1 Introduction

The performance of a parachute might be influenced by t
aerodynamic and fluid-structure interactions of its canopy wi
other parachute canopies. In this paper, we describe our comp
tional model for such interactions, and present numerical resu
from simulations for two different types of interactions. In the firs
case, our investigation focuses on the aerodynamic and flu
structure interactions between the canopies of two separate pé%}l:
chutes coming close to each other. We study how the aerodynamic
interactions depend on the horizontal distance between the para-
chutes. We also study how such interactions are influenced when
our computational model includes the fluid-structure interactior&s
(FSI) between the parachute canopy and the surrounding flg
field. For this, we start with given initial relative positions. In th
second case, we investigate the aerodynamic interactions betw:
the canopies of a cluster of parachutes. We simulate the inter
tions for clusters with three, four, five, and six canopies, and in;
vestigate how such interactions depend on the number of canop
as well as the spatial arrangement of these canopies.

These simulations, in addition to providing some initial result
for the aerodynamic and fluid-structure interactions between par
chute canopies, show how the computational methods descriB‘fjé1
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Aerodynamic Interactions
Between Parachute Ganopies

Aerodynamic interactions between parachute canopies can occur when two separate
parachutes come close to each other or in a cluster of parachutes. For the case of two
separate parachutes, our computational study focuses on the effect of the separation
distance on the aerodynamic interactions, and also focuses on the fluid-structure interac-
tions with given initial relative positions. For the aerodynamic interactions between the
canopies of a cluster of parachutes, we focus on the effect of varying the number and
arrangement of the canopiefDOI: 10.1115/1.1530634

can be used for parachute applications. The interaction between
IIlhe parachute canopy and the surrounding flow field is an essential
mponent of a realistic parachute simulation, and thus the ability
% predict parachute FSI is recognized as an important challenge
fthin the parachute research communiifis-5]. In our follow-on
udies, we plan to take more extensively into account the com-
dgx FSI involved at various stages of parachute systems, from
itial deployment to landing.
or the cases simulated in this paper, the parachutes are oper-
Ihg at sufficiently low speeds, and, therefore, the aerodynamics
iIS_governed by the Navier-Stokes equations of incompressible
ows. For the problems where we limit our attention to the aero-
\Mnamic interaction between the parachute canopies, the canopies
are not experiencing any shape changes or relative motions.
herefore, in those simulations, the fluid dynamics computations
Feﬁbased on a stabilized semi-discrete finite element formulation,
[. For the cases that involve fluid-structure interactions, on the
her hand, the canopies undergo shape changes. In such cases,
Rause the spatial domain occupied by the fluid is vartiieg,
eforming with respect to time, we use the Deforming-Spatial-
omain/Stabilized Space-TiméDSD/SST formulation, [6—8],
%%ch was developed for flow problems with moving boundaries
interfaces. Both the semi-discrete and space-time methods
have been implemented for parallel computing, and the results
presented here are from simulations carried out on a CRAY T3E-
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Computational Model

2.1 Fluid Dynamics. Let Q,CR"sd be the spatial fluid me-
chanics domain with boundary, at timete(0,T), where the
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subscriptt indicates the time-dependence of the spatial domain2.3 Semi-Discrete Formulation of Fluid Dynamics. Let us
and its boundary. The Navier-Stokes equations of incompressilolensider a fixed spatial domaiQ and its boundaryi’, where

