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ABSTRACT
Topic models have played a pivotal role in analyzing large
collections of complex data. Besides discovering latent se-
mantics, supervised topic models (STMs) can make predic-
tions on unseen test data. By marrying with advanced learn-
ing techniques, the predictive strengths of STMs have been
dramatically enhanced, such as max-margin supervised topic
models, state-of-the-art methods that integrate max-margin
learning with topic models. Though powerful, max-margin
STMs have a hard non-smooth learning problem. Existing
algorithms rely on solving multiple latent SVM subproblems
in an EM-type procedure, which can be too slow to be ap-
plicable to large-scale categorization tasks.
In this paper, we present a highly scalable approach to

building max-margin supervised topic models. Our approach
builds on three key innovations: 1) a new formulation of
Gibbs max-margin supervised topic models for both multi-
class and multi-label classification; 2) a simple “augment-
and-collapse” Gibbs sampling algorithm without making re-
stricting assumptions on the posterior distributions; 3) an
efficient parallel implementation that can easily tackle data
sets with hundreds of categories and millions of documents.
Furthermore, our algorithm does not need to solve SVM
subproblems. Though performing the two tasks of topic dis-
covery and learning predictive models jointly, which signifi-
cantly improves the classification performance, our methods
have comparable scalability as the state-of-the-art parallel
algorithms for the standard LDA topic models which per-
form the single task of topic discovery only. Finally, an
open-source implementation is also provided1.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Statistical Computing

General Terms
Algorithms, Experimentation, Performance

1http://www.ml-thu.net/∼jun/gibbs-medlda.shtml
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1. INTRODUCTION
Topic models such as latent Dirichlet allocation (LDA) [5]

have been successful in discovering the latent factors under-
lying observed data. The latent topic representations can be
used for many subsequent tasks, such as classification, clus-
tering or merely as a tool to structurally browse the data.
To handle large-scale applications, scalable inference algo-
rithms [16, 19, 1] have been developed, of which the current
state-of-the-art approaches can easily tackle hundreds of mil-
lions of documents and thousands of topics with hundreds
of machines and thousands of CPU cores.

In many cases, we are interested in predictive tasks be-
sides discovering latent topic representations. For example,
for document data, we may be interested in predicting which
categories a new document belongs to [27]; and for social
network data, people have been interested in building pre-
dictive models that can suggest friends to social network
users or recommend products [7, 8]. To improve the predic-
tive ability of topic models, people have been interested in
learning supervised topic models (STMs) [4, 27] which can
perform the two tasks of discovering latent topic structures
and learning predictive models jointly.

Max-margin STMs (e.g., maximum entropy discrimina-
tion LDA or MedLDA [27]) are the state-of-the-art methods
for classification, which integrate the discriminative max-
margin learning with topic models and have shown great
promise in text categorization and image annotation [25, 23].
Unfortunately, the resulting learning problems normally in-
volve a non-smooth objective, to tackle which an EM-type
procedure is normally applied in the current variational or
Monte Carlo solvers [12]. The EM-type algorithms need to
solve many latent SVM subproblems, whose efficiency can
be a bottle-neck to make these models unscalable to large
scale categorization tasks, such as the PASCAL large-scale
hierarchical classification challenge (LSHTC)2 and the Im-
ageNet large scale visual recognition challenge (ILSVRC)3

which normally involve large data sets consisting of thou-
sands of categories and millions of data samples.

To meet the requirements of large-scale document catego-
rization as well as topic discovery, in this paper we present
to our knowledge the first highly scalable max-margin super-

2http://lshtc.iit.demokritos.gr/LSHTC2 CFP
3http://www.image-net.org/challenges/LSVRC/2012/index
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vised topic model. Our method relies on three key innova-
tions. First, unlike conventional max-margin STMs [27] that
minimize a margin-loss of an expected prediction rule, we
present a multi-task Gibbs max-margin STM that optimizes
an expected margin loss of many latent predictive rules, each
of which is randomly drawn from a posterior distribution.
The method is a substantial extension of the recent work
on binary classification [28] to the tasks of both single-label
multi-class and multi-label [21] classification. Second, we
present a simple collapsed Gibbs sampling algorithm with-
out making any restricting assumptions on the posterior dis-
tributions, by exploring the classical ideas of data augmen-
tation in statistics [20, 22] and its recent developments on
learning large-margin classifiers [17]. Third, we present a
scalable parallel implementation by leveraging the modular-
ity property of our algorithm and the recent advances in
scalable inference methods for LDA.
We apply our methods to large-scale text categorization

data sets. Experimental results demonstrate significant im-
provements on classification performance compared to the
SVM classifiers built on raw features and on the latent top-
ic features discovered by LDA; while the time efficiency is
comparable to the state-of-the-art parallel LDA [1]. In sum-
mary, our work substantially extends [28] by introducing:

• A multi-task Gibbs MedLDA with efficient sampling
algorithms for handling both single-label multi-class
and multi-label classification;

• A highly scalable parallel implementation for both bi-
nary and multi-task Gibbs MedLDA;

• An extensive evaluation with large-scale document cat-
egorization data sets.

