
arate
f two
ration
erac-
the

r and

Downloaded From
K. Stein
Department of Physics,

Bethel College,
St. Paul, MN 55112

T. Tezduyar

V. Kumar

S. Sathe

Mechanical Engineering,
Rice University,

MS 321,
Houston, TX 77005

R. Benney
Natick Soldier Center,

Natick, MA 01760

E. Thornburg

C. Kyle

U.S. Military Academy,
West Point, NY 10996

T. Nonoshita
Nepon, Inc.,

Kanagawa, Japan

Aerodynamic Interactions
Between Parachute Canopies
Aerodynamic interactions between parachute canopies can occur when two sep
parachutes come close to each other or in a cluster of parachutes. For the case o
separate parachutes, our computational study focuses on the effect of the sepa
distance on the aerodynamic interactions, and also focuses on the fluid-structure int
tions with given initial relative positions. For the aerodynamic interactions between
canopies of a cluster of parachutes, we focus on the effect of varying the numbe
arrangement of the canopies.@DOI: 10.1115/1.1530634#
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1 Introduction
The performance of a parachute might be influenced by

aerodynamic and fluid-structure interactions of its canopy w
other parachute canopies. In this paper, we describe our com
tional model for such interactions, and present numerical res
from simulations for two different types of interactions. In the fir
case, our investigation focuses on the aerodynamic and fl
structure interactions between the canopies of two separate
chutes coming close to each other. We study how the aerodyn
interactions depend on the horizontal distance between the p
chutes. We also study how such interactions are influenced w
our computational model includes the fluid-structure interacti
~FSI! between the parachute canopy and the surrounding
field. For this, we start with given initial relative positions. In th
second case, we investigate the aerodynamic interactions bet
the canopies of a cluster of parachutes. We simulate the inte
tions for clusters with three, four, five, and six canopies, and
vestigate how such interactions depend on the number of cano
as well as the spatial arrangement of these canopies.

These simulations, in addition to providing some initial resu
for the aerodynamic and fluid-structure interactions between p
chute canopies, show how the computational methods descr
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can be used for parachute applications. The interaction betw
the parachute canopy and the surrounding flow field is an esse
component of a realistic parachute simulation, and thus the ab
to predict parachute FSI is recognized as an important challe
within the parachute research community,@1–5#. In our follow-on
studies, we plan to take more extensively into account the c
plex FSI involved at various stages of parachute systems, f
initial deployment to landing.

For the cases simulated in this paper, the parachutes are
ating at sufficiently low speeds, and, therefore, the aerodynam
is governed by the Navier-Stokes equations of incompress
flows. For the problems where we limit our attention to the ae
dynamic interaction between the parachute canopies, the cano
are not experiencing any shape changes or relative moti
Therefore, in those simulations, the fluid dynamics computati
are based on a stabilized semi-discrete finite element formula
@6#. For the cases that involve fluid-structure interactions, on
other hand, the canopies undergo shape changes. In such c
because the spatial domain occupied by the fluid is varying~i.e.,
deforming! with respect to time, we use the Deforming-Spatia
Domain/Stabilized Space-Time~DSD/SST! formulation, @6–8#,
which was developed for flow problems with moving boundar
and interfaces. Both the semi-discrete and space-time met
have been implemented for parallel computing, and the res
presented here are from simulations carried out on a CRAY T
1200 supercomputer.

2 Computational Model

2.1 Fluid Dynamics. Let V t,Rnsd be the spatial fluid me-
chanics domain with boundaryG t at time tP(0,T), where the
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subscriptt indicates the time-dependence of the spatial dom
and its boundary. The Navier-Stokes equations of incompress
flows can be written onV t and;tP(0,T) as

rS ]u

]t
1u•“u2fD2“•s50, (1)

“•u50, (2)

wherer, u, andf are the density, velocity, and the external forc
respectively. The stress tensors is defined as

s~p,u!52pI12m«~u!. (3)

Herep, I , andm are the pressure, identity tensor, and the visc
ity, respectively. The strain rate tensor is defined as

«~u!5
1

2
~~“u!1~“u!T!. (4)

Both Dirichlet and Neumann-type boundary conditions are
counted for:

u5g on ~G t!g , n•s5h on ~G t!h . (5)

Here (G t)g and (G t)h are complementary subsets of the bound
G t , n is the unit normal vector at the boundary, andg andh are
given functions. A divergence-free velocity field is specified as
initial condition.