flows can be written o), andVte (0,T) as subscriptt is dropped from botH), andI';. The domain(} is
au discretized into subdomair@®, e=1,2,---,n,;, whereny, is the
pl —+u- Vu_f) —V.o=0, (1) number of elements. For this discretization, the finite element trial
at function spaces ) for velocity andS}, for pressure, and the cor-
V.-u=0, (2) responding test function space§ andvg are defined as follows:
wherep, u, andf are the density, velocity, and the external force, Sa={uM|u"e[H™(Q)]"s,u"=g" on I'g}, (11)
respectively. The stress tensaris defined as
peciively. Vh=(wWiwh e [HI(Q)Pswi=0 on I'y},  (12)
o(p,u)=—pl+2ue(u). 3
- . Sp=Vp=1{ala"e H"(Q)}. (13)
Herep, I, andu are the pressure, identity tensor, and the viscos-
ity, respectively. The strain rate tensor is defined as HereH!"(Q) is the finite-dimensional function space o¥&rThe
1 stabilized formulation is written as follows: Find'e S and p"
g(u)zi((VuH(Vu)T)_ (@) e8)such thatvw"e V] andg"e Vh:
h
Both Dirichlet and Neumann-type boundary conditions are ac- f Wh.p(aiJruh.th_fh)dQ
counted for: a at
u=g on (I'y)y,, n-o=h on (I'y)}. 5
g on (T (Fon ®) +f s(wh):o(ph,uh)dﬂ—j wh. h"dl
Here ('y)4 and ('), are complementary subsets of the boundary Q Ty
I'y, nis the unit normal vector at the boundary, ajpdndh are
given functions. A divergence-free velocity field is specified as the + | q"v.uhdQ
initial condition. Q
2.2 Structural Dynamics. Let QfCR"™d be the spatial do- Ne| 1
main bounded by'$, wheren, =2 for membranes and, =1 +> e—[rsupgouh~th+ TpspV "]
for cables. The boundary; is composed of I(})4 and ('})y. e=1 JoeP
Here, the superscripts” corresponds to the structure. The equa- X [£(p",uM) — pf "dQ
tions of motion for the structural system are
Ne|
2
A Y e v.emo 6) +2 | eV wipV-ude=o, (14)
dt dt € Q
wherey is the displacemenp? is the material density® are the Where
external body forcesg® is the Cauchy stress tensor, ands the - owh . . -
mass-proportional damping coefficient. The damping provides ad- L(@\W)=p| ——+u"- VW =V o(q",W). (15)
ditional stability and is used for problems where time accuracy is
not important. In this formulation, 7sypg, Tpspa, @nd 7 gc are the stabilization

We use a total Lagrangian formulation of the problem. Thuparameters|,6,9].
stresses are expressed in terms of the second Piola-Kirchoff stre . . . . .
tensorS, which Fi)s related to the Cauchy stress tensor through asf.'4 DSOSST Formulatlon O.f Fluid Dynamlcs. In gﬂscret;-
kinematic transformation. Under the assumption of large displacgation of the space-time domain, the time intervalf(Qis parti-
ments and rotations, small strains, and no material damping, ed into sublntgrvalsnf(tn tn+1), wheret, andt,,, belong
membranes and cables are treated as Hookean materials with fih@" ordered series of time levels-Gy<t,---<ty=T. Let (),
ear elastic properties. For membranes, under the assumption of t andl"n:l“tn to simplify the notation. The space-time slab

plane stressS becomes Q, is defined as the domain enclosed by the surfétesQ, . 1,
I o o andP,, whereP, is the lateral surface o, described by the
SI=(AnGIGN+ u[G'GI*+ GKGI')E,, (7) boundaryl', ast traversed .

The Dirichlet and Neumann-type boundary conditions are
specified over R,)4 and (P,)y,. For this discretization, the finite
— 2\ element trial function spacesS(), for velocity and S}), for
M= 200 (®) pressure, and the corresponding test function spardy, (and

(' 24im) h defined as foll
Here,E,, are the components of the Cauchy-Green strain tensQr), p)n are defined as follows:

G‘_j are the components of the contravariant metric tensor in the (SN p={u"u" e [H"(Q,)]"s4,u"=g" on (Pr)gt,  (16)
original configuration, and, and u,, are Lameconstants. For h b 1 o
cables, under the assumption of uniaxial tens®becomes (V)n={W"w"e[H™(Q,)]"4w"=0 on (P,)g}, (17)

SH=E GUGUE,,, 9) (SPa=(Vpa={a"lg"e H"(Qp)}. (18)

whereE. is the cable Young’s modulus. To account for stiffnessHere th(Qn) is the finite-dimensional function space over the

proportional material damping, the Hookean stress-strain relaticdpace-time slatQ,. Over the element domain, this space is

ships defined by Eqs7) and(9) are modified, and&,, is replaced formed by using first-order polynomials in both space and time.