Outline: We introduce the binary Gibbs MedLDA in Sec-
tion 2 and present the multi-task formulation in Section 3.
We present the parallel implementation in Section 4, and
present the large-scale experiments in Section 5. Finally,
Section 6 concludes.

2. GIBBS MEDLDA
We begin by a brief overview of the Gibbs MedLDA for

binary classification.

2.1 Learning with an Expected Margin Loss
We denote the labeled training set by D = {(wd, yd)}Dd=1,

where the category variable Y takes values from the binary
space Y = {−1,+1}. Basically, a Gibbs MedLDA model
consists of two parts—an LDA model for describing input
documents W = {wd}Dd=1, where wd = {wdn}Nd

n=1 denote
the words appearing in document d, and a Gibbs classifier
for considering the supervising signal y = {yd}Dd=1. Below,
we introduce each of them in turn.
LDA: LDA is a hierarchical Bayesian model that posit-

s each document as an admixture of K topics, where each
topic Φk is a multinomial distribution over a V -word vo-
cabulary. For document d, the generating process can be
described as

1. draw a topic proportion θd ∼ Dir(α)

2. for each word n (1 ≤ n ≤ Nd):

(a) draw a topic assignment4 zdn ∼ Mult(θd)
4A K-dimension binary vector with only one nonzero entry.

(b) draw the observed word wdn ∼ Mult(Φzdn)

where Dir(·) is a Dirichlet distribution; Mult(·) is multino-
mial; and Φzdn denotes the topic selected by the non-zero
entry of zdn. For Bayesian LDA, the topics are random sam-
ples drawn from a Dirichlet prior, Φk ∼ Dir(β).

Given a set of documents W, we let zd = {zdn}Nd
n=1 denote

the set of topic assignments for document d and let Z =
{zd}Dd=1 and Θ = {θd}Dd=1 denote all the topic assignments
and mixing proportions for the whole corpus, respectively.
Then, LDA infers the posterior distribution using the Bayes’
rule

p(Θ,Z,Φ|W) =
p0(Θ,Z,Φ)p(W|Z,Φ)

p(W)
,

where p0(Θ,Z,Φ) =
∏

k p0(Φk|β)
∏

d p(θd|α)
∏

n p(zdn|θd)
and p(W|Z,Φ) =

∏
d

∏
n p(wdn|zdn,Φ) according to the

generating process.
An alternative way to understand Bayesian inference is

that the posterior distribution by Bayes’ rule is equivalent
to the solution of the optimization problem

min
q(Θ,Z,Φ)

KL[q(Θ,Z,Φ)∥p0(Θ,Z,Φ)]− Eq[log p(W|Z,Φ)]

s.t. : q(Θ,Z,Φ) ∈ P, (1)

where KL(q||p) is the Kullback-Leibler divergence and P is
the space of probability distributions. In fact, if we add the
constant log p(W) to the objective, the problem is the min-
imization of KL-divergence KL(q(Θ,Z,Φ)∥p(Θ,Z,Φ|W)),
whose solution is naturally the desired posterior distribution
by the Bayes’ rule.

One advantage of this variational formulation of Bayesian
inference is that it can be naturally extended to include some
regularization terms on the desired post-data posterior dis-
tribution q. This insight has been taken to develop regu-
larized Bayesian inference (RegBayes) [29], a computational
framework of doing Bayesian inference with posterior reg-
ularization. As shown in [12], MedLDA is one example of
RegBayes model. Moreover, our Gibbs max-margin topic
models follow this similar idea too.

Gibbs Classifier: In learning theory, one approach to
building classifiers with a posterior distribution of models is
to minimize an expected loss, under the framework known
as Gibbs classifiers (or stochastic classifiers) [14, 6, 10] with
nice theoretical properties. For our case of inferring the dis-
tribution of latent topic assignments Z and the classification
model η, the expected margin loss is defined as follows. If
we have drawn a sample of the topic assignments Z and the
prediction model η from a posterior distribution q(η,Z), we
can define the linear discriminant function

f(η, z;w) = η⊤z̄, (2)

where z̄ is a the average topic assignment vector with each
element being z̄k = 1

N

∑N
n=1 I(z

k
n = 1), and make predic-

tions using the latent Gibbs rule

ŷ = signf(η, z;w). (3)

Let ζd = ℓ − ydη
⊤z̄d, where ℓ is a positive cost param-

eter. Then, the hinge loss of the classifier is R(η,Z) =∑
d max(0, ζd), a function of the latent variables (η,Z), and

the expected hinge loss is

R(q) = Eq[R(η,Z)] =
∑
d

Eq[max(0, ζd)],
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a function of the posterior distribution q(η,Z). Since for
any (η,Z), the hinge loss R(η,Z) is an upper bound of
the training error of the latent Gibbs classifier (3), i.e.,
R(η,Z) ≥

∑
d ℓI(yd ̸= ŷd), we have

R(q) ≥
∑
d

Ep[ℓI(yd ̸= ŷd)].