2.2 Structural Dynamics. Let V t
s,Rnxd be the spatial do-

main bounded byG t
s , wherenxd52 for membranes andnxd51

for cables. The boundaryG t
s is composed of (G t

s)g and (G t
s)h .

Here, the superscript ‘‘s’’ corresponds to the structure. The equ
tions of motion for the structural system are

rsS d2y

dt2
1h

dy

dt
2fsD2“•ss50, (6)

wherey is the displacement,rs is the material density,fs are the
external body forces,ss is the Cauchy stress tensor, andh is the
mass-proportional damping coefficient. The damping provides
ditional stability and is used for problems where time accurac
not important.

We use a total Lagrangian formulation of the problem. Th
stresses are expressed in terms of the second Piola-Kirchoff s
tensorS, which is related to the Cauchy stress tensor throug
kinematic transformation. Under the assumption of large displa
ments and rotations, small strains, and no material damping
membranes and cables are treated as Hookean materials wit
ear elastic properties. For membranes, under the assumptio
plane stress,S becomes

Si j 5~ l̄mGi j Gkl1mm@Gil Gjk1GikGjl # !Ekl , (7)

where for the case of isotropic plane stress

l̄m5
2lmmm

~lm12mm!
. (8)

Here,Ekl are the components of the Cauchy-Green strain ten
Gi j are the components of the contravariant metric tensor in
original configuration, andlm and mm are Lame´ constants. For
cables, under the assumption of uniaxial tension,S becomes

S115EcG
11G11E11, (9)

whereEc is the cable Young’s modulus. To account for stiffnes
proportional material damping, the Hookean stress-strain relat
ships defined by Eqs.~7! and~9! are modified, andEkl is replaced
by Êkl , where

Êkl5Ekl1zĖkl. (10)

Here,z is the stiffness proportional damping coefficient andĖkl is
the time derivative ofEkl .
Journal of Applied Mechanics
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2.3 Semi-Discrete Formulation of Fluid Dynamics. Let us
consider a fixed spatial domainV and its boundaryG, where
subscriptt is dropped from bothV t and G t . The domainV is
discretized into subdomainsVe, e51,2,¯ ,nel , wherenel is the
number of elements. For this discretization, the finite element t
function spacesS u

h for velocity andS p
h for pressure, and the cor

responding test function spacesV u
h andV p

h are defined as follows:

S u
h5$uhuuhP@H1h~V!#nsd,uh8gh on Gg%, (11)

V u
h5$whuwhP@H1h~V!#nsd,wh80 on Gg%, (12)

S p
h5V p

h5$qhuqhPH1h~V!%. (13)

HereH1h(V) is the finite-dimensional function space overV. The
stabilized formulation is written as follows: FinduhPS u

h and ph

PS p
h such that;whPV u

h andqhPV p
h :

E
V

wh
•rS ]uh

]t
1uh

•“uh2f hDdV

1E
V

«~wh!:s~ph,uh!dV2E
Gh

wh
•hhdG

1E
V

qh
“•uhdV

1(
e51

nel E
Ve

1

r
@tSUPGruh

•¹wh1tPSPG¹qh#

3@Ł ~ph,uh!2rf h#dV

1(
e51

nel E
Ve

tLSIC“•whr“•uhdV50, (14)

where

Ł ~qh,wh!5rS ]wh

]t
1uh

•“whD2“•s~qh,wh!. (15)

In this formulation,tSUPG, tPSPG, andtLSIC are the stabilization
parameters,@6,9#.

