convergence theorem
by a newhybridmethod for equilibriumproblems and relatively
nonexpansive mappings,” Fixed Point Theory and Applications,
Article ID 528476, 11 pages, 2008.

[21] J. Chen, Y. J. Cho, andZ.Wan, “Shrinking projection algoriyhms
for equilibrium problems with bifunction defined on the dual
space of a Banach space,” Fixed Point Theory and Applications,
vol. 2011, article 92, 2011.

[22] W. Takahashi and K. Zembayashi, “Strong and weak con-
vergence theorems for equilibrium problems and relatively
nonexpansive mappings in Banach spaces,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 70, no. 1, pp. 45–57, 2009.

[23] H. Zegeye, E. U. Ofoedu, and N. Shahzad, “Convergence
theorems for equilibrium problem, variational inequality prob-
lem and countably infinite relatively quasi-nonexpansive map-
pings,” Applied Mathematics and Computation, vol. 216, no. 12,
pp. 3439–3449, 2010.

[24] W. V. Petryshyn, “A characterization of strict convexity of
Banach spaces and other uses of duality mappings,” vol. 6, pp.
282–291, 1970.

[25] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point
Theory, vol. 28 of Cambridge Studies in Advanced Mathematics,
Cambridge University Press, Cambridge, UK, 1990.

[26] T. Suzuki, “Strong convergence of Krasnoselskii and Mann’s
type sequences for one-parameter nonexpansive semigroups
without Bochner integrals,” Journal of Mathematical Analysis
and Applications, vol. 305, no. 1, pp. 227–239, 2005.

[27] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal
of the LondonMathematical Society. Second Series, vol. 66, no. 1,
pp. 240–256, 2002.

[28] H. K. Xu, “Inequalities in Banach spaces with applications,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 16, no.
12, pp. 1127–1138, 1991.

[29] S. Kamimura and W. Takahashi, “Strong convergence of a
proximal-type algorithm in a Banach space,” SIAM Journal on
Optimization, vol. 13, no. 3, pp. 938–945, 2002.

[30] E. Blum and W. Oettli, “From optimization and variational
inequalities to equilibriumproblems,”TheMathematics Student,
vol. 63, no. 1–4, pp. 123–145, 1994.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