In other words, R(q) is an upper bound of the expected
training error of the Gibbs classifier (3). Thus, it is a good
surrogate loss for learning a posterior distribution which
could lead to a low training error in expectation.
Regularized Bayesian Inference: To integrate the above

two components for hybrid learning, Gibbs MedLDA regu-
larizes the properties of the topic representations by solving
the regularized Bayesian inference (RegBayes) problem

min
q(η,Θ,Z,Φ)∈P

L(q(η,Θ,Z,Φ)) + 2cR(q(η,Θ,Z,Φ)), (4)

where c is a regularization parameter and L(q) is the ob-
jective of problem (1). Due to the strong coupling between
the Gibbs classifier and the LDA model, we can expect to
learn a posterior distribution q(η,Θ,Z,Φ) that on one hand
describes the observed data and on the other hand predicts
as well as possible on training data.
In [28], extensive comparison with MedLDA was provided.

Basically, MedLDA is also a RegBayes model, but it uses a
different posterior regularization which is derived from an
expected classifier. The effective algorithms for MedLDA
are the two-stage approaches [12] that apply Monte Carlo
methods as the inner inference engine and iteratively solve
latent SVMs to learn the classifier distribution.

2.2 Formulation with Data Augmentation
If we directly solve problem (4), the expected hinge loss

R is hard to deal with because of the non-differentiable max
function. Fortunately, a simple collapsed Gibbs sampling
algorithm can be developed with analytical forms of local
conditional distributions, based on a data augmentation for-
mulation of the expected hinge-loss.
Let ϕ(yd|zd,η) = exp{−2cmax(0, ζd)} be the unnormal-

ized pseudo-likelihood of the response variable for document
d. Then, problem (4) can be written as

min
q(η,Θ,Z,Φ)∈P

L(q(η,Θ,Z,Φ))− Eq[log ϕ(y|Z,η)], (5)

where ϕ(y|Z,η) =
∏

d ϕ(yd|η, zd). Solving problem (5), we
can get the normalized posterior distribution

q(η,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)ϕ(y|Z,η)

ψ(y,W)
,

where ψ(y,W) is the normalization constant. Using the
ideas of data augmentation [20, 17], the unnormalized pseudo-
likelihood can be expressed as

ϕ(yd|zd,η) =
∫ ∞

0

1√
2πλd

exp
(
− (λd + cζd)

2

2λd

)
dλd

This result indicates that the posterior distribution of Gibbs
MedLDA, q(η,Θ,Z,Φ), can be expressed as the marginal
of a higher dimensional distribution that includes the aug-
mented variables λ = {λd}Dd=1. The complete posterior dis-
tribution is

q(η,λ,Θ,Z,Φ) =
p0(η,Θ,Z,Φ)p(W|Z,Φ)ϕ(y,λ|Z,η)

ψ(y,W)
,

where the pseudo-joint distribution of y and λ is ϕ(y,λ|Z,η) =∏
d

1√
2πλd

exp
(
− (λd+cζd)

2

2λd

)
.

2.3 Inference with Collapsed Gibbs Sampling
Although with the data augmentation formulation we can

do Gibbs sampling to infer the complete posterior distribu-
tion q(η,λ,Θ,Z,Φ) and thus q(η,Θ,Z,Φ) by ignoring λ,
the mixing would be slow due to the large sample space of
all latent variables. One way to effectively accelerate the
mixing is to integrate out the intermediate Dirichlet vari-
ables (Θ,Φ) and build a Markov chain whose equilibrium
distribution is the resulting marginal distribution q(η,λ,Z).
This idea has been successfully used in LDA [11] and was
taken in [28] to develop a collapsed Gibbs sampler for Gibbs
MedLDA. With the data augmentation representation, this
leads to an “augment-and-collapse” sampling algorithm for
Gibbs MedLDA, as summarized below.

By integrating out the Dirichlet variables (Θ,Φ) in the
complete posterior distribution, we get the collapsed poste-
rior distribution

q(η,λ,Z) ∝ p0(η)
[ D∏
d=1

δ(Cd +α)

δ(α)

] K∏
k=1

δ(Ck + β)

δ(β)

D∏
d=1

1√
2πλd

exp
(
− (λd + cζd)

2

2λd

)
,

where δ(x) =
∏dim(x)

i=1 Γ(xi)

Γ(
∑dim(x)

i=1 xi)
; Γ(·) is the Gamma function; Ct

k

is the number of times the term t being assigned to topic
k over the whole corpus; Ck = {Ct

k}Vt=1 is the set of word
counts associated with topic k; Ck

d is the number of times
that terms being associated with topic k within the d-th
document; and Cd = {Ck

d}Kk=1 is the set of topic counts
for document d. Then, the conditional distributions used in
collapsed Gibbs sampling are as follows.

For η: For the commonly used isotropic Gaussian dis-
tribution p0(η) =

∏
k N (ηk; 0, ν

2), where ν is a non-zero
parameter, the conditional distribution of η given the other
variables is also Gaussian:

q(η|Z,λ) = N (η;µ,Σ), (6)

where the posterior mean and the covariance matrix are

Σ =
(

1
ν2 I + c2

∑
d

z̄dz̄
⊤
d

λd

)−1
and µ = Σ

(
c
∑

d yd
λd+cℓ

λd
z̄d

)
.

We can easily draw a sample from this K-dimensional mul-
tivariate Gaussian distribution. The inverse can be robustly
done using Cholesky decomposition, an O(K3) procedure.
Since K is normally not large, the inversion can be done
efficiently, especially in the applications where the number
of documents is much larger than the number of topics.

