
RESEARCH ARTICLE

Using Hidden Markov Models to Improve
Quantifying Physical Activity in
Accelerometer Data – A Simulation Study
Vitali Witowski1,2*, Ronja Foraita1, Yannis Pitsiladis3, Iris Pigeot1,2,
Norman Wirsik1

1. Department Biometry and Data Management, Leibniz Institute for Prevention Research and Epidemiology
– BIPS, Bremen, Germany, 2. Department of Mathematics and Computer Science, University of Bremen,
Bremen, Germany, 3. School of Sport and Service Management, University of Brighton, Eastbourne, United
Kingdom

*wirsik@bips.uni-bremen.de

Abstract

Introduction: The use of accelerometers to objectively measure physical activity

(PA) has become the most preferred method of choice in recent years. Traditionally,

cutpoints are used to assign impulse counts recorded by the devices to sedentary

and activity ranges. Here, hidden Markov models (HMM) are used to improve the

cutpoint method to achieve a more accurate identification of the sequence of

modes of PA.

Methods: 1,000 days of labeled accelerometer data have been simulated. For the

simulated data the actual sedentary behavior and activity range of each count is

known. The cutpoint method is compared with HMMs based on the Poisson

distribution (HMM[Pois]), the generalized Poisson distribution (HMM[GenPois]) and

the Gaussian distribution (HMM[Gauss]) with regard to misclassification rate

(MCR), bout detection, detection of the number of activities performed during the

day and runtime.

Results: The cutpoint method had a misclassification rate (MCR) of 11% followed

by HMM[Pois] with 8%, HMM[GenPois] with 3% and HMM[Gauss] having the best

MCR with less than 2%. HMM[Gauss] detected the correct number of bouts in

12.8% of the days, HMM[GenPois] in 16.1%, HMM[Pois] and the cutpoint method in

none. HMM[GenPois] identified the correct number of activities in 61.3% of the

days, whereas HMM[Gauss] only in 26.8%. HMM[Pois] did not identify the correct

number at all and seemed to overestimate the number of activities. Runtime varied

between 0.01 seconds (cutpoint), 2.0 minutes (HMM[Gauss]) and 14.2 minutes

(HMM[GenPois]).

Conclusions: Using simulated data, HMM-based methods were superior in activity

classification when compared to the traditional cutpoint method and seem to be
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appropriate to model accelerometer data. Of the HMM-based methods,

HMM[Gauss] seemed to be the most appropriate choice to assess real-life

accelerometer data.

Introduction

Currently physical inactivity is considered a major risk factor for several health

disorders like cancer [1], obesity [2], cardiovascular disorders [3], muscular

skeletal disorders [4], as well as mental disorders [5]. An appropriate assessment

of physical activity (PA) is therefore essential in disciplines like medicine and

epidemiology to improve the existing evidence-base. The use of accelerometers as

an objective measurement of PA has become the most preferred method of choice

in recent years, as modern devices allow high frequency measurements for

extended periods of time. These now relatively inexpensive devices collect

information known as (impulse-)counts and provide information on intensity and

duration of PA in an individual.

Counts represent a device-specific numeric quantity which is generated by an

accelerometer for a specific time unit (epoch) (e.g. 1 to 60 sec). This quantity is

proportional to the intensity of the physical activity performed by the subject. The

sequence of activities during a day is stored as a time series of counts by the

device. The most common approach to derive the pattern of PA and its energy

expenditure is to map these counts to a certain number of sedentary and activity

ranges, such as sedentary, light, moderate and vigorous activity. The duration of

PA within the same activity range is known as bout and can be easily extracted

from a given sequence of counts. A bout is defined as the time period in which the

subject remains within one activity range without changing to another. Activity

ranges are separated by thresholds known as cutpoints. Cutpoints for different age

groups are available for children [6, 7, 8, 9, 10, 11, 12] and adults [13, 14, 15]

allowing to assess the overall time spent in these ranges of PA.

While the ease of implementation of this cutpoint method is an obvious

advantage, this method has certain important disadvantages. Counts are being

incorrectly assigned to the wrong activity range, leading to misclassification and

thereby to an increase of bouts. In the following we assume that the PA of an

individual is composed of a sequence of non-overlapping bouts, i.e. each bout

being a discrete activity, which is performed over a period of time. Furthermore,

the modes of activity can be represented by a ‘true’ average count level. This

assumption is depicted in Figure 1. The person first takes a short walk, after which

she/he watches TV, followed by a game of basketball and running afterwards. The

solid black lines represent the ‘true’ average count level for each of these activities.