2.4 DSDÕSST Formulation of Fluid Dynamics. In discreti-
zation of the space-time domain, the time interval (0,T) is parti-
tioned into subintervalsI n5(tn ,tn11), wheretn and tn11 belong
to an ordered series of time levels 05t0,t1¯,tN5T. Let Vn
5V tn

andGn5G tn
to simplify the notation. The space-time sla

Qn is defined as the domain enclosed by the surfacesVn , Vn11 ,
and Pn , wherePn is the lateral surface ofQn described by the
boundaryGn as t traversesI n .

The Dirichlet and Neumann-type boundary conditions a
specified over (Pn)g and (Pn)h . For this discretization, the finite
element trial function spaces (S u

h)n for velocity and (S p
h)n for

pressure, and the corresponding test function spaces (V u
h)n and

(V p
h)n are defined as follows:

~S u
h!n5$uhuuhP@H1h~Qn!#nsd,uh8gh on ~Pn!g%, (16)

~V u
h!n5$whuwhP@H1h~Qn!#nsd,wh80 on ~Pn!g%, (17)

~S p
h!n5~V p

h!n5$qhuqhPH1h~Qn!%. (18)

Here H1h(Qn) is the finite-dimensional function space over th
space-time slabQn . Over the element domain, this space
formed by using first-order polynomials in both space and tim
The interpolation functions are continuous in space but disc
tinuous in time.

The DSD/SST formulation is written as follows: Given (uh)n
2 ,

find uhP(S u
h)n and phP(S p

h)n such that;whP(V u
h)n and qh

P(V p
h)n :
JANUARY 2003, Vol. 70 Õ 51
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E
Qn

wh
•rS ]uh

]t
1uh

•“uh2f hDdQ

1E
Qn

«~wh!:s~ph,uh!dQ2E
(Pn)h

wh
•hhdP

1E
Qn

qh
“•uhdQ

1E
Vn

~wh!n
1
•r~~uh!n

12~uh!n
2!dV

1 (
e51

(nel)n E
Qn

e

tLSME

r
Ł ~qh,wh!•

@Ł ~ph,uh!2rfh#dQ

1(
e51

nel E
Qn

e
tLSIC“•whr“•uhdQ50. (19)

This formulation is sequentially applied to all space-time sla
Q0 ,Q1 ,Q2 , . . . ,QN21 . The computation starts with

~uh!0
25u0 , “•u050 on V0 . (20)

HeretLSME is the stabilization parameter~see@9,10#!. For an ear-
lier, detailed reference on this formulation see@6#.

2.5 Structural Dynamics Formulation. The semi-discrete
finite element formulation for the structural dynamics is based
the principle of virtual work:

E
V0

s
rs

d2yh

dt2
•whdVs1E

V0
s
hrs

dyh

dt
•whdVs1E

V0
s
Sh:dE~wh!dVs

5E
V t

s
~ t1rsf s!•whdVs. (21)

Here the weighting functionwh is also the virtual displacemen
The air pressure force on the canopy surface is represente
vector t. The pressure term is a ‘‘follower force’’~since it ‘‘fol-
lows’’ the deforming structural geometry! and thus increases th
overall nonlinearity of the formulation. The left-hand-side term
of Eq. ~21! are referred to in the original configuration and t
right-hand-side terms for the deformed configuration at timet.

Upon discretization using appropriate function spaces, a non
ear system of equations is obtained at each time-step. In sol
that nonlinear system with an iterative method, we use the follo
ing incremental form:

F M

bDt2 1
~12a!gC

bDt
1~12a!K GDdi5Ri , (22)

where

C5hM1zK . (23)

Here M is the mass matrix,K is the consistent tangent matri
associated with the internal elastic forces,C is a damping matrix,
Ri is the residual vector at thei th iteration, andDdi is the i th
increment in the nodal displacements vectord. In Eq. ~22!, all of
the terms known from the previous iteration are lumped into
residual vectorRi . The parametersa,b,g are part of the Hilber-
Hughes-Taylor, @11#, scheme, which is used here for tim
integration.

