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We propose an extension of General Relativity with two défé metrics. To each metric we define a Levi-
Cevita connection and a curvature tensor. We then consigetypes of fields, each of which moves according
to one of the metrics and its connection. To obtain the fieldaéqns for the second metric we impose an
exchange symmetry on the action. As a consequence of thaszamsiditional source terms for Einstein’s field
equations are generated. We discuss the properties ofddd#g®nal fields, and consider the examples of the
Schwarzschild solution, and the Friedmann-Robertsork&vahetric.

During the last decades, experimental achievements in as- I. ABI-METRIC THEORY
trophysics provided us with new insights about our universe
The more precise our observations have become, the more\e consider a bi-metric theory with metrigsand h of

obvious also the insufficiency of our understanding have bet grentzian signature that define two different ways of measu
come. Today’s research in cosmology is accompanied by thmg angles, distances and volumes on a manifbl€Changing
group of cosmological problems, which strongly indicattth  from gto h changes the map from the tangential spadd, to
our knowledge about the universe is incomplete. Mostimporthe co-tangential spacEM*. Since we then have two ways to
tantly, it is microscopic explanations for dark matter aagkd  rajse and lower indices, we will use a notation with two types
energy that we are lacking. A lot of effort has been investedyf coordinate-indices so we do not spoil the Ricci-calculus
into studies of fields with unusual equations of states whichggy this, we will denote coordinate indices that are raisati a
can account for one or the other constituent. lowered byh with underlines. In case objects do not carry
In this paper we propose an extension of General Relativindices we underline them in total.
ity with fields that experience space-time to have a méiric ~ We will further introduce two sorts of matter dvi: one
different from our usual ong. This causes additional source that moves according to the usual[22] megyiand the mea-
terms to Einstein’s field equations that have propertiegkenl sure itimplies, the other one that moves according to theroth
those of our standard matter. The new fields do not movenetrich. We will refer to these fields agfields andh-fields,
according to the Levi-Cevita connection, but according to aespectively; the equations of motions will be specifieddio-s
non-metric, torsion-free connection derived from the seico tion[llll Related, we consider two types of observers on our
metrich. To obtain the equations of motion for the secondspacetime, the one made uprsfields who measures with the
metric, we propose a symmetry between both types of mattgnetric h, the other one made gffields who measures with
and the according metrics. metricg. They will have to set their observations in relation to

Different versions of bi-metric theories and their potehti each other in a consistent way, much like different observer

importance to explaining observational evidence haveiprey N SPecial Relativity.

; : - 3 . Such, we have on the one hand thebserver who sees a
ously been investigated inl[L, 2,3, 4], and the approaches in . :
references (5,167, 8] 9,110,111 12| 13| 14, [15,[16/ 17, 18g-ﬂeld with unusual behavior, and on the other hand dhe

bserver who thinks this field to be perfectly normal matter.

i i ; _ The same situation applies fgandh exchanged. To take this
This paper is organized as follows: The general setup withyiq account we will consider a ma, which is an automor-

the two metrics and two types of fields is introduced in sectio phism on the tensor-bundle, and which mégfelds as the

[ In the sectiorll, we define the connections, and in sectiofy_gpserver sees them befields as theg-observer sees them.
[MMwe construct the action for the new sort of fields and COU-Similarly, we have a mafpy, which mapsg-fields as theg-

ple it to General Relativity (GR). In sectidn IV we use the gpserver sees them tpfields as theh-observer sees them.
exchange symmetry to obtain the complete set of equationfpese maps conserve the tensor structure of objects, i.e. a
including those for the second metric, and then investitiee  ansor of rank(r,s) is mapped to a tensor of rarfk s), and

example of the Schwarzschild solution, and the Friedmanngey are linear in the field’s components. Most importantly,
Robertson-Walker metric inlV arid V1. After a discussion of ihey assign a two-tenstg, to the metrich, which we will

the scenario and its possible observable consequenices in Vljanote byh, and a two-tensag,y to the metriog, which will

study similar symmetry considerations.