For example the short walk at the beginning has a true count level of about

m2 walkingð Þ~300 counts per epoch, which can be understood as the true intensity

level of this walk. The counts registered by the accelerometer scatter around this
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true level, following a certain distribution (dotted grey line). So the PA depicted in

Figure 1 consists of four separate bouts, with four distinct PA-levels m1 to m4.

As long as the variation around the true intensity level is small and the true level

is not close to a cutpoint the complete mode of activity can be correctly assigned

to its corresponding activity range. However, in real-life applications the variation

of counts and the resulting scattering is large, leading to considerable

misclassification of the registered counts into erroneous activity ranges. As a

consequence the number of bouts is dramatically increased, as a subject seems to

switch from one activity range to another and back again within a few epochs.

Therefore, the duration a subject spends in one activity range can be significantly

under- or overestimated (cf. numerous validation studies performed to date e.g.

[16, 17, 18, 19]).

There has been a number of attempts to resolve the misclassification issue. For

example, Pober et al. [20] proposed stochastic models to allow the identification

of modes of activity like working at a computer, walking, walking uphill and

vacuuming in accelerometer data. A hidden Markov model (HMM) was

successfully trained to identify these activities. The model correctly identified the

activity mode in 80.8% of the data. Vacuuming was correctly identified most

Figure 1. Modeling of accelerometer counts using HMMs. The figure shows the three activity ranges LIG, MOD, VIG, separated by the cutpoints at 420
counts and 842 counts. The accelerometer counts xt scatter around four different activity states (‘‘watching TV’’, ‘‘walking’’, ‘‘running’’ and ‘‘playing
basketball’’) following a state dependent distribution Xt jZt*N mi, s2

i

� �
with hi~ mi, s2

i

� �
and fictitious PA-levels m1 TVð Þ~10, m2 walkingð Þ~300, m3 runningð Þ~800,

m4 basketballð Þ~1050 respectively.

doi:10.1371/journal.pone.0114089.g001
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frequently in 98.8% of all cases, and walking/walking uphill in about 62%. This

approach requires annotated data for training the HMM and activity mode

identification is therefore limited to the modes used during training. In order to

use this method in free living environments, one would need to train the HMM

with all possible activity modes.

As a solution to the misclassification problem caused by large variation of the

counts registered by accelerometers, we suggest a new approach that combines the

HMM-based method with the traditional cutpoint method. The aim is to provide

a better estimate of the activity modes that generated the sequence of counts

during the day and by this to decrease the misclassification error, which is

inevitably introduced by the cutpoint approach. In order to achieve this, an

HMM-based approach was developed to model accelerometer data. 1,000 days of

labeled accelerometer data were simulated. HMM models based on the Gaussian,

the Poisson and the generalized Poisson distribution were compared with the

cutpoint method with regard to misclassification rate (MCR), bout detection,

detection of the number of activities performed during the day and runtime.

Methods

Traditional cutpoint approach

The cutpoint method assigns an activity range to each epoch. There are various

cutpoints available in the literature. Any of these cutpoints could have been used

for our simulation study where we decided to use cutpoints from Pate et al. [9].

According to [9] epochs with ,420 counts/15 sec are assigned to light physical

activity (LIG) with 0–3 metabolic equivalent of task (METs), epochs with 420–841

counts/15 sec to moderate physical activity (MOD) with 3–6 METs and epochs

.841 counts/15 sec to vigorous physical activity (VIG) with more than 6 METs.

HMM-based approach

An HMM is a stochastic model based on the idea that an observed time series has

been generated by an underlying unobservable, time and value discrete, stochastic

process whose random variables Zt are hidden. This sequence of hidden states

satisfies the Markov property and forms a Markov chain, i.e. the transition

probability to switch from one state to another only depends on the state of

interest and is independent of all states prior to t. The hidden Markov chain

represents a sequence of unobserved random variables Zt with a finite number of

states m: Let Z~ 1,:::,mf g denote the set of possible states and represent the

realization of Zt at point in time t: Each state i EZ symbolizes different activities

that change from one activity ztz1~i, iEZ, to another ztz1~j, jEZ, over time.