2.6 Mesh Update Method. How the mesh should be up
dated depends on several factors, such as the complexity o
moving boundary or interface and overall geometry, how unste
the moving boundary or interface is, and how the starting m
was generated. In general, the mesh update could have two
52 Õ Vol. 70, JANUARY 2003
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ponents: moving the mesh for as long as it is possible, and fu
partial remeshing~i.e., generating a new set of elements, a
sometimes also a new set of nodes! when the element distortion
becomes too high.

In mesh moving strategies, the only rule the mesh motion ne
to follow is that at the moving boundary or interface the norm
velocity of the mesh has to match the normal velocity of the flu
Beyond that, the mesh can be moved in any way desired, with
main objective being to reduce the frequency of remeshing
three-dimensional simulations, if the remeshing requires cal
an automatic mesh generator, the cost of automatic mesh ge
tion becomes a major reason for trying to reduce the frequenc
remeshing. Furthermore, when we remesh, we need to projec
solution from the old mesh to the new one. This introduces p
jection errors. Also, in three-dimensional, the computing tim
consumed by this projection step is not a trivial one. All the
factors constitute a strong motivation for designing mesh upd
strategies which minimize the frequency of remeshing.

In some cases where the changes in the shape of the com
tional domain allow it, a special-purpose mesh moving meth
can be used in conjunction with a special-purpose mesh gener
In such cases, simulations can be carried out without calling
automatic mesh generator and without solving any additio
equations to determine the motion of the mesh. One of the ear
examples of that, two-dimensional computation of sloshing in
laterally vibrating container, can be found in@6#. Extension of that
concept to three-dimensional parallel computation of sloshing
vertically vibrating container can be found in@12#.

In general, however, we use an automatic mesh mov
scheme,@13#, to move the nodal points, as governed by the eq
tions of linear elasticity, and where the smaller elements en
more protection from mesh deformation. The motion of the int
nal nodes is determined by solving these additional equatio
with the boundary conditions for these mesh motion equati
specified in such a way that they match the normal velocity of
fluid at the interface. In computation of fluid-structure interactio
of parachute systems reported here we use this automatic m
moving technique.

3 Numerical Examples
For fluid dynamics equations we use tetrahedral meshes.

parachute canopy surface is representative of a C-9 parachut
cases with only aerodynamic interactions, and a T-10 parac
for cases with fluid-structure interactions. In simulation of t
aerodynamic interactions between two parachutes, the parac
model consists of the canopy and a paratrooper. For the fl
structure interactions of two parachutes and for the aerodyna
interactions in clusters of parachutes, we only consider the ca
pies. Figure 1 shows the parachute canopy surface mesh and
the paratrooper. The simulations are carried out at a Reyn
number ~based on the canopy diameter! of approximately 5
million.

Fig. 1 Aerodynamic interactions of two parachutes. Parachute
canopy „left …, paratrooper „right ….
Transactions of the ASME
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Fig. 2 Aerodynamic interactions of two parachutes. Velocity „left …, vorticity
„right ….
o