we conclude in sectidn VIII. be denoted by
Throughoutthis paper we use the conventienh=1. The B
signature of the metricis-1,1,1,1). Small Greek indices are g=Py(9) , h=hh) . (1)

space-time indices and run from O to 3. . . o
Since these maps are linear, we can write in components

\Y

[P]™, [Ph)" hue = hu 2
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We will in the following refer to these maps as ‘pull-overs’. We will see later that this requirement makes for an intérgst
One has to be careful however when pulling elements ovescenario as it results in quite unusual properties ohtfields.

from the one observer to the other. Since the components @ne can read this off already from EqJ (4). Demanding (10)
pulled over tensors are mapped from the tangential into théo hold will imply that it is the inverse of the second metric
cotangential space with a different metric, the notatiothef  that behaves under variation like the usual metric. Unlile t
inverse does no longer match with the use of indices. l.e. thproblems that one would run into by just using the inverse
pull-over Pﬁl of ¥ is nothy,g*¢g¥* (wherehy, is the pull-  metric as a second metric (because one had to treat a cavarian

over of hK\)_) but rather a tenson—* with the property that field as a contravariant one) the approach proposed here by
[h—l]s)\hs}; ... We will try to avoid this by not using the introducing a field that only behaves under variation as the
=\.

pull-overs as long as not absolutely necessary (and we wiffVers€ metric, is manifestly covariant.
see that we can rather successfully do so).

The introduction of these pull-overs is an assumption. Its
usefulness lies in enabling us to now chose different ceordi
nate systems for thg andh-observer. We could for exam-
ple apply a change of coordinates only on thmetric. This To g one can define a Levi-Cevita connection in the usual
would imply an according change in the pull-over (a multi- way that we will denote a¥ 0. Similarly, one can define a
plication with the inverse of the coordinate transforma}jo ~Levi-Cevita connection tb, and we will denote this connec-
but it would not make it necessary to also change the coottion as!W 0. To both metrics with their connections, one can
dinate system thg-observer has chosen for his description.construct the curvature tensor, the Ricci tensor, and theaeu
The most obvious choice for the pull-over would just be theture scalar, that we will denote &R and ™R, respectively.
identity. We will however see later that we can not fix theseln detail one has
pull-overs, but that they have to be determined from the field

II. CONNECTIONS

equations, and can not in general be chosen to be the ide_ntity (g)rva = g“Orgy (11)
int\(/)vtehfeulgtlTl(Ie-z)\(/je(ze:IQ]Ee tr?erz?rfetrhat ransforms the one metric Olgu = :—Zl(avguk +0kGav — OaOuk) (12)

Oor = . 8" hy . (@) "5 = 2@@[% : (13)
Since bothg andh are symmetrica is not completely deter- (D)E% - §( uNai + oy — dghu) - (14)

mined by [4). We fix the remaining six degrees of freedom ] o .
(dof) by requiring it to be symmetric, i.gfVaf, = at« = a¢. ~ We can further define a pulled over derivative for théeld,

We can pull over by which we denote a8)0, by requiring it to be a torsion-free
but non-metric connection that preservesFrom " h = 0
a = [Pyl%, 2" [Py (5)  we then find the connection coefficients' ] to be
< € LLE Y] ?
which then gives the relation Mre, = :—ZL[PD(Q)]E“ (0vhak + 0khay — dahvk) . (15)

V. K
Yer =3 &) Pue - (6)  As mentioned previously, one should keep in mind that
[Pa(h)]* is noth®® but the inverse ofg, and further that
the indices ot are lowered and raised with From the
above one also finds fdr, the determinant diiy,

This pulled over quantity is also required to be symmettits |
further useful to define a combination @find the pull-overs
that mapg to h via