The states, however, cannot be observed directly, but they generate a state-

dependent output according to a known or presumed probability distribution (see

[21, 22] for further details on HMMs). For the purpose of this analysis, the hidden

sequence of states is the true, but unknown sequence of PA each subject
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performed in a free living-environment, while the recorded accelerometer counts

xt are the observed realizations of random variables Xt: The sequence of hidden

states satisfies the Markov property:

P(Zt~zt jZ1,:::,Zt{1,X1, . . . ,Xt{1)~P(Zt~zt jZt{1~zt{1),

i.e. each activity solely depends on its predecessor. The resulting time series of

length Tof performed physical activities z1,:::,zT can only be observed indirectly

via a parallel time series represented by the assessed accelerometer counts.

The probability of a Markov chain to switch from state i to state j is given by the

transition probability ci,j~P(Zt~jjZt{1~i): A Markov chain is called homo-

geneous, if the transition probability ci,j is independent of t for all pairs of i and

j EZ. The transition probability of a homogeneous Markov chain with finite

Z~ 1,:::,mf g can be summarized in an m|mð Þ transition matrix C~(ci,j)1ƒi,jƒm,

with elements of C being probabilities and therefore the following conditions have

to be fulfilled: and A Markov chain is fully defined by this transition matrix C and

a vector containing the initial probabilities

p0~ p01, . . . ,p0mð Þ~ P Z1~1ð Þ, . . . ,P Z1~mð Þð Þ with
Pm

i~1 p0i~1 for the first

state.

In the HMM-based approach, each state i~1,:::,m is linked with the mean

activity count mi of the PA, which the state represents. mi denotes the PA-level of

the PA i. Furthermore, the variable Xt is assumed to be conditionally independent

of all remaining variables given its hidden PAZt :

P(Xt~xt jZ1,:::,Zt,X1, . . . ,Xt{1)~P(Xt~xt jZt~zt):

This means, at each point in time t, the count xt is assumed to be generated by a

certain distribution, which depends on the activity state zt~i, with the

corresponding PA-level mi as mean of this distribution. The observation

distribution is the probability that Xt takes a value xt under the condition that

Zt~i: The observation distributions are assumed to be a subset of a whole class of

distributions to be specified in advance. Depending on the class of distributions, pi

is determined by kEN parameters. These form the parameter vector

hi~(h1i, . . . ,hki) ERk: The m: k parameters in turn form the matrix

h~ hlið Þ1ƒlƒk;1ƒiƒm: An HMM is fully described by its model-specific parameter

H~ p0,C,hð Þ: This setting is illustrated in Figure 1 and depicts the fictitious

output of an accelerometer, while the subject performed four activities ‘walking’,

‘watching TV’, ‘running’ and ‘playing basketball’. The sequence of activities is

assumed to follow a Markov chain, and the accelerometer counts are assumed to

be generated by four activity-state-dependent Gaussian distributions with the

corresponding PA-levels m1 TVð Þ, m2 walkingð Þ, m3 runningð Þ and m4 basketballð Þ as their

means.

The HMM approach developed for such situations can be subdivided into the

following three steps.
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Step 1: Building an HMM for an observed time series of counts. The model

specific parameters H of the HMM given an observed time series of counts

x1,:::,xT are estimated. This is referred to as training of the HMM. Parameter

estimation can either be performed by numerical maximization of the likelihood

of the model with respect to H or by utilizing the so-called Baum-Welch algorithm

[23] which is commonly used to fit HMMs.

Typically the number of hidden states m (respectively the number of hidden

activities) given the counts x1,:::,xT is unknown. In this case the basic idea is to

train several HMMs with different numbers of states m and to evaluate the

goodness of fit of the model by the Bayesian Information Criterion (BIC) and

Akaike’s Information Criterion (AIC). If both criteria suggest a different number of

states, then one may opt for fewer states to have a more simplistic model or for a

larger number of states if this better reflects the underlying practical situation.

Step 2: Decoding the hidden sequence of PA-levels. After the model

parameters H and an appropriate number of physical activities m have been

estimated, the resulting HMM is used to link each count xt to an estimated PA-

level m̂i i~1, . . . ,mð Þ.
Step 2.1 First, the Viterbi algorithm [24, 25] decodes the globally most likely

sequence of hidden activities denoted by z�1 ,:::,z�T for the trained HMM and the

same time series of counts x1, . . . ,xT that was used to train the HMM in Step 1 by

comparing the joint probability of all T hidden states and the observed

accelerometer counts. Alternatively, a local method can be used to decode the

most likely hidden activity z�t , given all accelerometer counts x1, . . . ,xT , for each

single t~1,:::,T by comparing the joint probability of the hidden state at point in

time t and the observed accelerometer counts.