For Z: By canceling common factors, the conditional dis-
tribution of one variable zdn given others Z¬ is

q(zkdn = 1|Z¬,η,λ, wdn = t) ∝
(Ct

k,¬n + βt)(C
k
d,¬n + αk)∑

t C
t
k,¬n +

∑V
t=1 βt

exp
(γyd(cℓ+ λd)ηk

λd
− c2

γ2η2k + 2γ(1− γ)ηkΛ
k
dn

2λd

)
, (7)

where C·
·,¬n indicates that term n is excluded from the

corresponding document or topic; γ = 1
Nd

; and Λk
dn =

1
Nd−1

∑
k′ ηk′Ck′

d,¬n is the discriminant function value with-

out word n. We can see that the first term on the right hand
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is from the LDA model for observed word counts and it is
the same as that in the collapsed Gibbs sampling method
for LDA [11]; while the second term is from the supervised
signal y which comes into play through the expected loss in
problem (4).
For λ: Finally, the conditional distribution of the aug-

mented variables λ given the other variables is a generalized
inverse Gaussian distribution [9]:

q(λd|Z,η) ∝ 1√
2πλd

exp
(
− (λd + cζd)

2

2λd

)
= GIG

(
λd;

1

2
, 1, c2ζ2d

)
,

where GIG(x; p, a, b) = C(p, a, b)xp−1 exp(− 1
2
( b
x
+ ax)) and

C(p, a, b) is a normalization constant. Alternatively, λ−1
d

follows an inverse Gaussian distribution

q(λ−1
d |Z,η) = IG

(
λ−1
d ;

1

c|ζd|
, 1
)
, (8)

where IG(x; a, b) =
√

b
2πx3 exp(− b(x−a)2

2a2x
) for a, b > 0.

With the above conditional distributions, we can construc-
t a Markov chain which iteratively draws samples of the clas-
sifier weights η using Eq. (6), the topic assignments Z using
Eq. (7) and the augmented variables λ using Eq. (8), with
an initial condition. To sample from an inverse Gaussian
distribution, we apply the efficient transformation method
with multiple roots [15]. In our experiments, we initially set
λ = 1 and randomly draw Z from a uniform distribution.
In training, we run this Markov chain to finish the burn-in
stage with T iterations. Then, we draw a sample η̂ as the
Gibbs classifier to make predictions on testing data.

2.4 Prediction
To apply the Gibbs classifier η̂, we need to infer the topic

assignments for testing document, denoted by w. A fully
Bayesian treatment needs to compute an integral in order to
get the posterior distribution of the topic assignment given
training data D and the testing document content w:

p(z|w,D) ∝
∫
p(z,w,Φ|D)dΦ =

∫
p(z,w|Φ)p(Φ|D)dΦ,

where the second equality holds due to the conditional in-
dependence assumption of the documents given the topics.
Various approximation methods can be applied to compute
the integral. Here, we take the approach applied in [27, 12],
which uses a point estimate of topics Φ from training data
and makes prediction based on them. Specifically, we use
the MAP estimate Φ̂ (a Dirac measure) to approximate the
probability distribution p(Φ|D). For the collapsed Gibbs

sampler, an estimate of Φ̂ using the samples is

ϕ̂kt ∝ Ct
k + βt.

Then, given a testing document w, we infer its latent com-
ponents z using Φ̂ as

p(zkn = 1|z¬n,w,D) ∝ ϕ̂kwn(C
k
¬n + αk), (9)

where Ck
¬n is the times that the terms in this document w

are assigned to topic k with the n-th term excluded.

3. MULTI-TASK GIBBS MEDLDA
Multi-task learning is a scenario where multiple poten-

tially related tasks are learned jointly with the hope that

their performance can be boosted by sharing some statistic
strengths among these tasks, and it has attracted a lot of
research attention. In particular, learning a common rep-
resentation shared by all the related tasks has proven to
be an effective way to capture task relationships [2, 3, 29].
Here, we take the similar approach to learning multiple pre-
dictive models which share the common topic representa-
tions. As having been demonstrated in previous work [29]
and our own experiments later, one successful application of
the multi-task model is to do the single-label multi-class or
multi-label [21] classification, where each task correspond-
s to a binary classifier to determine whether a data point
belongs to a particular category.

3.1 The Model with Data Augmentation
We consider the L binary classification tasks and each task

i is associated with a classifier with weights ηi. We assume
that all tasks work on the same set of input data W =
{wd}Dd=1, but each data d has different binary labels {yid}Li=1

in different tasks. When we have the classifier weights and
the topic assignments Z, drawn from a posterior distribution
q(η,Z), we follow the same principle as in Gibbs MedLDA
and define the latent Gibbs rule for each task as

∀i = 1, . . . L : ŷi = signF (ηi, z;w) = sign(η⊤
i z). (10)

Let ζid = ℓ− yidη
⊤
i z̄d. The hinge loss of the classifier i is

Ri(ηi,Z) =
∑
d

max(0, ζid)

and the expected hinge loss is

Ri(q) = Eq[Ri(ηi,Z)] =
∑
d

Eq[max(0, ζid)].