<

v _ op(pv

niv )

ger = @, hu - (8)  One can do a similar construction to pull oV&i to obtain

a derivative@ [, which is not metric with respect to but

preserves, i.e. 90g= 0. This construction of derivatives
Oer = @28y , hyx = a8 - (9) nhow puts a further requirement on the pull-overs because the

- - have to be compatible with the tensor structure. So, for an

In this formulation, the introduced mamis a convenience arbitrary tensoA we then have

and not a dynamical field, since it is defined by relatinig

Py(h). The dynamical quantities ageandh, as well as the F‘n(@QA) =M

both pull-overs?, andPy, and possible additional matter and P(90A) = @

gauge fields. That means for the variation we have to keep 9

fixed. We specify the properties of the field under variatipn b

requiring

And by raising and lowering some indices we also have

1=

OPW(A) (17)
ORy(A) - (18)

In components we had e.g. fA%*K_E

sk =0 . (10) P(P0,A ) e = VOV PAe) e - (29)



Since both connections as well as their pull-overs have tehen just
be torsion free, this implies the pull-overs have to be inte-
grable and are generated by two vector fieldsdw such that =N ((b)gﬁ(b)ga(p) =0 , (21)
[Pg]% = WY = aW", and[Py]’« = V"% = 8. The pull-overs B o
thus carry four dof each, after requiring them to be torsiee f  \\hich is by definition of the pull-over identical to
and metric-compatible in the above described fashion.
However, we will for the variation not assume these re- Moa®O,Py(g) =0 . (22)
quirements are already fulfilled, as this is in conflict witle t -
dof we need. As explained previously, the independent variSince the pull-over is invertible, the eom121) are also eaui
ables argy andh, each of which has ten dof. Since ths lent to
anda’s do not carry degrees of freedom, the pull-overs need
to carry these ten dof since a conjunction of both,akseand Wpetg =0 |, (23)
the pull-overs, relateg to h, as can be read off from Ed.](8). e
Therefore, prior to the variation we can only assume the conwhich are the eom thle-observer would expect. Now we add
nections are torsion free, and take into account metric @mp such a field to GR:
ibility after the variation. For the usual connections, tagi-
ation over the connection together with the torsion-freesn S= /d4x\/—_g (@ R/81G + L) +V-hR(2) . (24)
implies metric compatibility as usual. For the additionahe
nections, we will here not explicitly add a term to the actionypon variation, the first two terms give just the standard, an
to generate it but subsequently assume metric-compétibili the |ast term yields
since it seems to be a desirable feature (though the scenario
could be considered in more generality). 2. O
To summarize this section: Each metric defines its own /d Xéh\,K
Levi-Cevita connection, and after pulling them over these i
duce two non-metric connections, which will describe the mo which we have to rewrite into a variation ovgy, so we can
tion theg-observer assigns to tthefields and vice versa. add the terms. We vary (see also Appendix A)

(V-hRe)) s . (25)

Oaahkva™a = 5“;\ (26)

I1l.AND ACTION and rewrite into

Now let us add some physics. Consider we have-field Sho = —[a a1 00w (27)

that behaves not according to the usual Levi-Cevita connec-

tion, but according to the connection metric with respe¢t,to wherea—1 is the inverse oé

a field that feels angles and distances as defineld bgt g.

For a massless scalaifield @ the action that gives the equa- [afl]BKa\,B =38, . (28)

tions of motions as thg-observer sees them could look like
WKe put in some pull-overs and their inverse, and rewrite into

4 vk (h h ac to make the symmetry more apparent. Then, we can add
S= / d'xv/~h R, (h_ OQ@QQ@) : (20 Allterms together and obtain from the variation (see Append