n

o

t

e
u
e

,

e of
with

on
mil-
fine-
n the
ntra-
are
tion
slip
rmal
ries,

the
s. In
ces
s a
3.1 Aerodynamic Interactions of Two Parachutes. A se-
ries of simulations are carried out for the aerodynamic interacti
between two separate parachutes, where each parachute co
of a round canopy and a paratrooper. The horizontal spaci
defined to be along thex-axis, range from zero to five~inflated!
parachute radii. Vertical spacings are held constant at appr
mately 3.3 feet between the apex of the lower canopy and the
of the paratrooper. The parachute model is representative
28-foot diameter and 28-gore C-9 personnel parachute. Repre
tation of the canopy geometry comes from a separate struc
dynamics simulation with a prescribed pressure distribution. S
face representations for the paratrooper and other boundari
the fluid dynamics model are obtained using a variety of in-ho
modeling tools. Separate unstructured volume meshes are g
ated for each case studied. For each of the examples, the
paratrooper and canopy systems are identical, with 8288 trian
lar faces describing both the upper and lower canopy surfaces
hanics
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11,714 triangular faces representing the paratrooper. The siz
the volume meshes varies from case to case. For the case
horizontal spacing of 0.5 radii, we have approximately 1.8 milli
elements and 300,000 nodes, resulting in approximately 1.2
lion coupled equations. In each of the meshes, the mesh re
ment is controlled around the paratroopers and canopies and i
wake and interaction regions, so that we have a larger conce
tion of elements in these regions. Descent velocities of 22 ft/s
represented by imposing a uniform upstream boundary condi
at the lower boundary. Other boundary conditions are, no-
conditions on the paratrooper and canopy surfaces, zero no
velocity and zero shear stress conditions at the side bounda
and traction-free conditions at the outflow boundary.

The simulations show a strong, adverse interaction between
upper and lower parachutes for spacings of 1.0 radius and les
these cases, the upper canopy ‘‘loses its wind,’’ and experien
negative drag for spacings of 0.5 radii and less. This indicate
JANUARY 2003, Vol. 70 Õ 53
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Fig. 3 Aerodynamic interactions of two parachutes. Influence of horizontal
spacing on drag, D .
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potential for parachute collapse. The flow fields for horizon
spacings of 0.5, 2.0, and 5.0 radii are shown in Fig. 2, with
velocity vectors on the left and the vorticity on the right. F
horizontal spacing of 0.5 radii, we clearly see that the up
canopy is caught in the wake of the lower one. For horizon
spacing of 5.0 radii, on the other hand, very little interaction
seen between the two parachute flow fields. The 2.0 radii sep
tion case shows a clear interaction between the two parach
but without the upper canopy being trapped in the wake of
lower one.

The interaction between the two parachutes for different h
zontal spacings is further understood when we look at the aer
Y 2003
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namic forces acting on the individual canopies. Time-avera
force values were obtained for each horizontal spacing o
equivalent time periods, and after the flow fields were fully est
lished. Figure 3 shows, for the lower and upper canopies and
spacings ranging from 0.0 to 5.0 radii, the time-averaged d
(D). The forces shown in these figures are scaled from the c
puted values based on the C-9 physical dimensions, the presc
descent velocity, and the air density~these scalings differ from the
scaling that was initially presented,@14#!. For both canopies, the
drag values are fitted to a curve using cubic splines and assum
that the curve~a! is symmetric at zero horizontal spacing and~b!
approaches a constant value as the horizontal spacing bec
Fig. 4 Aerodynamic interactions of two parachutes. Influence of horizontal
spacing on Fx .
Transactions of the ASME
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large. At large horizontal spacings, the drag for the lower can
is expected to approach the same value as the drag for the u
canopy. We see that the drag on the upper parachute can be
negative for severe interactions between the parachutes, su
for spacing of 0.5 radii and less. For the 2.0 radii separation c
the drag on the upper canopy remains positive. However, in
case there is a clear interaction between the two parachutes, w
could possibly lead to severe structural responses in the fl
structure interactions of the upper parachute. For the 5.0 r
separation, minimal interaction is seen in the drag history pl
with minor difference in drag for the two parachutes. The pro
imity of the parachutes to the side and outflow boundaries
some role in the presence of these differences. Extending
boundaries further out and carrying out the computations fur
in time would make the differences in the time-averaged value
D for the two parachutes even smaller.