For each task i, we can follow the argument as in Gibbs
MedLDA to show that the expected loss Ri(q) is an upper
bound of the expected training error

∑
d Eq[ℓI(yid ̸= ŷid)] of

the Gibbs classifier (10). Thus, it is a good surrogate loss
for learning a posterior distribution which could lead to a
low training error in expectation.

Then, following the similar procedure of defining the bi-
nary Gibbs MedLDA classifier, we can define the multi-task
Gibbs MedLDA model as solving the following regularized
Bayesian inference problem

min
q(η,Θ,Z,Φ)∈P

L(q(η,Θ,Z,Φ)) + 2cRMT (q(η,Θ,Z,Φ)), (11)

where the multi-task expected hinge loss is defined as a sum-
mation of the expected hinge loss of all the tasks

RMT (q(η,Θ,Z,Φ)) =

L∑
i=1

Ri(q(η,Θ,Z,Φ)). (12)

Due to the separability of the multi-task expected hinge
loss, we can apply the same method as in the binary model
to reformulate each task-specific expected hinge loss Ri as
a scale mixture by introducing a set of augmented variables
{λi

d}Dd=1. More specifically, let

ϕi(y
i
d|zd,η) = exp{−2cmax(0, ζid)}

be the unnormalized pseudo-likelihood of the response vari-
able for document d in task i. Then, we have

ϕi(y
i
d|zd,η) =

∫ ∞

0

1√
2πλi

d

exp
(
− (λi

d + cζid)
2

2λi
d

)
dλi

d.
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Algorithm 1 for Multi-task Gibbs MedLDA

1: Initialization: set λ = 1 and randomly draw zdk from
a uniform distribution.

2: for m = 1 to T do
3: for i = 1 to L do
4: draw a classifier ηi from the normal distribu-

tion (13)
5: end for
6: for d = 1 to D do
7: for each word n in document d do
8: draw a topic using distribution (14)
9: end for
10: for i = 1 to L do
11: draw (λi

d)
−1 (and thus λi

d) from distribution (15).
12: end for
13: end for
14: end for

Obviously, when L = 1, the multi-task model reduces to the
binary Gibbs MedLDA.

3.2 A Collapsed Gibbs Sampling Algorithm
Similar as in the binary Gibbs MedLDA, we can derive

the collapsed Gibbs sampling algorithm, as outlined in Al-
gorithm 1. Specifically, let

ϕi(y
i,λi|Z,η) =

D∏
d=1

1√
2πλi

d

exp
(
− (λi

d + cζid)
2

2λi
d

)
be the joint pseudo-likelihood of the class labels yi = {yid}Dd=1

and the augmentation variables λi = {λi
d}Dd=1. Then, for

the multi-task Gibbs MedLDA, we can integrate out the
Dirichlet variables (Θ, Φ) and get the collapsed posterior
distribution

q(η,λ,Z) ∝ p0(η)
[ D∏
d=1

δ(Cd +α)

δ(α)

] K∏
k=1

δ(Ck + β)

δ(β)

L∏
i=1

D∏
d=1

1√
2πλi

d

exp
(
− (λi

d + cζid)
2

2λi
d

)
.

Then, we can derive the conditional distributions used in
collapsed Gibbs sampling are as follows.
For η: we also assume its prior is an isotropic Gaussian

distribution p0(η) =
∏

i

∏
k N (ηik; 0, ν

2). Then, we have

q(η|Z,λ) =
∏L

i=1 q(ηi|Z,λ), and for each task

q(ηi|Z,λ) = N (ηi;µi,Σi), (13)

where the posterior mean and the covariance matrix are

Σi =
(

1
ν2 I + c2

∑
d

z̄dz̄
⊤
d

λi
d

)−1
and µi = Σi

(
c
∑

d y
i
d
λi
d+cℓ

λi
d

z̄d
)
.

Similarly, the inverse can be robustly and efficiently done
using Cholesky decomposition, an O(K3) procedure.
For Z: The conditional distribution of Z is

q(Z|η,λ) ∝
D∏

d=1

δ(Cd +α)

δ(α)

[ L∏
i=1

exp
(
− (λi

d + cζid)
2

2λi
d

)]
K∏

k=1

δ(Ck + β)

δ(β)
.

By canceling common factors, we can derive the conditional
distribution of one variable zdn given others Z¬ as:

q(zkdn = 1|Z¬,η,λ, wdn = t) ∝
(Ct

k,¬n + βt)(C
k
d,¬n + αk)∑

t C
t
k,¬n +

∑V
t=1 βt

L∏
i=1

exp
(γyid(cℓ+ λi

d)ηik
λi
d

− c2
γ2η2ik + 2γ(1− γ)ηikΛ

i
dn

2λi
d

)
,(14)

where Λi
dn = 1

Nd−1

∑
k′ ηik′Ck′

d,¬n is the discriminant func-

tion value without word n. We can see that the first term
is from the LDA model for observed word counts and the
second term is from the supervised signal {yid} from all the
multiple tasks.