A) of the action the equations

whereh = det(P,(h)) so we have pulled over the determinant

and the measure is appropriately invariant. 1 h v «
For a scalar field the covariant derivative is of course just OR — ngv(g)R =8NG | Thv—/=a&iax Ly | (29)
the partial one so it does not matter according to which met- 9

ric the connection is metric, but in general this will not be t

case. One can construct Lagrangianfor other types oh- with the sources

fields than scalars in a similar way by replacing the usual met 1 &1 1

ric with the other one, and the usual Levi-Cevita connection Tw = _ﬁég—“" + ngﬂ (30)
with the one belonging to the other metric, and then pulling 1 &, 1

over. If it was just to make a scalar, one could consider the Tw = ———=F 5w T 5L

density weight to bg/—g. However, the relevance of putting o V=hohw =275

v/—hinstead becomes apparent when one takes the variation . 1 oL 1h 31
over the field and its connection to obtain the equations 6f mo [P U /Zhoh + 7 kL w (31)

tion (eom). In order to convert the pull-over of ateﬁ’rD!A!

into a total derivative the prefactor needs topehnot,/—g,  where the last line is only to clarify how the rewriting of the
so it is compatible with the derivation used in the Lagrangia variation fromh to h comes into play.

For such a term then to vanish one uses equdtidn (16), which This change of sign we see appearing here in equdtidn (27)
guarantees the validity of Gauss’s law. The resulting ean ardoes occur only for the gravitational stress-energy-tengo
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the source term to Einstein’s field equations since it is a conbe invariant under coordinate transformations for eacthef t
sequence of taking the variation with respect to the meltric. observers separately without the pull-overs, since thefac
does not occur if one derives the kinetic energy momentuni/g was not an invariant in this case.
tensor (via Noether’s theorem), neither does the Lagrangia The virtue of doing this is that we can now chose the coordi-
have a negative kinetic energy term. Since then the sum asate systems fagy andh separately which seems to be natural.
well as the difference of both stress-energy-tensors is corFor example, there is no reason to expect that the coordinate
served, this means they are separately conserved; both fieldystem that one observer would consider ‘free-falling’l wil
interact only gravitationally. Thus, despite the preseote agree with the other one’s, since they both move according to
negative gravitational masses, there is no vacuum ingttabil different connections. Thus it will not in general be cledraw
because the kinetic energy of both sorts of fields remains pos gauge condition on the one metric does to the other one, and
itive, is conserved as usual, and a pair production of negati it seems more useful to export this lack of knowledge into the
and positive gravitational masses out of vacuum is not posspull-overs.
ble. The field equationd (34) anf (35) need to fulfill the con-
tracted Bianchi identities with respect to the matchingitev
Cevita connection. Since the stress-energy tensor ofthe
IV. WITH EXCHANGE SYMMETRY field is already covariantly conserved with respect®a],
and the stress-energy tensor of théeld is similarly covari-

In the previous section we have only considered the perantly conserved with respect #00, this leaves us with each
spective of theg-observer and the field equations for the four equations for the additional source terms constitated
metric. We have however used that the fieddandh are not  the fields behaving with respect to the non-metric connectio
independent. For symmetry reasons, the independent varfter assuming metric-compatibility of the pulled-ovemeo
ables should bg andh, as well as the two pull-overs, with nections as explained in sectioh Il, these each four equatio
which we further obtairg andh via (). h is then however constrain the remaining four dof in the pull-overs that appe
related tog via eq. [@), andy to h via eq. [6). in these terms.

Based on this consideration, we add matter fields to GR: a One should note however that the pull-overs will need addi-
g-field g, and arh-field ¢, and request the action be symmetric tional initial conditions, and unless one imposes furtlyens
under exchange af with h, and exchange aj-fields with h- metry requirements esp. their determinants can be meitipli

fields. This way we obtain by an arbitrary constant. One can also interpret this agther

a priori being no way of telling whether the coupling between

s = [ d*/—al(9Rr/8rG /—h the two types of fields and gravity is equally strong or has an
/ X g( / +L(Lp)) + Fhl£ (@) additional pre-factor. However, instead of introducingliad

