
OperettA: A prototype tool for the design, analysis and
development of multi-agent organizations

Daniel M. Okouya, Virginia Dignum
Dept. Information and Computing Sciences, Utrecht University

3508 TB Utrecht, The Netherlands

{maatari, virginia}@cs.uu.nl

ABSTRACT
OperettA is a graphical tool that supports the design, verification
and simulation of OperA models. It ensures consistency between
different design parts, provides a formal specification of the
organization model, and is prepared to generate a simulation of
the application domain.

Categories and Subject Descriptors
D.3.3 [Sofware Engineering]: Design Tools and Techniques

General Terms
Design

Keywords
Agent Organizations, Agent Software Engineering, Tool Support

1. INTRODUCTION
 The OperettA is an IDE (Integrated Development
Environment) developed to support the design, analysis and
development of agent organizations using the OPERA
methodology [1]. It is intended to support software engineers and
developers in both developing and documenting the various
aspects of specifying and designing a multi-agent organization.
The OperA model proposes an expressive way for defining open
organizations that explicitly distinguishes between the
organizational model and the agents who will act in it. That is,
OperA enables the specification of organizational requirements
and objectives, and at the same time allows participants to have
the freedom to act according to their own capabilities and
demands. The OperA framework consists of three interrelated
models. The organizational model (OM) is the result of the
observation and analysis of the domain and describes the desired
behavior of the organization, as determined by the organizational
stakeholders in terms of objectives, norms, roles, interactions and
ontologies. The social model (SM) maps organizational roles to
specific agents. Agreements concerning the role(s) an agent will
play and the conditions of the participation are described in social
contracts. The interaction model (IM) specifies the interaction
agreements between role-enacting agents as interaction contracts.

The Electronic Institution Development Environment (EIDE) for
ISLANDER which results in an AMELI [2] implementation can
be seen as similar to OperettA. However, EIDE is developed
among other things for the specification of fully regimented
institutions, and as such does not meet the OperA’s requirements
of internal autonomy and collaboration autonomy [1]. OperettA
has been implemented following the model driven software
development paradigm, which enables the introduction and
combination of different formal methods hence enabling the
modeling activity through systematic advices and model design
consistency checking.

2. THE OperettA ARCHICTECTURE
The Operetta prototype is implemented using MetaEdit+1, a
generic customizable model driven software development
environment suitable for prototyping. The prototype incorporates
Racer DL2 reasoning system, SWI-prolog interpreter3, MCMAS4
model checker and Brahms5 as a possible simulation
environment. In the following section we present the different
features currently included in OperettA, which architecture is
depicted in Figure 1.

M o del Lev el

Implementatio n Level

OperA PSMOperA PIM

M eta LevelOperA
concep tua l framework

(Meta-Model)

OperA
Ontology

sem ant icss yntax

OWL

OperA Ontology
instan tia tion Racer-DL

MCM AS / P ro log
specif ica tion

OperA PSMOperA PIMOperA PSM

OperA Brahms
simula tion

bas ed on

translates to

G
U

I
O

perettA

OperA
Mode ling language

OperA P IM

M CMAS
SW I-Prolog

Brahm s

P lug in s

bas ed on

analys is

Instance of

M o del Lev el

Implementatio n Level

OperA PSMOperA PIM

M eta LevelOperA
concep tua l framework

(Meta-Model)

OperA
Ontology

sem ant icss yntax

OWL

OperA Ontology
instan tia tion Racer-DL

MCM AS / P ro log
specif ica tion

OperA PSMOperA PIMOperA PSM

OperA Brahms
simula tion

bas ed on

translates to

G
U

I
O

perettA

OperA
Mode ling language

OperA P IM

M CMAS
SW I-Prolog

Brahm s

P lug in s

bas ed on

analys is

Instance of

Figure 1 - The OperettA Conceptual Architecture

1 http://www.metacase.com/

Cite as: Title, Author(s), Proc. of 7th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and
Parsons (eds.), May, 12-16., 2008, Estoril, Portugal, pp. XXX-XXX.
Copyright © 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

2 http://www.sts.tu-harburg.de/~r.f.moeller/racer/
3 http://www.swi-prolog.org/
4 http://sse.cs.ucl.ac.uk/projects/mcmas/
5 http://www.agentisolutions.com/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357575337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Following the model driven paradigm, OperettA consists of 3
different levels. The Meta Level is directly based on the OperA
conceptual framework and provides its syntax and semantic
specifications. Syntax is derived from the OperA BNF and
semantics are defined as an OWL6 ontology. At the Model Level
the development environment for OperA OM specifications is
defined. It provides a multi-viewed GUI (graphical user interface)
and model verification support, as described in section 3. At this
level, a Platform Independent Model (PIM) is constructed for the
organization. Finally, the Implementation Level (under
construction) enables the generation of Platform Specific Models
(PSM). Brahms is currently used as a simulation environment for
organizations in which normative properties of the organization
can be verified for different populations with emergent behavior.

