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Abstract—Dynamic load controllers for thermostatically con-
trolled loads should allow for accurate control of power consump-
tion and should not disrupt the quality of service. This paper
proposes an intuitive definition of nondisruptiveness for systems
with second-order thermal models, based on a decomposition into
fast and slow temperature modes. It enables the explicit control
of the slow mode temperature using an embedded first order
model; control of the fast mode is implicit. Temperature bounds
are derived, and the slow mode controller is implemented using
an accurate decentralised stochastic control strategy. Simulation
results confirm its accuracy and nondisruptiveness.

Index Terms—aggregate load control, demand-side manage-
ment, nondisruptive control, thermal models, thermostatically
controlled loads

I. INTRODUCTION

Collectively, thermostatically controlled loads (TCLs) such
as refrigerators, freezers, space heaters and air conditioners
present a significant source of load flexibility. This flexibility
can assist in system balancing, or to locally provide voltage
support or relax thermal constraints. However, it remains an
open question how this flexibility should be made available to
the system. A good control scheme should provide accurate
control of the TCLs’ aggregate power consumption without
onerous communication requirements, and – most importantly
– it should be nondisruptive, i.e. it must not interfere with the
primary function of the appliances [1].

In order to optimally balance system level objectives with
device level constraints, it is essential to correctly model
these quality of service constraints. In recent work on ad-
vanced control strategies, TCLs have often been represented
by first order thermal models consisting of a temperature-
controlled compartment and an ambient temperature [2], [3],
where the compartment should stay within strict temperature
bounds. Zhang et al. did explicitly consider constraints in two-
dimensional thermal models, but their control approach relied
on centralised state estimation and real-time communication
[4], which may impede practical implementation.

In this paper we adapt the nondisruptive decentralised TCL
controller developed in [3] to control devices with second or-
der thermal models. We demonstrate that an appropriate linear
transformation can separate the second order dynamics into
fast and slow temperature modes that are mutually independent

except for their dependence on the common on/off signal.
The device can be controlled using a first order control model
for the slow mode only, making use of appropriate effective
temperature constraints. The fast mode decays more rapidly
and is naturally bounded by the limits on the slow mode. The
notion of nondisruptiveness is adapted to this decomposition:
we derive slow mode constraints from steady state operations,
and further derive a two-dimensional temperature envelope
that is respected under all conditions by this control strategy.
Simulation results demonstrate the ability to track desired
power profiles, while respecting the computed temperature
envelope at all times.

II. SECOND ORDER THERMAL MODELS

In this paper we consider second order thermal models
with two temperature variables (T1 and T2) and a single
control signal s(t). For a non-varying model, the temperature
evolution takes the form of an inhomogeneous coupled system
of linear differential equations:

d

dt

(
T1

T2

)
= M ·

(
T1

T2

)
+ s(t)~bon + (1 − s(t))~boff . (1)

For the purpose of this paper we will assume that individual
appliances have an on/off controller, so that the control signal
is binary: s(t) is either 0 (off) or 1 (on). This restriction reflects
the behaviour of common refrigerators and air conditioners.

A. A refrigeration example

Second order thermal models naturally arise from bottom-
up modelling of systems with two thermal zones that interact
with each other – and usually with an external reservoir (e.g.
the ambient). Two examples of such systems are shown in
Figure 1. In addition, second order models are also a natural
choice for phenomenological model matching in cases where
first order models are not sufficient to capture the relevant
dynamics of a system. Zhang et al. [4] convincingly argued
for the importance of considering second order thermal models
for flexible air conditioning loads.