Figure 4 shows the time-averaged values of the horizontal fo
component,Fx . Again, the force histories are fitted to a curv
using cubic splines to only show the qualitative trends for
horizontal forces acting on the two parachutes as function of t
horizontal separation. For cases with no interaction between
two canopies, the average value ofFx is expected to be zero. Th
horizontal forces acting on the two canopies are mostly attract
and are more substantially so for spacings of 2.0 radii and l
For the spacings of 3.0 radii and more, the interaction beco
less evident and the difference betweenFx for the upper and lower
canopies begins to decrease. The flow field in the wake of e
parachute is very unsteady and shows no discernible time-per
behavior. For these larger spacings, extending the boundaries
ther out and carrying out the computations further in time wo
bring the time-averaged values ofFx closer to zero.

3.2 Fluid-Structure Interactions of Two Parachutes. In
this simulation, initially the two parachutes have a horizon
spacing of 42 ft, which is approximately 3~inflated! radii, and a
vertical spacing of 56 ft. Here, the parachute model is represe
tive of a standard U.S. Army T-10 personnel parachute. The T
is a ‘‘flat extended skirt canopy’’ composed of a 35-foot diame
canopy and 30 suspension lines each 29.4 ft long. The cano
called a ‘‘flat extended skirt canopy’’ because in its constructed~or
unstressed! configuration it is composed of a main circular secti
with a circular vent at the apex and an inverted flat ring secti
which lies under the main section and is connected to the m
section at the outer radius. The lines connect to four risers wh
attach the payload~or paratrooper!. The suspension lines continu
as 30 gore-to-gore reinforcements through the parachute ca
and meet at the apex. For the T-10, the vent diameter and the
width are both 3.5 ft.

Here the lower canopy is treated as a rigid body, while

Fig. 5 Fluid-structure interactions of two parachutes. T-10
parachute structural model.
Journal of Applied Mechanics
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upper canopy is allowed to deform due to the response of
parachute structure to the fluid dynamics forces. The struct
dynamics model is divided into six distinct material groups;
membrane group, three cable groups, a truss group, and a con
trated mass group. The parachute canopy is composed of
biquadratic membrane elements. We have distinct cable group
the suspension lines, the canopy radial reinforcements, and
risers. The truss and concentrated mass groups define the pay
which has a total weight of 250 pounds. The structure is allow
to fall completely unconstrained.

The parachute canopies are represented as interior surfac
the fluid mesh~with 17,490 triangular faces on both the upper a

Fig. 6 Fluid-structure interactions of two parachutes. Vorticity
at four instants.

Fig. 7 Fluid-structure interactions of two parachutes. Struc-
tural motion and differential pressure distribution at tÄ0.00,
0.64, 1.27, and 1.91 seconds.
JANUARY 2003, Vol. 70 Õ 55
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Fig. 8 Aerodynamic interactions in parachute clusters. Vorticity.
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lower canopy surfaces!. The typical size of the volume mesh
approximately 3.5 million elements and 580 thousand nodes
sulting in approximately 4.6 million coupled equations with t
DSD/SST formulation. The automatic mesh update method
scribed earlier is employed to handle the canopy shape chan
with occasional remeshing of the fluid domain. The surface for
upper canopy is assigned a no-slip boundary condition, with
locities coming from the structural dynamics solution. The bou
Y 2003
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ary conditions for the lower canopy and at the outer bounda
are identical to the conditions used in the previous example.

The coupling is achieved iteratively, by transferring the info
mation between the fluid and structure with a least-squares
jection. Figure 5 shows the parachute structural model used a
start of the simulation.