4, /(b — tional coupling constants we will leave the constants in the
* /d X b( R/ST[G+£((—p)) + IRe(£(W))(32) pull-overs and treat them as parameters of the model tteat, id

ally, have to be determined by observational constraings. E

where the first two terms are varied with respecgtosing  @4) reduce to the standard field equations in the limit where
ed. [4) as done in the previous section, the last two ternts witpq energy density of thiefields is very small and/or the de-

respect tch using eq. [(6), and one should keep in mind thatierminant of the pull-over is small such that the coupling is
h = detPy(h)) # handg = detPy(g)) # 9. The eom for the very weak.
matter fields are the usual ones and their pull-overs, and the T, summarize this section: We have 10 components for
missing field equations for the second metric take the form eachg andh. Equations(34) and((85) provide each 10 equa-
1 g tions that are related by the (contracted) Bianchi idestiti
MR — =h PR = 81G (IVK - \/:a‘f(a‘(,TKv) , (33) These two times 4 equations fix the two times 4 degrees of
o2 - h == freedom left inPy andP, after requiring metric-compatibility
Sof the pulled-over connections, which leaves us as usuél wit
4 degrees of freedom to chose the coordinate systems for each
metric.

with the previously defined stress-energy tensors from eq
(30) and[(3ll). Since equation {29) contamsather tharh
and equation (33) contairmgrather tharg, the pull-overs are
necessary ingredients. We can make this more apparent by

explicitly putting them into the equations:
V. EXAMPLEI: THE SCHWARZSCHILD METRIC

1 h
ORw— éng(g)R = Tw —\_/\/:a*,!aKﬁIm (34) To obtain a better understanding of the workings, we con-
9 sider the case with = 0, and with only a spherically symmet-
1 g ric source of usuag-fields outside of which there is vacuum
MR, — —hWR = _ K gy
Ruc 2hﬂ R = Tu W\/;aKaVTKV » (3% and we thus have the Schwarzschild solutiongofThis so-

lution has one free constan], that is the integral over the
whereV is the determinant d?,, andW is the determinant of energy density of the source. Making the obvious ansatz of
Py. (Or, to be more precise their absolute values since the vobpherical symmetry foh in the same coordinate system, we
ume element is positive.) Note that these equations would ndind also a Schwarzschild solution with one free constant to
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be fixed by integrating over the source term, and the pull-oveworked out in[211] does not apply to the here discussed case,
can be set to be constant. Singth =1, we see that the since a perturbation of the metiftis related to that of the
integrational constant is justMow < 0, whereoy is the de-  usual metricg via the field equations. Sinagis stable as
terminant of the pull-over. A further symmetry requirementusual, there is no reason to expect any instabilities fortee

that the asymptotic limit ofi be just the Minkowski metriq, ric that theh-observer would measure.

as is that oh andg, fixes the pull-over to be the identity and  Both types of fields only interact gravitationally, so the

ow = 1. We then have fields constitute a kind of very weakly interacting dark raatt
oM Since both kinds of matter repel, one would expect the amount
Gt = — <1— T) O =—1/0 , of h-matter in our vicinity to presently be very small.
Geo = I%, Gpp="I7siFO | (36)
oM VI. EXAMPLE II: FRIEDMANN-ROBERTSON-WALKER
hy = — (1+T) y by =—1/hy
) - We have the usual Friedmann-Robertson-Walker (FRW)
heo = 1%, hgy=r?si’e | (37)  metric forg
andhKv == h& 2 a2 2 2
One can now compute the connection coefficients accord- de’ = —dt? + ——(dr? +dQ?) (38)

ing to eq. [(Ib) and obtain the geodesic equations for an 1—kr
h-field in this background of @-source. Sincéh is just a and make the ansatz far
Schwarzschild metric with a negative source one sees e.g. by
taking the Newtonian limit that ah-particle will be repelled d€ = —dt2 +
by theg-source. It should be emphasized that in the here pre- 1—kr
sented approach this does not result in contradictionsoseth
pointed out by Bondi|5] since thefields do move according
to a different connection and thus the equivalence priecipl
does not apply (see also Appendix B).