For λ: Finally, one can derive that the conditional dis-
tribution of the augmented variables λ is fully factorized,
q(λ|Z,η) =

∏
i

∏
d q(λ

i
d|Z,η), and each variable follows a

generalized inverse Gaussian distribution

q(λi
d|Z,η) = GIG

(
λi
d;

1

2
, 1, c2(ζid)

2).
Therefore, (λi

d)
−1 follows an inverse Gaussian distribution

q((λi
d)

−1|Z,η) = IG
(
(λi

d)
−1;

1

c|ζid|
, 1
)
. (15)

4. PARALLEL IMPLEMENTATION
One nice property of the above Gibbs sampling algorithm

for the multi-task Gibbs MedLDA5 is that it can be easily
parallelized, due to the following observations.

• The augmented variables λ are “locally” associated
with each document. Therefore, we can easily par-
allelize the step of sampling λd (or λi

d for multi-task
Gibbs MedLDA) to multiple cores and multiple ma-
chines.

• The data points contribute to the global variables µi

and Σi through the simple summation operator, and
for different tasks the global variables (µi,Σi) are con-
ditionally independent given (Z,λ). Due to the sepa-
rability of summation, we can easily partition the data
into different machines for performing local summa-
tion, followed by a global aggregation. This suggests
a MapReduce architecture for parallelizing the step of
updating η.

The true difficulty is on parallelizing the sampling step of
topic assignments, zdn, which depend on the global variables
Ct

k (i.e., the topic-word count table) that need to be updat-
ed/synchronized during the local sampling process. Fortu-
nately, our sampling algorithm is highly modular—once the
classifier weights η (and the augmented variables λ) are giv-
en, the sampling of each topic assignment is almost the same
as that in the standard LDA, except some additional compu-
tation which is carried out locally to each document, as show
in Eq. (14). Therefore, we can leverage the recent advances
in parallel topic models [1, 19] to solve this problem. Given
a multi-core and multi-machine LDA sampler, we can devel-
op our parallel sampler using a simple procedure as detailed
below.

5The binary Gibbs MedLDA model is a special case of the
multi-task model with L = 1.
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Table 1: The amount of time (seconds) taken by the
step of sampling η and network communication on
the Wiki data set. K–the number of topics; M–the
number of machines; communication includes both
reduce and broadcast time.

sample η communication total
K=500, M=10 71.26 (2.63%) 88.28 (3.25%) 2712.64
K=500, M=20 71.29 (5.01%) 52.90 (3.72%) 1423.53
K=1000, M=10 1447.07 (16.99%) 226.47 (2.66%) 8517.97
K=1000, M=20 1449.51 (28.73%) 135.44 (2.68%) 5044.61

Let M be the total number of processes (or machines)
and let Dm be the data in process m. Then each process m
performs the following computations

1. draw topic assignments: use the given LDA sam-
pler to draw the topic assignments with the updated
equation to compute local probability (14);

2. draw scale parameters: draw the scale parameter
for each document using the distribution (15);

3. compute local statistics: compute the following s-
tatistics

µm
i =

Dm∑
d=1

yid
λi
d + cℓ

λi
d

z̄d, Σm
i =

Dm∑
d=1

z̄dz̄
⊤
d

λi
d

, (16)

where Dm is the number of data samples in Dm.

Since Σm
i is symmetric, it suffices to compute only the upper

or lower triangle. After process m has finished the local
computation, it passes the local statistics µm

i and Σm
i to

the master process, which performs the following operations

1. compute Σ: by collecting the message from slaves, it

computes Σi =
(

1
ν2 I + c2

∑
m Σm

i

)−1
.

2. compute µ: after obtaining the new Σi, it updates
µi = Σi

(
c
∑

m µm
i

)
.

3. draw classifier weights η: when all local statistic-
s are reduced to master process, it samples η using
distribution computed by (13).

4. synchronize classifier weights η: after sampling η,
it broadcasts the new classifier weights to the slaves.

There are indeed more sophisticated synchronization strate-
gies that could be applied, however as shown in Table 1, both
communication and sampling of η take little time compared
to the main algorithm. Therefore this treatment is sufficient
to achieve high performance. For the LDA sampler, we use
the current state-of-the-art method [1].

5. EXPERIMENTS
We run our experiments on a cluster with 20 nodes, where

each node is equipped with two 6-core CPUs (2.93GHz).

5.1 Data Sets
We present experiments on several public text categoriza-

tion data sets, whose statistics are shown in Table 2. The
20Newsgroups (20NG) data set consists of about 20K post-
ings within 20 groups and each document has a single cat-
egorical label, ranging from 1 to 20; we follow the same

Table 2: Statistics of the data sets. N–the number
of documents; V –the number of terms; and L–the
number of categories.

data set N -train N -test V L type
20NG 11,269 7,505 61,188 20 single-label
Wiki 1,100,000 5,000 917,683 20 multi-label
RCV 703,863 100,551 288,062 103 multi-label

setting as in [27] to build train/test partition and the vocab-
ulary. The Wiki data set is built from the large Wikipedia
set used in the PASCAL LSHC challenge 2012, and each
document has multiple labels. The original data set6 is ex-
tremely imbalanced. We built our data set by selecting the
20 categories that have the largest numbers of documents
and keeping all the documents that is labeled by one of the
20 categories. The third data set is the Reuter’s Corpus Vol-
ume (RCV1-v2) [13], another standard benchmark7 of which
each document has multiple labels. To test the scalability of
our method, we have partitioned the data set into training
and testing sets with a ratio of 7 : 1.