3. FEATURES OF OperettA
The current version of OperettA provides graphical capabilities to
design and analyze the OM for an application domain. The tool
generates an OWL description of the OM for the domain used for
consistency checking. This description also enables the
integration of organizational information to be used by other
(semantic web) based applications or services. Following is a list
of the main features of OperettA.

Figure 2: The OperettA Prototype

− Multiple views with hierarchical integration support. The
tool allows for the edition of multiple hierarchically
structured views. Currently the views supported are: social
structure view, role definition view, and interaction structure
view. In figure 2, the Social Structure view is depicted. The
hierarchical nesting of views is provided for modularity
support. For instance, the user can define the organization
interaction structure with as many layers as necessary to
keep each layer manageable in size; thus an infinite nesting
of interaction structure is allowed in order to simplify his
visualization. It is also possible to choose between using
dialog box and using another layer of abstraction to define
role behavior separately, while defining the social structure
of the organization.

− Syntax checking. The tool supports complete syntax
checking of the models. Constraints over modeling diagrams
are defined through the meta-model. A systematic syntax
analysis is applied before closing a dialog box. As a general
rule in OperettA, syntax checking is applied at design time.
Examples of syntax checks are: (i) Naming: it is not possible

6 http://www.w3.org/TR/owl-ref/

for two entities to have the same name, for example, two
roles with the same name; (ii) Typing: checks type usage
against model definition and domain ontology. For example,
checks the type of predicate arguments in pattern and norm
definitions. (iii) Links: it is not possible to link two
interactions scenes without a transition in between.

− Static analysis. We use Racer DL to validate the OWL
instance derived from the PIM against the OperA ontology.
This evaluation provides advices on structural properties. For
example, if two roles cooperate in a scene but without having
a social link, OperettA will advise the designer to define
such a dependency, suggesting an adequate dependency
type. More generally checks could be classified in: (i) Intra-
models properties: a role- dependency is defined for an
objective or sub-objective that is not defined for either of the
two roles. (ii) Inter-models properties: A role-dependency
requires an interaction scene which is not part of the
interaction structure.

− Dynamic and normative analysis. It enables the
verification of the consequences of norms and organizational
constraints. For example: it will indicate a possible
inconsistency for a role with objective ‘buy food’ and a norm
‘FORBIDDEN (spend-money). Note that these checks do not
yet include checking different interpretations and violations.

− Report Generation Containing the full model, including
graphics and index over all the design entities. Documents
and images can be saved in different formats.

4. CONCLUSION AND FUTURE WORK
OperettA provides a number of features that are extremely useful
in the modeling of complex environments that require the
integration of organizational structures and individual (emergent)
behaviors. We are currently working on the integration of OperA
and Brahms for the specification and evaluation of integrated
models [3]. In the future, other implementation platforms (such as
Repast) will be supported, and the tool will be integrated in an
OperA open environment that enables the participation of
heterogeneous agents in the same organization.
Acknowledgements. This research is funded by the Netherlands
Organization for Scientific Research (NWO), through Veni-grant
639.021.509. The authors are grateful to C. Tick, R. van der
Meulen and D. Acay for their contributions to the project.

5. REFERENCES
[1] V. Dignum, F. Dignum, J.J. Meyer (2004): An Agent-

Mediated Approach to the Support of Knowledge Sharing
in Organizations. Knowledge Engineering Review,
Cambridge University Press, 19(2), pp. 147-174, 2004.

[2] Esteva, M., Rosell, B., Rodriguez-Aguilar, J. A., and
Arcos, J. L. (2004). AMELI: An Agent-Based Middleware
for Electronic Institutions. In: Proc. AAMAS’04. 236-243

[3] B.J. van Putten, V. Dignum, M. Sierhuis, S. Wolfe (2008):
Integrating Organizational and Emergent Views on Agent-
Based Modeling. Submitted.

	1. INTRODUCTION
	2. THE OperettA ARCHICTECTURE
	3. FEATURES OF OperettA
	4. CONCLUSION AND FUTURE WORK
	5. REFERENCES