In case the radius of the matter source fell below its

—2(er +dQ?) (39)

wherek = —1,0,+1. To preserve the symmetry of the FRW
metric, we further expect the pull-overs to only act on theeti
coordinate and we haw#/(1—kr) = [Py(9)]r andb?/(1—

kr) = [P (h)]ir. For the sources, we use the notation

Schwarzschild radius, and we had a black hole geometry for T — p, Ti=p (40)
0, the metrich would not have a horizon (thefields are re- 00 ’ i'
pelled by the source). Note also that this evident symmdtry o T =p,Ti=p . (41)

the above metrics is not as obvious in every coordinate sys; S
tem. For example changing to one of the more weII—behave$_|ere’.the indiceg | = .1’ 2,3, and are not summed over). The
systems with e.g. in/out-going EF-coordinates will be a&nic Irst Friedmann equations for both metrics then are
transformation for the usual metrig; but completely mess up a\ 2 b\ 3 K
the other metrid. The reason is just that for treobserver ( ) p—W(—) -= (42)
in/out-going means something different. a/ - @

As this example shows, the bi-metric model is not causal (b)z 0 <a>3 k

in the sense that thefield’s propagation does not need to lie b p— 2 (43)

within the lightcone of the standard fields. Theametric on

the manifold thus describes a global causal structure that iwhere a dot indicates a derivative with respect,tand the

general will be different from that of the g-matter. Becaase conservation laws read

the symmetry between both however, thfteld’s propagation N 5 by 3

is causal as well if the properties of a curve’s tangent vecto _ P a o _

are defined through the respective metric. Physically,etherat(p W<a> E)4—3a <p+ p+W<a) (E+_p)> =0 @4

are then two ways to form closed timelike curves: The one is a2 3 N

through an interaction betvyeen both types of m:_;ltter.whmh to 5, (E_\l<_) p)+3- E+E+\l(_> (p+p) | =0 @45)

gether could carry information around a closed timelikeveur b b b

Since the interaction between both types of matter is mediat

only by gravity and very weak, this would be relevant only for Since the pull-overs here act only on the time-coordinat, t

curves going through regions where the gravitational ater solutions fora andb together with the determinanté and

tion is strong. The other possibility is through a spacestim W then giveh andg. For example if one wanted to compute

structure that allows closed timelike curves, whichis kndav  the equation of motion for ah-photon, one hath; = —W?

be possible in the presence of negative energy densitigs [1%ndh, = b?/(1— kr) with which one obtains the non-metric

even for only small amounts [20]. It remains an open queseonnection via eqs[_(15).

tion though whether these solutions actually describerabtu  We will in this present work not attempt to discuss the solu-

settings. tions of these equations in all generality, but instead we co
It is further worthwhile to point out that the analysis sider some specific cases of interest. In the followaygand

about stability of the negative mass Schwarzschild blad& ho oy are positive valued constants.



1. In casep = 0, W does not appear in the equationsplf both metrics. In the case with the maximal number of space-
is a matter field, i.ep= 0, thenV = oy is a solution; if ~ time symmetries, both would just be the Minkowski metric.

p is a radiation field, i.ep = 1/3p, thenV = cya/bis  We then havér/g = 1, and the pull-overs are just the iden-

a solution. In this case thé could be absorbed into the tity. Since the matter content of both types of fields is ident

metrics (e.g. by changing both into comoving coordi- cal, this means the source terms in efs] (34) (35) cancel

nates). One should note that with this choice of source&entically, no matter how large their values are. This is a

eq. [43) does not have a solution fo= 0,1. The case consequence of the additional symmetry. Whether or not this

for p=0is similar. solution is stable or would run away if the constants did not
exactly cancel requires further investigation. Needlesst,
2. If bothp andp are matter fields thed =cov, W=0w  the measured value of the cosmological constant is not zero,
is a solution. but at least it is closer to zero thanrtg.