by Ey,, where The interpolation functions are continuous in space but discon-
tinuous in time.

where for the case of isotropic plane stress

Ex=Ew+ {Ex. (10) The DSD/SST formulation is written as follows: Giveuhﬁg ,
Here, ¢ is the stiffness proportional damping coefficient diglis  find u"e (Sy), and p"e (Sp), such thatyw"e (V}), and g"
the time derivative ofy, . eV
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aun
f wh-p(WJruh-Vuhffh)dQ

n

+f e(w"): o(p",uMdQ— wh-h'dp

n (Pn

+j q"V-u"dQ

n

+j (W) -p((uM) = (u"),)dQ
Q

(Nen .
LSME
+2 J —EE (g W)
e=1 Jqo® P

ponents: moving the mesh for as long as it is possible, and full or
partial remeshing(i.e., generating a new set of elements, and
sometimes also a new set of nogesen the element distortion
becomes too high.

In mesh moving strategies, the only rule the mesh motion needs
to follow is that at the moving boundary or interface the normal
velocity of the mesh has to match the normal velocity of the fluid.
Beyond that, the mesh can be moved in any way desired, with the
main objective being to reduce the frequency of remeshing. In
three-dimensional simulations, if the remeshing requires calling
an automatic mesh generator, the cost of automatic mesh genera-
tion becomes a major reason for trying to reduce the frequency of
remeshing. Furthermore, when we remesh, we need to project the
solution from the old mesh to the new one. This introduces pro-
jection errors. Also, in three-dimensional, the computing time
consumed by this projection step is not a trivial one. All these

[L(p"uM)—pf"]dQ factors_consti_tute a strong motivation for designing_ mesh update
' strategies which minimize the frequency of remeshing.
Ne| In some cases where the changes in the shape of the computa-
+2 gV -WpV-u"dQ=0. (19) tional domain allow it, a special-purpose mesh moving method
e=1Jqp can be used in conjunction with a special-purpose mesh generator.
This formulation is sequentially applied to all space-time slal SUCh €ases, ﬁlmulatlons candbe _cr?rrled OIUF without cg(ljll_r!g arll
Q0.01,Q5, . .. Q1. The computation starts with automatic mesh generator and without solving any additiona
0rclr<2 N-1 equations to determine the motion of the mesh. One of the earliest
(uh)5=u0, V-u,=0 on Q. (20) examples of that, two-dimensional computation of sloshing in a
) o laterally vibrating container, can be found[i]. Extension of that
Here 7 sy is the stabilization parametésee[9,10]). For an ear- ¢oncept to three-dimensional parallel computation of sloshing in a
lier, detailed reference on this formulation & vertically vibrating container can be found fib2].

2.5 Structural Dynamics Formulation. The semi-discrete /N general, however, we use an automatic mesh moving

finite element formulation for the structural dynamics is based g§heme[13], to move the nodal points, as governed by the equa-
the principle of virtual work: tions of linear elasticity, and where the smaller elements enjoy

more protection from mesh deformation. The motion of the inter-
nal nodes is determined by solving these additional equations,
with the boundary conditions for these mesh motion equations
specified in such a way that they match the normal velocity of the
fluid at the interface. In computation of fluid-structure interactions
of parachute systems reported here we use this automatic mesh
moving technique.