Using a common linear approximation, the passive heat flow
Q̇ab [J/s] between zones a and b is proportional to the tem-
perature difference Ta − Tb divided by the thermal resistance
Rab [Ks/J]. The impact of this heat flow on temperatures Ta
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Fig. 1. Depictions of two heat exchange models that correspond to a
second order representation: refrigerator with case/food distinction (left) and
fridge/freezer (right). The flow of heat is indicated by orange arrows.

and Tb is determined by the thermal capacities Ca and Cb

[J/K], respectively. To illustrate this generic approach to model
construction (also known as Equivalent Thermal Parameter
(ETP) modelling [4]), we consider a second order model for a
refrigerator with stored food (see Fig. 1). The three zones have
temperatures Ta (ambient; assumed constant), Tc(t) (case)
and Tf (t) (food), with associated thermal capacities Cc and
Cf . Passive heat flows exist between the case and exterior
(resistance Rac), and between the case and food (resistance
Rcf ). The heat extraction by the refrigeration cycle gives rise
to an additional heat flow Fon [J/s] from the case to the
environment. The resulting thermal model is

d

dt

(
Tc(t)
Tf (t)

)
=

(
− 1

Cc

[
1

Rac
+ 1

Rcf

]
1

CcRcf

1
CfRcf

− 1
CfRcf

)
·
(
Tc(t)
Tf (t)

)

+ s(t)

(
1
Cc

[
Ta

Rac
− Fon

]
0

)
+ (1 − s(t))

(
Ta

CcRac

0

)
(2)

In the remainder of this paper, results will be illustrated with
the above model, using parameter values from [5]. In the
notation of (1), these values result in the system parameters

M =

(
−0.000705 0.000556
0.000104 −0.000104

)
[1/s] (3a)

~bon =

(
−0.00643

0

)
, ~boff =

(
0.00297

0

)
[K/s] (3b)

B. Spectral decomposition

The analysis and subsequent control of the second order
model (1) is greatly simplified by a spectral decomposition of
the equations. For a non-trivial system that interacts with an
external reservoir, the matrix M has two distinct eigenvalues
λ1 and λ2 and may be diagonalised as M = Q·Λ·Q−1, where
Λ is the diagonal matrix of eigenvalues and the columns of Q
are the corresponding eigenvectors. This suggests the natural
coordinate transformation ~u ≡ Q−1 · ~T , allowing (1) to be
written as

d

dt
~u(t) = Λ · ~u(t) + s(t)~con + (1 − s(t))~coff , (4)

where ~c[on/off] = Q−1 · ~b[on/off]. Because Λ is diagonal, the
dynamics of temperature components u1 and u2 is uncoupled,
except for their common dependence on s(t).

1) Slow and fast modes: Physical systems that are con-
nected to an external reservoir are inherently stable, which
means both eigenvalues are negative and may be interpreted
as (inverse) thermal relaxation time constants. Thus we define
the slow and fast time constants

τ slow = 1/min
i

(−λi), τ fast = 1/max
i

(−λi) (5)

For the parameters in (3), the thermal relaxation times are
τ slow = 14.15 hours and τ fast = 21.1 minutes. This
illustrates the extent to which the slow and fast dynamics
differ - a property that will be used in subsequent sections
to simplify the control formulation.

2) Numerical considerations: There are two degrees of
freedom in choosing the normalisation of both eigenvectors
in Q. We propose a normalisation that results in a natural
correspondence in scale between ~u and ~T . This is achieved
by enforcing that the 1-norm of each row of Q−1 equals one.
For the parameters (3) this choice results in the transformation

uslow(t) = 0.13 Tc(t) + 0.87 Tf (t) (6a)

ufast(t) = 0.55 Tc(t) − 0.45 Tf (t) (6b)

It is clear that the slow mode temperature uslow may be
interpreted as a weighted average temperature of the system
as whole. The temperature ufast, on the other hand, represents
the temperature difference between the case and the food. It is
intuitive that the internal equilibration of the temperature (the
fast mode) is much more rapid than the heating or cooling of
the system as a whole (the slow mode).