This bring us to another point to be mentioned, namely the
extraction of observables from the data, e.g. the highhiftds
supernovae data or the WMAP results. Underlying the data
analysis to obtain constraints on the parameters ihbBM-
model is the usual GR formalism. Unfortunately, some parts
of this formalism can not be applied in the model discussed
here. For example, to use cosmological perturbation thaory
relevant parameter is the relative size of perturbat@ipysp.
Typically, one infers from the CMB measurements the per-

. 5 .
5. If both sources are cosmological constants we havg.:rbatmlns at freeze-oqt were sr_nakl 10°°. This however
W = aw(b/a)? andV = oy (a/b)3. Note that for certain Is the size of perturbations relative to théservablgusual)

values of the constantsy andoy the curvature needs matter density. Since we now have an only gravitationaly in
to be negative - teracting density contribution that is negative, and omthir

would hope for symmetry reasons that both densities are of

As previously mentioned, the pull-overs are only determine the same order of magnitude, the total gravitating density ¢
up to constants that have to be specified in the initial conbe smaller than the observed one. Then, the relative density
ditions. With a suitable choice of these constants, one cafuctuations could be larger. Besides this, both comporwnts
achieve the additional source term to be negligible. Thouglinatter repel each other which is an effect usually not pttesen
this scenario does not seem particularly compelling, wetwan Another feature of the scenario becomes clear from the pre-
to point out that for this reason it is possible to reproduaas ~ Viously discussed example of the Schwarzschild metric. If
dard GR up to small corrections. there was a localized source of negative energy, it would act
as a gravitational lens - but unlike usual matter this wod@b
diverging lens since it would repel our (usual) photons.tsuc
VII. CONSEQUENCESAND POSSIBLE OBSERVABLES a lensing event would typically lower the luminosity of the
source, an effect that could potentially add up over distahc
Otpe distribution of such sources is substantial. The dietect

In the previous sections we have studied an extension f a diffractive lensi i d K
GR in whose framework sources with negative gravitationaP. a difiraclivé lensing event could Serve as a smoxing gun

energy appear in the field equations. These additioifi@lds signal for the here proposed scenario.
interact only gravitationally with our standard mattergianus

couple only extremely weakly. In this section we want to men-

tion some reasons why this scenario is interesting and worth Vil SUMMARY
further examination.

The model we laid out is purely classical. Nevertheless it We have studied an extension of General Relativity with
is worthwhile to consider the vacuum expectation value ef th two metrics, and two sorts of fields. Each field moves accord-
stress-energy tensor for quantum fields that are couplédgto t ing to the Levi-Cevita connection of one of the metrics. The
classical background. We will assume that the field contenhew sort of fields only interacts gravitationally with ouuas
for both, theg-fields and thén-fields, is identical such that we matter. We have coupled these fields to General Relativity.
have e.g. two copies of the Standard Model. The vacuum eX8y requiring the action to be symmetric under exchange of
pectation value of these quantum fields is just proportitmal the two metrics, and their fields, we obtained a model from
the respective metric. Though the constant of proportignal which we could derive the equations of motions for the two
is technically seen divergent, one expects this vacuunggner sorts of fields, as well as the field equations for both metrics
to be regularized at the Planck scafg. This leads one to It turned out that the additional fields can make a contrisuti
the well known problem that this vacuum energy density isto the gravitational stress-energy tensor with a negatieegy
~ mg‘ and far too large to ever allow our universe to form thedensity. We argued that this does not imply a vacuum insta-
structures we observe. bility since the kinetic energies are still strictly pogdiand