5.2 Single-label Classification
We first present some empirical results on the singly la-

beled 20Newsgroups data set. For the binary Gibbs MedL-
DA, one-vs-all is an effective strategy to do multi-class clas-
sification [18]. To make the multi-task Gibbs MedLDA (MT-
GibbsMedLDA) applicable to the singly labeled data set, we
need to transform the true label to get the label for each bi-
nary task. Let the label space be Y = {1, . . . , L}. We define
one binary classification task for each category i and the
task is to distinguish whether a data example belongs to the
class i (with binary label +1) or not (with binary label −1).
All the binary tasks share the same topic representations.
To apply the model as we have presented in Section 3, we
need to determine the true binary label of each document
in a task. Given the multi-class label yd of document d, this
can be easily done by defining

∀i = 1, . . . , L : yid =

{
+1 if yd = i
−1 otherwise

.

Figure 1 shows the accuracy and training time of the multi-
task Gibbs MedLDA, the one-vs-all binary Gibbs MedL-
DA [28], the multi-class MedLDA using Gibbs sampling [12]
built with an expected classifier, and the two-stage approach
of first using Gibbs LDA (gLDA) [11] to learn latent topic
features and then building a SVM classifier8. We can see
that the multi-task formulation of Gibbs MedLDA produces
comparable performance as the one-vs-all method; while the
two Gibbs MedLDA models slightly outperform MedLDA.
Furthermore, the multi-task model is computationally more
efficient than the one-vs-all approach due to the less number
of topics. A naive parallelization of the one-vs-all approach
is to learn the 20 binary classifiers in parallel, which im-
proves the efficiency. However, the one-vs-all approach may
not be a good choice if we want to get a holistic view of

6Available at: http://lshtc.iit.demokritos.gr/
7Available at: http://jmlr.csail.mit.edu/papers/volume5/
lewis04a/lyrl2004 rcv1v2 README.htm
8The SVM classifier built on raw bag-of-words as well other
variants of supervised topic models were outperformed by
MedLDA. See [27] for an extensive comparison.
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Figure 1: Classification accuracy and training time
of multi-task GibbsMedLDA, GibbsMedLDA with
one-vs-all strategy, and the multi-class MedLDA
with stage-wise Gibbs sampling.
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Figure 2: The classification accuracy, training ac-
curacy and training time of the multi-task Gibbs
MedLDA with different burn-in steps.

the topic structures of the entire corpus, because it learn-
s 20 independent sets of topics which are not easy to be
merged. From Figure 2, we can see that the sampling al-
gorithm converges quickly to stable performance within 40
iterations. These results demonstrate the effectiveness of the
multi-task Gibbs MedLDA. In all the experiments, we fixed
α = 6.4e, β = 0.01e, ℓ = 1 and c = 16. As in [28], Gibbs
MedLDA is insensitive to these parameters in wide ranges.
We omitted the sensitivity analysis for saving space.
Figure 3 shows the accuracy and training time of the

multi-task Gibbs MedLDA with different numbers of ma-
chines and different numbers of CPU cores. We can see that
the single-machine-multi-core implementation is about 1 or-
der of magnitude faster than the single-core version; while
using multiple machines can further improve the efficiency
dramatically. Meanwhile, the classification accuracy does
not sacrifice much in a distributed environment.

5.3 Multi-label Classification
We now present the experiments of multi-task Gibbs MedL-

DA on the two multi-label data sets, where each task is a
binary classifier to identify whether a document belongs to
a particular category. We use the F-measure, a harmonic
mean of precision and recall, to evaluate the performance.
Figure 4 shows the classification F-measure and training

time of multi-task Gibbs MedLDA, comparing with the lin-
ear SVM classifier built on raw bag-of-words features and
the two stage approach, LDA+SVM, which first fits an L-
DA model using all the documents and then learn a linear
SVM classifier. For Gibbs MedLDA, we report the perfor-
mance in the single-machine-multi-core setting as well as the
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Figure 3: The classification accuracy and training
time of the multi-task Gibbs MedLDA with different
numbers of machines (M) and CPU cores (P ).

100 200 300 400 500 600
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

# Topics

F
−

M
ea

su
re

MT−GibbsMedLDA (M=20, P=240)
MT−GibbsMedLDA (M=1, P=12)
LDA+SVM (M=20, P=240)
SVM (M=20, P=240)

200 400 600 800 1000
10

0

10
1

10
2

10
3

10
4

10
5

# Topics

T
ra

in
in

g−
T

im
e(

se
co

nd
s)

MT−GibbsMedLDA (M=20, P=240)
MT−GibbsMedLDA (M=1, P=12)
LDA+SVM (M=20, P=240)
SVM (M=20, P=240)

Figure 4: F-measure and training time of various
methods on the Wiki data set.

setting with all the 20 machines. For LDA+SVM, we use
the public Yahoo-LDA on 20 machines (240 CPU cores)9.
Note that for fair comparison, we use the standard col-
lapsed Gibbs sampling for both LDA and Gibbs MedLDA,
although Yahoo-LDA has the option to perform fast Gibbs
sampling [26]. Developing a fast Gibbs sampling algorithm
for Gibbs MedLDA is one of our future work. To learn the
SVM classifiers, we use the liblinear package10 with the one-
vs-all strategy and train each binary classifier on one of the
20 machines. We can see that Gibbs MedLDA dramatically
improves the classification performance over the two-stage
approach of LDA+SVM. Furthermore, we found that the
SVM classifier on the raw features doesn’t work well, main-
ly due to the sparsity issue of the feature space. For training
time, the amount of time required by the supervised Gibbs
MedLDA is comparable to that by the unsupervised LDA.
These results are impressive since Gibbs MedLDA perform-
s two jobs of topic discovery and classifier learning jointly,
while LDA performs topic discovery only.