Ay ay' h
pS—— -WdQS+ | 7pS—— wdQs+ | SuSE(W")dOS
Qs dt Qs dt Qs
0 0 0

= f (t+ pSES)-wdQs, (21)
a7

Here the weighting functiom" is also the virtual displacement. .
The air pressure force on the canopy surface is representedy Numerical Examples
vectort. The pressure term is a “follower force(Since it “fol- For fluid dynamics equations we use tetrahedral meshes. The
lows” the deforming structural geomedryand thus increases the parachute canopy surface is representative of a C-9 parachute for
overall nonlinearity of the formulation. The left-hand-side termgases with only aerodynamic interactions, and a T-10 parachute
of Eq. (21) are referred to in the original configuration and théor cases with fluid-structure interactions. In simulation of the
right-hand-side terms for the deformed configuration at time  aerodynamic interactions between two parachutes, the parachute
Upon discretization using appropriate function spaces, a nonlimodel consists of the canopy and a paratrooper. For the fluid-
ear system of equations is obtained at each time-step. In solvigtgucture interactions of two parachutes and for the aerodynamic
that nonlinear system with an iterative method, we use the followateractions in clusters of parachutes, we only consider the cano-
ing incremental form: pies. Figure 1 shows the parachute canopy surface mesh and and
M (1-a)yC the paratrooper. The simulations are carried out at a Reynolds
IR St e number (based on the canopy diametenf approximately 5
BAt? BAt

+(1-a)K|Ad'=R/, I
million.

(22)

where
C=9yM+¢K. (23)

Here M is the mass matrixK is the consistent tangent matrix
associated with the internal elastic forc€sis a damping matrix,

R' is the residual vector at thigh iteration, andAd' is theith
increment in the nodal displacements vealoin Eq.(22), all of

the terms known from the previous iteration are lumped into the
residual vectoR'. The parameterg,3,y are part of the Hilber-
Hughes-Taylor,[11], scheme, which is used here for time-
integration.

2.6 Mesh Update Method. How the mesh should be up-
dated depends on several factors, such as the complexity of the
moving boundary or interface and overall geometry, how unsteady
the moving boundary or interface is, and how the starting mesiy. 1 Aerodynamic interactions of two parachutes. Parachute
was generated. In general, the mesh update could have two ceamopy (left), paratrooper (right ).
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Fig. 2 Aerodynamic interactions of two parachutes. Velocity (left), vorticity
(right ).

3.1 Aerodynamic Interactions of Two Parachutes. A se- 11,714 triangular faces representing the paratrooper. The size of
ries of simulations are carried out for the aerodynamic interactiottee volume meshes varies from case to case. For the case with
between two separate parachutes, where each parachute cons@igontal spacing of 0.5 radii, we have approximately 1.8 million
of a round canopy and a paratrooper. The horizontal spacinggements and 300,000 nodes, resulting in approximately 1.2 mil-
defined to be along the-axis, range from zero to fivénflated lion coupled equations. In each of the meshes, the mesh refine-
parachute radii. Vertical spacings are held constant at appromient is controlled around the paratroopers and canopies and in the
mately 3.3 feet between the apex of the lower canopy and the feetke and interaction regions, so that we have a larger concentra-
of the paratrooper. The parachute model is representative ofi@n of elements in these regions. Descent velocities of 22 ft/s are
28-foot diameter and 28-gore C-9 personnel parachute. Represepresented by imposing a uniform upstream boundary condition
tation of the canopy geometry comes from a separate structuaflthe lower boundary. Other boundary conditions are, no-slip
dynamics simulation with a prescribed pressure distribution. Suwrenditions on the paratrooper and canopy surfaces, zero normal
face representations for the paratrooper and other boundarievéfocity and zero shear stress conditions at the side boundaries,
the fluid dynamics model are obtained using a variety of in-hous@d traction-free conditions at the outflow boundary.
modeling tools. Separate unstructured volume meshes are genefFhe simulations show a strong, adverse interaction between the
ated for each case studied. For each of the examples, the twaper and lower parachutes for spacings of 1.0 radius and less. In
paratrooper and canopy systems are identical, with 8288 triangbese cases, the upper canopy “loses its wind,” and experiences
lar faces describing both the upper and lower canopy surfaces, agjative drag for spacings of 0.5 radii and less. This indicates a

Journal of Applied Mechanics JANUARY 2003, Vol. 70 / 53
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Fig. 3 Aerodynamic interactions of two parachutes. Influence of horizontal
spacing on drag, D.

