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ABSTRACT
This article presents a new method for determination of 

meshing stiffness of the gear teeth using three dimensional 
analysis of tooth stiffness.  The teeth are treated as explicit 
capacitive fields and their compliance matrix is determined by 
considering virtual interconnected springs located at defined 
nodes on tooth profile.  The stiffness of any arbitrary point on 
the profile can then be determined as a linear function of 
neighboring nodes stiffness.  The results of this analysis help in 
determination of load distribution for a pair of meshing gears 
under real operation conditions where deflections and 
misalignments are inevitable. 

INTRODUCTION
Gear boxes are among most important elements of 

mechanical systems, and their maintenance and condition 
monitoring are of prime concern to users and service personal.  
Torsional vibrations of gears and shafts are more important in 
gearbox performance than their lateral and longitudinal 
vibrations because they directly affect the quality of power 
transmission.  Therefore many efforts have been put into 
monitoring gearbox working condition by noise and vibration 
measurement on gearboxes by different methods.  

The main source of gear torsional vibrations is the change 
in meshing stiffness.  Meshing stiffness changes periodically as 
contact point changes position over the tooth profile.  This will 
induce periodic changes in gear loading.  Local defects such as 
crack or tooth fracture also change meshing stiffness increasing 
vibration amplitudes.  Therefore a correct measurement of 
meshing stiffness and its changes can help in better 
understanding of induced vibrations and resulting defects.  

There has been many works on calculation of tooth 
stiffness.  These works mainly use analytical, experimental, or 
numerical methods for this calculation.  In early works by 
Tuplin and Buckingham meshing stiffness was considered to be 
constant [3].  Later work considered meshing stiffness as a 
periodic function.  Dalpiaz [1], considered a sine shape and 
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Seireg [5], a trapezoidal shape for this periodic function.  Shing 
[6] used theory of elasticity to determine the mean meshing 
stiffness.  He considered deflection contributed by bending 
moment and shear stress, foundation deflection and Hertzian 
stress as the main parameters affecting tooth deflection.  Kuang 
[3] used a two dimensional (2-D) finite element method (FEM) 
to calculate tooth stiffness.  He expressed the tooth stiffness as 
a function of module, number of teeth, pitch circle diameter, 
and the position of contact point.  Yesilyurt [9] used 
experimental results and modal analysis to calculate meshing 
stiffness.  Pimsarn [4] defined the singular stiffness at the 
contact point of the bodies and calculated the contact force on 
the basis of artificial overlap of two rigid bodies.  His 
calculation scheme was 2000 times faster than a FEM 
calculation for the same problem but had 8% difference with 
FEM results.  

In all previous analytical or numerical studies on gear 
meshing, a two dimensional model has been considered.  
However, there are many factors in real working condition that 
divert the line of contact from its ideal position.  Gear shaft 
deformation, deformations of the housing, shaft misalignment, 
bearing deformations and imperfections, and elastic 
deformations of gear body are among these parameters [2].  

In the current research a method is devised by which 
meshing stiffness is calculated using the results of 3-D FEM 
analysis of gear tooth.  The gear tooth is treated as a capacitive 
field and its compliance matrix is determined.  This will give a 
new capability for analyzing gear tooth loading in three 
dimensional loading situations resulting from real working 
conditions.

A REVIEW OF 2-D MODELS
Figure 1 shows a two dimensional model of a pair of 

meshing gears. In this model it is assumed that the line of 
contact of the two gears is parallel to the axes of the gears, and 
the meshing is modeled as a spring and damper.  The frictional 
effects are normally ignored in this model.
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Figure 1- two dimensional model of a pair of meshing 
gears.

In Fig.1, T represents torque, I is the moment of inertia, Km
is meshing stiffness, and Cm is the meshing damping.  The 
meshing force F resulting from material elasticity is related to 
the relative displacement of the two gears as represented in 
Equation 1. 