Figure 5 presents how the classification performance and
training time of the distributed MT-GibbsMedLDA (M =
20 and P = 240) change with respect to T (i.e., the number
of burn-in steps). We can observe that with a number of
burn-in steps (e.g., 40, 60 or 80), we can get quite stable
prediction performance, which 20 is not sufficiently large;
and using a large T generally increases the training time
about linearly. We set T = 40 in the experiments.

5.4 Scalability

9Available at: https://github.com/shravanmn/Yahoo LDA.
10Available at: http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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Figure 6: Scalability analysis. (Left) When fixing M (i.e., the number of machines) we observe a linear
dependence between training time and the amount of data; when the data to machine ratio is kept constant,
the training time remains about constant. Here, we use {4, 8, 12, 16, 20} machines such that each machine
receives 50K documents. (Middle) when fixing the number of data points, we observe a sublinear decrease
of training time for the DP strategy as the number of machines increases; while the time of the LP strategy
remains constant when the label to machine ratio is fixed. Here, we use {1, 2, 4, 8, 12, 16, 20} machines such
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Figure 5: F-measure and training time of MT-
GibbsMedLDA (M = 20 and P = 240) with different
numbers of burn-in steps on the Wiki data set.

Figure 6 (Left) shows the scalability analysis for MT-
GibbsMedLDA on the Wiki data set. We can draw the fol-
lowing conclusions. First, when the computational resources
are kept fixed, the amount of time required to process da-
ta scales linearly with the amount of data. Second, when
the data to machine ratio is kept constant, the amount of
time required to process the data is about constant, very
close to the ideal line. The tiny performance loss with more
machines is mainly due to the latency in network commu-
nication. But in general, these observations suggest that
the parallel implementation of our sampling algorithms can
scale nicely to massive data sets. For example, with 20 ma-
chines (240 CPU cores), we can finish the training on 2.8M
documents with 20 categories within an hour.
Figure 6 (Middle) shows the scalability analysis on the

RCV data set, when changing the number of labels while
the total number of data samples is unchanged. We consider
two parallelization strategies:

• Document partition (DP): build a single multi-task
model and split the data equally to multiple machines;

• Label partition (LP): split the total number of cat-
egories equally and build independent multi-task mod-
els, one on each machine;

For label partition, it confirms that the amount of time re-
mains constant with respect to the number of labels when
the label to machine ratio is kept constant, e.g., 5 in our
case. While for the document partition strategy, since in-
creasing the number of labels doesn’t change the amount of
data, the running time decreases as more machines are used;
furthermore, since more classifier parameters are indeed in-
troduced the running time decreases sub-linearly when the
label to machine ratio is fixed.

Finally, Figure 6 (Right) shows the amount of time re-
quired by the distributed MT-GibbsMedLDA when the num-
ber of machines increases, while the number of labels and the
number of documents are fixed, on the Wiki data set. We
can observed that for the strategy of DP, the amount of time
decreases about linearly, i.e., when the number of machines
is doubled, the running time decreases to about a half; while
LP is slower because each machine in LP needs to process
more data and the total number of topics is larger. Also,
note that the most right point of LP is in fact the one-vs-all
approach with binary GibbsMedLDA, which is much slower
than MT-GibbsMedLDA with the DP strategy; this demon-
strates the advantages of the multi-task formulation.

6. CONCLUSIONS AND DISCUSSIONS
We have presented a highly scalable approach to building

max-margin supervised topic models for large-scale multi-
class and multi-label text categorization. Our Gibbs sam-
pling algorithm builds on a novel formulation of multi-task
Gibbs max-margin topic models as well as a data augmen-
tation formulation. The algorithm is modular and can take
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advantages of recent advances in scalable inference for unsu-
pervised topic models. Extensive results on large scale data
sets demonstrate that Gibbs max-margin topic models can
significantly improve the classification performance while re-
quire comparable time as the unsupervised topic models.
Due to the restriction of computational resources, our ex-

periments have been carried out on a relatively small cluster
with tens of machines. In the future, we plan to carry out
careful investigations on large clusters (e.g., with thousand-
s of machines) with massive corpora consisting of tens of
thousands of categories and millions of data points, as com-
monly encountered in PASCAL and ImageNet challenges.
Finally, the data augmentation techniques are general and
can be applied to improve the inference accuracy of other
topic models or latent variable models in general, such as
relational topic models [8] for network analysis and matrix
factorization [24] for collaborative filtering.
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