potential for parachute collapse. The flow fields for horizontalamic forces acting on the individual canopies. Time-averaged
spacings of 0.5, 2.0, and 5.0 radii are shown in Fig. 2, with tHferce values were obtained for each horizontal spacing over
velocity vectors on the left and the vorticity on the right. Foequivalent time periods, and after the flow fields were fully estab-
horizontal spacing of 0.5 radii, we clearly see that the uppéshed. Figure 3 shows, for the lower and upper canopies and for
canopy is caught in the wake of the lower one. For horizontapacings ranging from 0.0 to 5.0 radii, the time-averaged drag
spacing of 5.0 radii, on the other hand, very little interaction i€D). The forces shown in these figures are scaled from the com-
seen between the two parachute flow fields. The 2.0 radii sepapated values based on the C-9 physical dimensions, the prescribed
tion case shows a clear interaction between the two parachumsscent velocity, and the air densftiiese scalings differ from the

but without the upper canopy being trapped in the wake of tteealing that was initially presentefl4]). For both canopies, the
lower one. drag values are fitted to a curve using cubic splines and assuming

The interaction between the two parachutes for different hothat the curvea) is symmetric at zero horizontal spacing aftl

zontal spacings is further understood when we look at the aerodpproaches a constant value as the horizontal spacing becomes

Horizontal Force (pounds)

@—® Upper Parachute

15 O O Lower Parachute

(; O.L.'r ; 1.L5 ; 2?5 3 35 4 45 5
Horizontal Spacing (inflated parachute radii)

-

Fig. 4 Aerodynamic interactions of two parachutes. Influence of horizontal
spacing on F,.
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Fig. 5 Fluid-structure interactions of two parachutes. T-10 \-«

parachute structural model.
I .p 1. F
G )
J

\C i 127 s s / 1.91s

large. At large horizontal spacings, the drag for the lower canopy
is expected to approach the same value as the drag for the upper ) ) i .
canopy. We see that the drag on the upper parachute can bec b Fluid-structure interactions of two parachutes. Vorticity
negative for severe interactions between the parachutes, suchiggur instants.
for spacing of 0.5 radii and less. For the 2.0 radii separation case,
the drag on the upper canopy remains positive. However, in this )
case there is a clear interaction between the two parachutes, wieRer canopy is allowed to deform due to the response of the
could possibly lead to severe structural responses in the fluRgrachute structure to the fluid dynamics forces. The structural
structure interactions of the upper parachute. For the 5.0 ragljnamics model is divided into six distinct material groups; a
separation, minimal interaction is seen in the drag history plot§émbrane group, three cable groups, a truss group, and a concen-
with minor difference in drag for the two parachutes. The prosiated mass group. The parachute canopy is composed of 780
imity of the parachutes to the side and outflow boundaries hB§luadratic membrane elements. We have distinct cable groups for
some role in the presence of these differences. Extending ﬂlﬁ)@ suspension lines, the canopy radial relnforcements, and the
boundaries further out and carrying out the computations furth@$ers. The truss and concentrated mass groups define the payload,
in time would make the differences in the time-averaged values hich has a total weight of 250 pounds. The structure is allowed
D for the two parachutes even smaller. to fall completely unconstrained. o _
Figure 4 shows the time-averaged values of the horizontal forceThe parachute canopies are represented as interior surfaces in
componentF, . Again, the force histories are fitted to a curvéhe fluid meshwith 17,490 triangular faces on both the upper and
using cubic splines to only show the qualitative trends for the
horizontal forces acting on the two parachutes as function of their
horizontal separation. For cases with no interaction between the
two canopies, the average valueRfis expected to be zero. The
horizontal forces acting on the two canopies are mostly attractive,
and are more substantially so for spacings of 2.0 radii and less.
For the spacings of 3.0 radii and more, the interaction becomes
less evident and the difference betwégsfor the upper and lower
canopies begins to decrease. The flow field in the wake of each
parachute is very unsteady and shows no discernible time-periodic
behavior. For these larger spacings, extending the boundaries fur-
ther out and carrying out the computations further in time would
bring the time-averaged values Bf closer to zero.