Step 2.2 Second, each count xt is assigned to the estimated PA-level m̂z�t
that

corresponds to the decoded state z�t at this point in time. Step 2.2 is demonstrated

in Figure 2. In this example, the trained HMM with m~5 leads to an overfitting

of the four activities performed, where the state ‘running’ is mistakenly split into

two different PA-levels by the decoding step.

Step 3: Extension of the cutpoint method. In the last step of our approach,

which combines the HMM-based method with the traditional cutpoint approach,

each accelerometer count xt will be assigned via its corresponding (most likely)

PA-level m̂z�t
to an activity range at , using the traditional cutpoint method.

Overall, the procedure of the new HMM-based cutpoint approach can be

summarized as follows:

Step 1: Train the HMM parameters assuming a probability distribution for the

counts for each (hidden) PA.

Step 1.1: (optional): Estimate the number of different states m.

Step 2: Decode the hidden sequence.

Step 2.1: Estimate the most likely sequence of states (HMM-decoding):

x1, . . . ,xT?z�1 , . . . ,z�T :
Step 2.2: Assign a PA-level (HMM-decoding): z�t ?m̂z�t
Step 3: Assign an activity range (cutpoint method): m̂z�t

?at:
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In the example illustrated in Figure 2, the trained HMM identifies five PA-levels

m̂1,:::,m̂5, which leads to a misclassification of parts of the state ‘running’ into five

instead of one bout, with two bouts being assigned to the highest activity range.

Even with this overestimation of five identified PA-levels instead of four, the

HMM-based method assigns most counts correctly to their actual activity range.

The high number of bouts typically obtained from the cutpoint method is reduced

by the HMM-based approach because a Markov chain is assumed to underlie the

performed activities at each point in time. The present example consists of three

bouts: the first is defined by the two activities ‘walking’ and ‘watching TV’ that

correspond to the activity range LIG; the second bout is defined by ‘running’ in

MOD and the third by ‘playing basketball’ in VIG. Due to the assumed Markov

chain, the HMM-based approach detects eight bouts, which is an overestimation

of the true value of three, but results are more precise than those obtained from

the traditional cutpoint method, which identifies 25 bouts.

The underlying distributions of the states which generate the observed time

series are a priori unknown. In the context of modeling accelerometer counts,

three distributions are of particular interest: The first HMM is based on the

Poisson distribution, which is typically used to model counts. The second model

uses the generalized Poisson distribution [26] that includes a further variance

parameter to allow for a larger or smaller variation than the one assumed for a

standard Poisson distribution. Real-life accelerometer data typically show larger

Figure 2. HMM-decoding using the Viterbi algorithm to extract the most likely sequence of physical activity.

doi:10.1371/journal.pone.0114089.g002
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variability than a simple Poisson distribution can accommodate. For the third

HMM, a Gaussian distribution is assumed to capture the random scattering of the

counts around the presumed PA-level. For the purpose of the present analysis, the

Poisson-based HMM is referred to as HMM[Pois], the HMM based on the

generalized Poisson distribution as HMM[GenPois] and the Gaussian-based

HMM as HMM[Gauss].

Simulation Study

The performance of the traditional cutpoint method is assessed by comparing it

with the extended cutpoint method using HMMs in terms of (1) the

misclassification rate (MCR), calculated as the percentage of how many of the

counts were assigned incorrectly to any other activity range than their true activity

range, (2) number of bouts correctly identified, (3) number of activity levels

correctly identified, and (4) runtime. For this purpose, labeled accelerometer

count time series, for which the correct activity range of each count is known,

with the length of T~1,440 and an epoch length of 15 seconds have been

simulated. This particular epoch length and length of T were chosen to reflect

typical situations in population-based epidemiological studies [27]. The HMMs

does also work with shorter epoch lengths and larger T: Please note that for our

simulated, labeled data, the true sequence of activities and therefore the actual PA-

level and also the activity range of each count are known. In total, 1,000 different

time series were simulated, each representing 6 hours of counts per day (data

available under doi:10.5061/dryad.tq0gt). Counts per day were randomly

generated using the negative binomial distribution (with parameters r~1 and

p~0:0009, resulting in the lowest PA-level m1~111:11) and the Gaussian

distribution (with the parameters and m4~900, with s2
2~s2

3~s2
4~10,000)

around three or four pre-defined PA-levels (depending on the random time series

generated by a Markov chain), with the lowest PA-level (400) chosen to be very

close to the lower cutpoint of 420. To create random activity modes that are time

periods spent on the same PA-level, e.g. walking or running, the sequence of PA-

levels has been generated using a Markov chain. The simulations were designed to

reflect free living-environment observations obtained for children (see Table 1).