Figure 6 shows, at four instants during the simulation, the v
ticity field surrounding the two parachutes. The deformation a
Transactions of the ASME
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motion of the upper canopy is evident. Figure 7 shows, at
same four instants, the structural dynamics of the upper parac

3.3 Aerodynamic Interactions in Parachute Clusters. A
series of simulations are carried out for the aerodynamic inte
tions between the canopies in a cluster of parachutes, for thre
six canopies. For these simulations, the parachute model is re
sented by a set of identical C-9 canopies that are positioned
oriented relative to a prescribed confluence point. Two types
configurations are prescribed. First, 3, 4, and 5-canopy cluster
defined with the canopies uniformly distributed at a prescrib
angle about the azimuthal axis. Secondly, 4, 5, and 6-canopy c
ters are defined with a single canopy in the center and the rem
ing canopies distributed uniformly at a prescribed angle about
azimuthal axis. The size of the volume mesh varies from cas
case. For the 5-canopy cluster with a parachute in the center
have approximately 2.5 million elements and 450,000 nodes
sulting in approximately 1.9 million coupled equations. Mesh
finement is controlled around the canopies and in the wake
interaction regions. As with the previous example, descent vel
ties of 22.0 ft/s are represented by imposing a uniform upstre
boundary condition at the lower boundary, and no-slip conditio
are imposed on the canopy surfaces.

The computed flow fields at the end of the simulations fro
these preliminary simulations are shown in Fig. 8, with the clus
configurations in the middle column and the corresponding v
ticity magnitudes in two cutting planes (x50 andy50) in the
left and right columns. These initial simulations qualitatively de
onstrate the interactions between the canopies in different clu
arrangements. Further analysis is needed to better understan
other effects influencing the interactions in clusters, such as
preferred arrangements for the canopies, blockage effects du
the finite computational domain, and ultimately the FSI effec
For the examples presented, blockage effects are evident an
crease with the number of canopies in the cluster. Experime
studies have been conducted to provide empirical correction
tors for blockage effects,@15#. However, these data are depende
on the type of parachute, FSI, and other factors. Further sim
tions are now being carried out to numerically obtain correct
factors for the cases studied.

Additionally, the examples presented neglect the structural
sponse between the canopies in the clusters. The DSD/
method is now being used to study the dynamics interactions
tween the canopies in the cluster, treating the individual cano
as rigid bodies. Numerical simulations,@16#, have been conducte
previously to predict the equilibrium configuration for clusters
three half-scale C-9 parachutes in comparison with experime
data,@17#. In these simulations, equilibrium configurations we
determined using a quasi-static approach and imposing a sym
try configuration for the three canopies. The DSD/SST formu
tion, along with an appropriate mesh-update strategy, allows u
study the interaction of canopies in a cluster in a dynamic fash
Follow-on simulations will be carried out to predict equilibriu
configurations for the 3-canopy cluster with and without an i
posed symmetry. Additional simulations will be carried out
study the interactions for the 4, 5, and 6-canopy clusters. Initia
these studies will treat the canopies as rigid bodies, with la
simulations including FSI effects.

4 Concluding Remarks
We have described our computational methods for simula

of aerodynamic and fluid-structure interactions between parac
canopies. We considered two different types of problems. In
first case, we focused on the aerodynamic and fluid-structure
teractions between the canopies of two separate parachut
close proximity to one another. We studied the dependence o
aerodynamic interactions on the horizontal distance separating
two parachutes. In this study we observed significant interact
Journal of Applied Mechanics
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when the horizontal spacing between the parachutes is two ca
radii or less. We also studied how the interactions between the
parachutes are influenced when we include in our computatio
model the fluid-structure interactions~FSI!. The significant
amount of structural response we observe in this study for
upper parachute makes it clear that the FSI play a key role
making this class of simulations more realistic. In the second c
we focused on the aerodynamic interactions between the cano
of a cluster of parachutes, and investigated the nature of th
interactions for three, four, five, and six canopies. In this study,
were able to see the dependence of these interactions not on
the number of canopies but also on the spatial arrangemen
these canopies.

This class of simulations can provide a better understandin
the interactions between parachute canopies and help identify
scenarios under which the interactions are most severe. In
cases of severe interactions, more sophisticated fluid-structur
teraction models would be required to accurately represent
response of the parachute structure.
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