III. NONDISRUPTIVE CONTROL FOR 2ND ORDER SYSTEMS

Having analysed the system’s thermal response, we now
consider which limitations must be imposed on the control
signal s(t) in order to guarantee the provision of adequate
cooling. Domestic refrigerators typically feature a temperature
deadband controller (hysteresis controller) that approximately
maintains a monitored temperature T (t) (e.g. a single thermal
zone) at a setpoint temperature Tset. It does so by switching
the compressor on when a maximum temperature Tmax > Tset

is exceeded and off when the temperature drops below Tmin <
Tset. This results in the quality of service constraint

Tmin ≤ T (t) ≤ Tmax. (7)

For our illustrative refrigerator, the temperature being moni-
tored is the case temperature Tc(t), and the associated tem-
perature deadband is

[Tmin, Tmax] = [2◦C, 7◦C]. (8)

The resulting steady state temperature traces for both the case
and food are shown in Figure 2 (top). Clearly, fluctuations of
the case temperature far exceed those of the food temperature.
An approximate first order model is shown alongside it for
comparison.

Load control using thermostatic loads is a secondary benefit
of the primary service of heating/cooling. Ideally, the provision



2nd order: case
2nd order: food

0
1
2
3
4
5
6
7

T
[°
C
]

1st order model

-3 -2 -1 0 1 2 3
0
1
2
3
4
5
6
7

time [hours]

T
[°
C
]

Fig. 2. Temperature dynamics of a second order refrigerator model specified
by (3) and (8) (top) and its approximate first order model (bottom) [8, domestic
refrigerator]. Both models initially operate in a regular hysteresis loop (t < 0)
and begin modulating their load following a load management event at t = 0.

of energy services should be nondisruptive, which means it
has “an imperceptible effect on end-use performance” [1].
The qualitative goal of a nondisruptive controller has been
implemented in different ways. For example, Ramanathan and
Vittal [6] aim to fairly distribute discomfort. Mathieu et al. [7],
Zhang et al. [4] and Tindemans et al. [3] enforce appliance
temperatures to remain within the regular deadband (7) at all
times. Trovato et al. [8] impose an additional constraint on the
long-term average temperature of appliances.

In this paper, we propose an alternative definition of nondis-
ruptiveness for second order systems. Instead of constraining
one of the zonal temperatures using (7) we define nondisrup-
tiveness in terms of the slow temperature mode of the system:

uslow
min ≤ uslow(t) ≤ uslow

max (9)

Clearly, this is not an identical replacement of (7), but we will
show that uslow

min and uslow
max can be chosen such that case/food

temperature excursions are strictly bounded and the steady
state hysteresis loop is identical to the regular controller.

Because the fast and slow modes are decoupled and (9)
affects only a single mode, the system may be controlled as
if it were a first order system. It follows from (4) that the first
order system is defined by the differential equation

duslow(t)

dt
= − 1

τ slow
uslow(t) + s(t)cslow

on + (1 − s(t))cslow
off

(10)
and the constraint (9). We note that there are no explicit
constraints on the fast mode; instead, the value of ufast(t)
is slaved to the control of the slow mode through the on/off
signal s(t) and the differential equation

dufast(t)

dt
= − 1

τ fast
ufast(t) + s(t)cfast

on + (1− s(t))cfast
off (11)

The rapid relaxation of the fast mode (τ fast � τ slow) ensures
that its excursions are bounded (Section III-B).

Associating the quality of service constraint with the slow
mode has two distinct advantages. The first is that the em-
bedded first order thermal model results in a considerable
simplification of the control problem. The second advantage
is that a constraint of the form (9) may in fact be a more
accurate description of the temperature control intent. Whereas
a temperature constraint of the form (7) affects only a sin-
gle temperature zone, the slow mode uslow(t) represents a
weighted average of temperatures, including, in our example,
the actual temperature of the food.

Naturally, implementing a controller along the uslow-
coordinate requires appliances to act on the current value
of uslow(t). In general, this value cannot be determined on
the basis of a single temperature measurement (e.g. the case
temperature), so it must be estimated using historical mea-
surements and an internal model representation. Alternatively,
smart TCLs could be fitted with additional temperature sensors
to make this task easier. For the purpose of this paper, we will
assume that the thermal model is constant and that the value
of uslow(t) can be inferred with sufficient accuracy.