If we consider the vacuum solution in the model with ex-conserved. We further investigated the spherical symmetri
change symmetry however, we expect a symmetry betweeexample with a source of usual matter, and we found that the

3. Ifbothp andp are radiation fields thevt = oy, W = ow
is also a solution.

4. If p is a matter field ang is a radiation field theklv =
owb/aandV = oy. Similarly, if p is a matter field and
p is a radiation field theW = o\Za/b andW =ow. In
these cases, it is not possible to set BatlandV to be
constant.



newly introduced particles would be repelled by this sourceBy putting in a pull-over for the inde& and its inverse, and
We also derived the Friedmann-equations within this séenar absorbing the pull-overs in the definitidd (7) ahd (8) we get
and discussed some general properties of possible saution

Finally, we mentioned some possible consequences for ob-

servables, most importantly a diffractive gravitatioreadsing

effect.

[a Yy [P = @*%hge = a (56)

The pull-overs are linear, so we have

We hope to have shown that the here proposed bi-metric

model with exchang.e symmetry has interesting properties, %pn(é) — [ph( oL ﬂ _ oL [HJ]KK[HJ]A)\
and that it can potentially shed light on some so far unresbly ~ 0h KA

guestions in cosmology and astrophysics.
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e . (57)

Note that this is not a performance of the variation, but a
rewriting of the derivative with the aim to express the varia
tion of £ in a way that the symmetry becomes more apparent.
We could leave this term in the initial form where variation
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that the form ofz is symmetric to the usual Lagrangian un-

With Eq.(54) and[(56) and we then obtain

through MRI.
o 0L
———Ph(£)8n* = { < —ﬂ 3h**
Appendix A ShrA Ph(L) P dhan / |
6L K A A
' = —[PJ%[Pn)5 00"
Contracting Eq{4) 5hﬂ[pﬂ] <[Pl
oL
gw =272, hog (46) = g PR Y g
KA
with g yields
= - 6% afasg” (58)
8 = aa, hyp = a“a® guheg (47) 2
Taking the variation with use of (10) one obtains with which we return to Eq[(29).
a“aP gy, Bhyg + a“aP hypdgy, = 0 (48) .
Ko o Appendix B
sata’ gyohg+gdgy, = 0 ,  (49)
and after contracting withx If it wasn't the case that a negative mass particle moved ac-
" cording to a different covariant derivative, one could ¢ounst
50 — —a %a Psh 50 the following problem with negative sources in General Rel-
G B & ONap (50) ativity: Gravity is a spin-two field. Thus, like charges attt
From [48) one reads off that the inverseagf is and unlike charges repel, and a negative mass particleghoul
be repelled by a positive mass source. On the other hand, the
[a’l]"B =a“%he (51) negative mass particle moves according to the geodesie equa
tion which does not know anything about the particle’s mass -
where it only knows about the positive source background. Thtes, th
1k A B sk 50 negative mass particle should be attracted to the sourdé as a
@] pAv = S (52) test particles. One would then be lead to conclude a negative

Sinceayy is symmetric, so isa~ %]y, and we also have

[afl]BKaﬁv _ 6VK

(53)

We then usd (83) to bring thaés in (&0) to the other side

dho = —[a @ ", 00w

(54)

If we consider pulling over one of the indices an' with use

of P, we obtain

[ail]vK [Ph]ﬁk =a“%hgy [H_‘I]KK

(55)

mass test particle was attractaddrepelled likewise which
can be used to construct all kinds of nonsense.

The reason for this confusion is that the use of the usual
geodesic equation for the negative mass particle is ingppro
ate which one can understand most easily by interpreting the
covariant derivative as a coupling to the gravitationatifiblat
conserves the total energy of the particle including thepot
tial energy. For a negative mass test particle that is regell
instead of attracted, the conservation law has to be diftere
since it couples differently to the background. This is &mi
to the coupling of electrons and positrons to the electrid fie
being mediated by different covariant derivatives.
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