The simulated data were specifically designed to accommodate cutpoints

proposed by [9]. As a large amount of misclassification is expected to occur in

activity modes close to a cutpoint, the lowest PA-level (400) was intentionally

chosen to be close to one cutpoint, in order to demonstrate the advantage of this

method. Any other cutpoints available in the literature could have been chosen,

since the application of HMMs does not depend on the choice of the cutpoints.

On average, one 6 hour day comprised of 23.66 bouts and 3.97 activities during

the day. For data simulation and analysis the R package HMMpa [28] was used.

Hidden Markov Models to Quantify Acclerometer Data
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Results

Table 2 displays the MCR of all considered methods based on 1,000 simulated

days. The cutpoint method shows the highest misclassification rate with about

11% followed by HMM[Pois] with about 8%. HMM[GenPois] and HMM[Gauss]

correctly assign 97% and 98% of all counts to their true activity range,

respectively. HMM[GenPois] and HMM[Gauss] outcomes are very close to the

simulated data of 23.7 bouts with a mean of 31.2 and 32.5 detected bouts,

respectively, while HMM[Pois] detects five times and the cutpoint method ten

times as many bouts (Table 2). HMM[Gauss] detects the correct number of bouts

in 12.8% and HMM[GenPois] in 16.1% of the days.

The proposed methods do not need a priori information on the number of

different activities performed during the day. The algorithms identify the most

appropriate number m by minimizing AIC and BIC. On average, the simulated

days have 3.97 different activities. HMM[GenPois] identifies on average 4.19

followed by HMM[Gauss] with 5.18 (Table 2). HMM[GenPois] identifies the

correct number of activities in 61.3% of the days, whereas HMM[Gauss] only in

26.8%. HMM[Pois] does not identify the correct number at all.

Mathematical models often have the disadvantage of being numerically instable

or having a long runtime. With the exception of the HMM[GenPois], which was

numerically instable in 6.9% of the simulated days, all other presented methods

converged for the simulated days. Runtime varied from 0.01 seconds (cutpoint) to

Table 1. Statistical characteristics of the simulated 1,000 data sets (SD5standard deviation).

Mean SD Min Median Max

b [bouts] 23.66 7.03 5.00 23.00 47.00

m [activities] 3.97 0.17 3.00 4.00 4.00

doi:10.1371/journal.pone.0114089.t001

Table 2. Misclassification rate, number of identified bouts and identified activities for the traditional cutpoint method and the HMM-based method with
different state-dependent observation distributions (SD5standard deviation).

Measure Method Mean SD Min Median Max Correctly identified [%]

Misclassification rate Cutpoint 11.14 2.16 5.35 11.18 19.31 88.86

HMM[Gauss] 1.77 3.53 0.00 0.90 31.94 98.23

HMM[Pois] 8.21 5.97 1.53 5.56 32.64 91.79

HMM[GenPois] 3.03 5.58 0.14 1.18 23.06 96.97

Number of identified bouts Cutpoint 229.55 38.52 129.00 229.00 345.00 0.00

HMM[Gauss] 32.52 12.84 1.00 31.00 125.00 12.8

HMM[Pois] 136.43 46.75 37.00 131.00 283.00 0.00

HMM[GenPois] 31.16 9.86 13.00 31.00 51.00 16.1

Number of identified activities Cutpoint – – – – – –

HMM[Gauss] 5.18 0.96 3.00 6.00 6.00 26.8

HMM[Pois] 5.66 0.47 5.00 6.00 6.00 0.00

HMM[GenPois] 4.19 0.60 3.00 6.00 6.00 61.8

doi:10.1371/journal.pone.0114089.t002
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2.0 minutes (HMM[Gauss]) to 14.2 minutes (HMM[GenPois]) on a regular

Windows workstation.

Discussion

This paper investigated the feasibility and the potential advantages of the HMM-

based method over the cutpoint approach in identifying the sequence of modes of

PA. The results of the simulation study clearly showed the inferiority of the

cutpoint method compared to HMM-based approaches. By default the cutpoint

method was not able to identify the number of activities performed by a subject.

Depending on the specific research question, this may, however, be of particular

interest in addition to the correct identification of bouts.