( )m p p g gF K= ρ ψ −ρ ψ (1) 
In Equation 1, ρ is the radius of contact point.  To calculate 

meshing stiffness, the stiffness of a single tooth must be 
determined.  Let's define the tooth stiffness as the ratio of the 
force applied to the tooth to the displacement in direction of the 
force:

FK =
δ

(2) 

Meshing stiffness is a function of tooth form, contact ratio, 
radii of profile curvature, the rim section design, the Hertz 
contact, manufacturing errors, elasto-hydrodynamic lubrication 
and the alignment errors [6].  The meshing stiffness is 
calculated from single tooth stiffness as springs in series [6]: 

m
1 2

1 1K
K K

= + (3) 

If more than one pair of teeth comes to contact at the same 
time, the meshing stiffness becomes:

m1 m2K K K .....= + + (4) 
Meshing stiffness is a periodic function and changes with 

gears rotating position. If the spring constant of a single tooth 
as a function of contact point is known, the meshing stiffness 
can be determined at each working moment.  

THE 3- D MODEL
In real working conditions, many factors dislocate the line 

of contact from its ideal position and therefore the two 
dimensional model of meshing stiffness can no longer be used.  
Determination of meshing stiffness using 3-D models is very 
time consuming and not feasible.  The method presented in this 
article uses the results of the finite element analysis done on a 
3-D model of the gear for this purpose.  In this method the 
volume of the calculations are reduced remarkably. 

Each tooth in this model is assumed to have numerous 
compression springs on its surface.  During meshing, n springs
from pinion tooth, lined on the line of contact (Kpi), push on n 
springs on the gear tooth (Kgi).  The assumed springs on the 
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pinion tooth constitute a capacitive field whose stiffness matrix 
[Kp] is determined by 3-D finite element analysis.  Likewise a 
stiffness matrix is determined for gear teeth [Kg].  These 
capacitive fields are functions of the position of contact line 
and their elements change as the line of contact changes 
position due to motion.  

The Capacitive Fields
Each gear tooth surface is divided to a large enough 

number of regions to provide the required accuracy (circles in 
Fig. 2).  A unit load is then applied to each of the nodes and the 
tooth is analyzed to find the displacement of the nodes on the 
tooth surface.  Repeating this for all the nodes on the tooth will 
result a displacement matrix u whose elements uij are the 
displacement in node i as a result of a unit load at node j.  The 
matrix u will then be used as a reference to calculate the 
meshing stiffness.

Figure 2- FEM node positions on the tooth (dots), 
points on line of contact (triangles).

If load is applied to nodes 1 to n simultaneously, the 
displacement of a node can be determined by linear 
superposition of the displacements of that node due to the 
applied loads.  Using this terminology, the displacement of 
node 1 on can be defined as:

1 1 11 2 12 n 1nU f u f u ... f u= + + + (5) 
Similarly for ith node we have:

i 1 i1 2 i2 n inU f u f u ... f u= + + + (6) 
And in matrix form:

{ } [ ]{ }U u f= (7) 
It is apparent that u is the compliance matrix of the tooth 

and its inverse will therefore be the tooth stiffness matrix.

[ ] [ ] 1K u −= (8) 
The stiffness matrix K is determined by the assumption 

that the loads are applied at the nodes.  In real working
condition the line of contact can have different positions and its 
points are not necessarily on the nodes.  Matrix u can be used to 
determine the displacement of any other point not lying on the 
nodes.  As shown in fig, 2, the points marked by triangles are 
assumed to be the points on an arbitrary line of contact.  Each 
of these points is located between four nodes. The 
displacements of these points due to the force applied at nodes 
can be determined by a linear shape function.  Considering C0

continuity we have [7]:
xycycxccun 4321 +++= (9) 
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D

In Equ. 9, cis are constants and x and y denoted the position 
of the point of interest.  As ui is known in nodes 1 to 4 (for 
example), the coefficients ci can be determined using Equation
10 [7]:
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This can be done for other points on a line of contact and 
not on the nodes.  As next step Castigliano's theorem, can be 
used to determine the displacement of the new points as a result 
of the application of the load to the same points and therefore 
the new displacement matrix [u] can be determined from Equ. 
7.  