4488844488 ERBATAREABHRALUNN
"Hl.lll!lE:gkﬁlﬂﬂlllui\“‘
I8UIRER SR RE agRAHER!

RauEIEaEd

241658 R ATRABABL
#RNITHREEARERILEY

3.2 Fluid-Structure Interactions of Two Parachutes. In
this simulation, initially the two parachutes have a horizontal
spacing of 42 ft, which is approximately &flated radii, and a
vertical spacing of 56 ft. Here, the parachute model is representa-
tive of a standard U.S. Army T-10 personnel parachute. The T-10
is a “flat extended skirt canopy” composed of a 35-foot diameter
canopy and 30 suspension lines each 29.4 ft long. The canopy is
called a “flat extended skirt canopy” because in its constru¢eed
unstressedconfiguration it is composed of a main circular section
with a circular vent at the apex and an inverted flat ring section,
which lies under the main section and is connected to the main
section at the outer radius. The lines connect to four risers which
attach the payloatbr paratrooper The suspension lines continue
as 30 gore-to-gore reinforcements through the parachute canopy
and meet at the apex. For the T-10, the vent diameter and the skjif 7 Fluid-structure interactions of two parachutes. Struc-
width are both 3.5 ft. tural motion and differential pressure distribution at t=0.00,

Here the lower canopy is treated as a rigid body, while th&64, 1.27, and 1.91 seconds.
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z = 0 plane cluster configuration y = 0 plane

Fig. 8 Aerodynamic interactions in parachute clusters. Vorticity.

lower canopy surfacgésThe typical size of the volume mesh isary conditions for the lower canopy and at the outer boundaries
approximately 3.5 million elements and 580 thousand nodes, @re identical to the conditions used in the previous example.
sulting in approximately 4.6 million coupled equations with the The coupling is achieved iteratively, by transferring the infor-
DSD/SST formulation. The automatic mesh update method deation between the fluid and structure with a least-squares pro-
scribed earlier is employed to handle the canopy shape chandestion. Figure 5 shows the parachute structural model used at the
with occasional remeshing of the fluid domain. The surface for thstart of the simulation.

upper canopy is assigned a no-slip boundary condition, with ve-Figure 6 shows, at four instants during the simulation, the vor-
locities coming from the structural dynamics solution. The boundicity field surrounding the two parachutes. The deformation and
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motion of the upper canopy is evident. Figure 7 shows, at tlvhen the horizontal spacing between the parachutes is two canopy
same four instants, the structural dynamics of the upper parachugalii or less. We also studied how the interactions between the two
parachutes are influenced when we include in our computational
model the fluid-structure interaction§FSl). The significant
mount of structural response we observe in this study for the
er parachute makes it clear that the FSI play a key role in
king this class of simulations more realistic. In the second case,
focused on the aerodynamic interactions between the canopies
a cluster of parachutes, and investigated the nature of these
feractions for three, four, five, and six canopies. In this study, we
ere able to see the dependence of these interactions not only on
#¥%e number of canopies but also on the spatial arrangement of
ése canopies.
This class of simulations can provide a better understanding of

X . tf interactions between parachute canopies and help identify the
case. For the 5-canopy cluster with a parachute in the center, p P P fy

h imatelv 2.5 mill | : d 450.000 nod narios under which the interactions are most severe. In the
ave approximately 2.5 million elements an WUV NOUES, 165505 of severe interactions, more sophisticated fluid-structure in-

sulting in approximately 1.9 million coupled equations. Mesh 1&g o tion models would be required to accurately represent the
finement is controlled around the canopies and in the wake aﬂgponse of the parachute structure

interaction regions. As with the previous example, descent veloci-
ties of 22.0 ft/s are represented by imposing a uniform upstream
boundary condition at the lower boundary, and no-slip conditioscknowledgment

are imposed on the canopy surfaces. . . .
The computed flow fields at the end of the simulations fro The work reported in this paper was partially sponsored by

these preliminary simulations are shown in Fig. 8, with the clust rASA JSC, AFOSR, and by the Natick Soldier Center.
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