For example, typical recommendations on how much PA children and

adolescents need each day suggest 60 minutes (1 hour) or more of physical activity

that are age-appropriate, enjoyable and offer variety [29]. While moderate to

vigorous activity can be adequately assessed using the cutpoint method, this

method leads to a rather rough classification, if one wishes to distinguish the

intensities of activities within one activity level, as e.g. between fast walking and

slow jogging. Both would be simply assigned to a moderate activity level, whereas

HMM-based methods have proven to be much more appropriate for this purpose.

The HMM-based method can distinguish those activities and therefore our

findings have important implications for the measurement of PA in individuals in

free-living conditions for monitoring and surveillance purposes.

Among the HMM-based methods, HMM[Pois] revealed the weakest perfor-

mance in terms of MCR, bout and activity detection. As anticipated, a simple

Poisson distribution cannot accommodate the variance seen in accelerometer

data. The results for HMM[GenPois] and HMM[Gauss] were very similar to each

other. HMM[Gauss] had a slightly better MCR (1.77% vs. 3.03%), while

HMM[GenPois] was better in terms of bout detection (16.1% vs. 12.8%). This is a

considerable improvement compared to the cutpoint method, especially if one

keeps in mind that a bout is considered as incorrectly identified if the detected

bout is just one epoch shorter or longer than the true one. This situation can easily

occur at the ‘point of discontinuity’ when the person switches from one activity to

the other. HMM[GenPois] also performed better than HMM[Gauss] and

HMM[Pois] with regard to the number of correctly identified activities, which

may be particularly relevant for the analysis of accelerometer data. According to

the present results, HMM[GenPois] outperforms HMM[Gauss] in this respect as

reflected by the considerably higher activity detection rate of 61.3% for

HMM[GenPois] compared to only 26.8% for HMM[Gauss]. HMM[Pois] did not

identify the correct number at all. As the mean of identified activities is greater

than the mean number of simulated activities, combined with the fact, that

HMM[Pois] was not able to detect the correct number of activities at all, it can be

concluded that HMM[Pois] in general overestimates the number of activities.
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However, this outperformance of HMM[GenPois] comes at a price, namely

runtime and problems with numerical stability. Even with 6 hour days and 15

seconds epochs (T~1,440), HMM[GenPois] needed seven times more runtime

than HMM[Gauss]. As modern accelerometers are becoming increasingly

powerful, subjects can be monitored for up to 24 hours a day for 7 or more days at

1–5 seconds epochs. This results in a time series of more than

T~24|7|3600~604,800 counts, which will dramatically increase the runtime.

For small sample sizes this fact can be disregarded and HMM[GenPois] can be

used, but in large cohort studies with more than 10,000 subjects, runtime can

become an issue and hence HMM[Gauss] may be preferred.

A simulation study was used here to explore the general feasibility and the

potential advantages of the presented HMM-based method, as simulated data

have the advantage that the ‘truth’ is known for every individual count. That

means for example that the activity that generated this count and its true intensity

level are known for comparative purposes. Using real-life accelerometer data this

information would not be available, even if annotated data with measured oxygen

consumption would be at hand. In the present study, the data were generated such

that one simulated PA-level was close to a cutpoint to investigate whether HMM-

based methods are able to correctly identify PA-levels in such situations. Although

the simulation study was especially designed for the comparison of methods when

using cutpoints from [9], this does not constitute a limitation to the HMM-based

approach presented here since it can be easily adapted to any cutpoints proposed

in the literature.

Nevertheless, in a next step, the HMM-based methods have to be applied to

real-life accelerometer data, where it will be especially interesting to apply these

models to annotated data, where the energy expenditure is known. Another

promising future application of the presented method is to use HMMs to estimate

�mz�t
as mean PA-level and use the resulting count estimate in energy prediction

equations, as e.g. provided by [30]. The HMM-based methods may lead to

improved energy expenditure estimates based on better count estimates.

Conclusion

HMM-based methods for modeling accelerometer data are a promising extension

of the traditional cutpoint method and on the basis of data presented here ought

to improve the analysis of PA. While both HMM[GenPois] and HMM[Gauss]

methods seem superior to current cutpoint methods, HMM[Gauss] may be more

suitable for real-life applications and if estimation of activity levels is not the main

focus. HMM[GenPois] should be used if a better activity and bout detection is

desired and runtime is not an issue. Despite these encouraging results, both

models will have to be applied to real accelerometer data in future studies in order

to prove their superiority over traditional cutpoint method in practice.
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