3-D Meshing Stiffness
If the line of contact is known, the corresponding 

capacitive field associated with that can be determined using 
the method described before.  The assumed springs on the 
surface of the two teeth will be in series on the line of contact.  
If up represent displacement of the pinion tooth, ug
displacement of gear tooth, and uc the displacement on the line 
of contact, then:

{ } { }p p cF K u u = −  (11)
And similarly:

{ } { }g c gF K u u = −  (12)
In the above equations F is a 1xn matrix representing the 

force on the points along the line of contact and Kp and Kg are 
stiffness matrices of the pinion and the gear respectively (note 
that stiffness matrices are functions of the line of contact and 
vary with gears rotation).  The displacements of the line of 
contact can be determined from equations 11 and 12:

{ } { } { }( )c pg p p g gu C K u K u     = +      (13)
In which

( ) 1

pg p gC K K
−

     = +      (14)

As a result the meshing force as a function of pinion and 
gear displacements will be:

{ } { }
[ ]( ){ }

g pg p p

g pg g g

F K C K u

K C K I u

     =      

     + −     
(15)

The displacement of pinion and gear teeth are related to the 
corresponding rotation angles as follows:

{ } { }p pc pu R= θ (16)

{ } { }g gc gu R= θ (17)
In above equations, Rpc and Rgc are the radii of rotations of 

pinion and gear teeth contact points.  The radius of rotation 
changes along tooth profile, and it can be related to the tooth 
and gear geometry.  The changes are not large and at this stage 
it will only add to the complexity of the relations.  We preferred 
to use the pitch radius of the gears instead in a trade for 
simplicity.  It will then result:
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{ } { }
[ ]( ){ }

g pg p pc p

g pg g gc g

F K C K R

K I C K R

     = θ     

     − − θ     
(18)

The problem is symmetric by nature and therefore the 
stiffness matrix can be achieved:

[ ]( )g pg p g pg gK C K K I C K           = −            (19)
Substituting equation 18 into 19 results:

{ } { } { }( )g pg p pc p gc gF K C K R R     = θ − θ      (20)
For a unit relative displacement we have:

{ } { }pc p gc gR R 1θ − θ = (21)
And for a unit relative displacement the meshing force of 

the two gears will be the meshing stiffness:

{ } ( ) { }m g pg pn 1 n 1n n
K K C K 1

× ××
     =       (22)

Figure 3 shows the schematic of the meshing 
configuration.

Figure 3- Schematics of 3-D meshing configuration 
on the line of contact.

This will constitute a discrete structural with an explicit 
capacitive field as shown in figure 4 in a Bond Graph 
representation.  In this figure Rci is the radius of the meshing 
point and Kmi is the equivalent spring constant of that point.

Figure 4- Bond Graph representation of meshing 
stiffness.
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APPLICATION TO AN EXAMPLE
For a gear tooth whose specifications are given in table1, 

the application of this approach is illustrated.  A tooth from this 
gear is modeled in a 3-D manner using the relation presented by 
Litvin [3].  The generated geometric model of this gear was 
meshed using hexagonal elements.  There are 91 nodes on the 
surface of this tooth arranged in 7 rows of 13 nodes each.  In 
each round of calculation a normal force is applied to each one 
of these nodes and the case was analyzed using FEM 
calculations to obtain the displacement of all the nodes due to 
applied load.  The calculation was repeated for all the nodes 
until completed.  In the next step using the results of FEM 
calculations, the compliance matrix u and from that and 
equation 22, the stiffness matrix of the gear was obtained.

Table 1- specifications of the gear under study
Gear Module 3
Number of Teeth 20
Pressure Angle 20o

Helix Angle 0o

Face Width 24 mm

Comparison of the2-D and 3-D results
Kung used a 2-D model for determination of meshing 

stiffness, and changing module, number of teeth, and addendum 
modification coefficient, he calculated the gear stiffness for 
four points on the profile i.e. the initial contact point (IP), the 
highest point of single tooth contact (HPSTC), the lowest point 
of single tooth contact (LPSTC), and the final contact point 
(FP).  The function describing the tooth stiffness as a function 
of tooth specifications is presented in equation 23 [3].

( )

( )
( )

i i 0 1 i

i i
2 3 i

i

K (r ) A A X
r R

A A X N / m / mm
1 X m

= + +

−
+ µ

+
(23)

In Equ. 23, Ri, Xi, and Ni are pitch radius, addendum 
correction factor, and number of teeth of the ith gear. The 
constants (Ais), are determined by the relations given in 
Equation 24 [3].

2 3
0 i i i

2 3
1 i i i

2 3
2 i i i

2 3
3 i i i

A 3.867 1.612N .02916N .0001553N

A 17.060 0.7289N .01728N .0000993N

A 2.637 1.222N .02217N .0001179N

A 6.330 1.033N .02068N .0001130N

= + − +

= + − +

= − + −

=− − − −

(24)

For the four points mentioned above, meshing stiffness 
was calculated using equation 23.  The meshing gears were 
considered to equal and having the specifications listed in table 
1.  Also meshing stiffness was calculated for the same points 
based on 3-D model and using equation 22.  In both cases the 
meshing is considered to be ideal and across full face, the gear 
axes are parallel, and that the line of contact stays parallel to the 
axes of the gears.  Figure 5 compares the results.  Also the 
numeric values of the two approaches are listed in table 2.  The 
difference in meshing stiffness between 2-D and 3-D models 
for this case is about 4%.  
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Table 2- Comparison of meshing stiffness calculated 
from 2-D and 3-D models

ErrorNew Method2D FEMContact point
3.8%3.37163.5043IP
4.2%5.25165.0414HPSTC
4.2%5.25165.0414LPSTC
3.8%3.37163.5043FP
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Figure 5- Meshing stiffness calculated from 2-D FEM 
and the new method.

VARIATION OF MESHING STIFFNESS IN IDEAL MESHING
When gears have parallel axes, the line of contact will be 

parallel with the gear axes and gear loading is symmetrical 
across the face.  For such case meshing stiffness was calculated 
for 13 points of equal distance along the line of contact.  The 
load is applied at the four points study point namely IP, 
HPSTC, LPSTC, and FP.  Figure 6 shows the variation of 
meshing stiffness as a function of rotation angle, for a pair of 
meshing gears introduced in table 1, in three points along the 
tooth width.  As expected, the edges of the teeth seem to be less 
stiff and as we approach the center of the tooth, the meshing 
stiffness reaches a peak. 
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Figure 6- Variation of meshing stiffness as a 
function of rotation angle in three points along 

tooth width

Figure 7 shows the variations of meshing stiffness as a 
function of gear width for two positions along the tooth profile, 
namely HPSTC and IP.
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Figure 7- Meshing stiffness variation with gear width
 for two positions along the tooth profile.

THE EFFECT OF SHAFT MISALIGNMENT
If the shafts of the two gears are not parallel, the gears 

contact along a line which is not parallel to their axes.  Due to 
the gear material elasticity, the contact region is an ellipse 
whose diameters depend on the materials elasticity and the 
curvatures of the two teeth at point of contact [8].  In practice, 
the elliptical contact region can be approximated by a line.  

For a pair of gears having the specifications listed in table 
1, and whose shafts have 1o misalignment, the line of contact 
was determined.  Due to shafts' misalignment, the contact of the 
teeth does not take place on full face, therefore the meshing 
stiffness reduces.  Figure 8 compares meshing stiffness for 
ideal case and a case with shaft misalignment.
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Figure 8- Comparison between ideal contact and a 
case with shaft misalignment.
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CONCLUSIONS
This article presented a new method for calculation of 

meshing stiffness of gears.  The basis of this method is on the 
assumption of the gear teeth as explicit capacity fields.  The 
stiffness matrix of these fields are determined by assuming 
virtual interconnected springs on gear surface whose springs 
constant are determined by three dimensional finite element 
analysis of the gear teeth.  This calculation results in a stiffness 
matrix for the gear teeth by which the displacement of the teeth 
along its face for an arbitrary loading can be determined.  In 
addition, the load distribution over the face of the gear for any 
meshing situation, ideal or non ideal as a result of 
manufacturing errors, overloading damages, or misalignments 
can be determined.  The results will help engineers in analysis 
of gear life assessments and catastrophic failure prevention in 
real life operation. 
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