The remainder of this section is concerned with analysing
the temperature excursions that may be observed when the
system (10)-(11) is operated with the constraint (9). We de-
rive a two-dimensional temperature envelope ΩT that bounds
the realised temperatures (Tc, Tf ) for any permitted control
strategy. Its construction is visualised in Figure 3.
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Fig. 3. Temperature dynamics of a second order refrigerator model subjected
to a power modulation control signal. The solid black line delineates the
permissible temperature envelope ΩT , and the red and blue arrows depict the
steady state off and on cycles, respectively.

A. Limits on the slow mode
Appropriate limit values uslow

min and uslow
max for the slow mode

will be computed from the steady state operation of the regular
hysteresis controller. The steady state switching points ~x+ =
(Tmax, T

ss+
f )T and ~x− = (Tmin, T

ss−
f )T are the temperature-

pairs (e.g. case and food) where the refrigerators switch on



and off, respectively. Define φ(t; ~T0, s) as the solution of (1)
from an initial temperature ~T (0) = ~T0 and a constant control
state s. Then, T ss+

f and T ss−
f are implicitly defined by

~x+ = φ(t1; ~x−, 0) (12)
~x− = φ(t2; ~x+, 1) (13)

for some value of t1, t2. The switching points and their con-
necting trajectories (red for heating/off, blue for cooling/on)
are shown in Figure 3. The upper limit uslow

max is defined as the
slow component of Q−1 ·~x+ and uslow

min is the slow component
of Q−1 · ~x−. This choice ensures that a hysteresis controller
implemented in ~u-coordinates has the same steady state solu-
tion as the regular hysteresis controller. Lines corresponding
to the limit values uslow

max and uslow
min (transformed to ~T -space)

are illustrated in Figure 3.

B. Limits on the fast mode

Having determined control limits for uslow(t), we determine
the resulting bounds on ufast(t) for arbitrary admissible
control signals s(t), referring to the symbols in Figure 3.

We first identify the minimum values of ufast(t). In our
example, this occurs when the case temperature is lower
than the food temperature. The largest difference can be
achieved by letting the case and food first warm to the highest
temperature permitted by (9). This occurs at the point ~y+,
where Tc = Tf and uslow(t) = uslow

max (using (6a)). Switching
on the compressor at this point results in a rapid cooling of
the case with respect to the food. The corresponding trajectory
φ(t; ~y+, 1) represents the minimum-ufast solution. It intersects
the line uslow(t) = uslow

min at point ~z−.
Second, a analogous process is used to identify the max-

imum values of ufast(t). The highest values occur when the
case is warmer than the food; this difference can be maximised
by cooling the food to the fullest extent before switching off
the compressor and allowing the case to heat up. This results
in the points ~y− and ~z+ and the connecting trajectory.

Together, the lines uslow = uslow
max , uslow = uslow

min and the
trajectories between ~y− and ~z+ and between ~y+ and ~z− span
an accessible temperature envelope ΩT . If temperatures within
the envelope are not acceptable to the system designer, this
may warrant adjusting the constraints (9).

IV. DECENTRALIZED CONTROLLER

Nondisruptive decentralised control of the first order system
(9)-(10) can be implemented using the stochastic controller
that was recently proposed by Tindemans et al. [3] and further
extended in [8]. In summary, its key properties are as follows.

• The aggregate power consumption Ptotal of a large het-
erogeneous population is modulated by a control signal
Π(t). Π(t) specifies the power consumption relative to
the steady state (Π(t) = 1 is normal operation). It can be
chosen freely, subject to power and energy constraints.

• Each appliance receives the signal Π(t), which signifies
the global control intent. The signal does not need to be
sent to the appliances in real time: it may be transmitted

ahead of time as a schedule, or the device can contain an
internal model to compute Π(t), for example as a function
of grid frequency.

• Each appliance independently constructs a probabilistic
model for its control actions. Notably, in this step the
device ignores its current temperature and on/off state,
but enforces temperature constraints (9) and the targeted
average power consumption Π(t). The controller modu-
lates the accessible range of uslow(t) by introducing a
variable lower temperature bound uslow

low (t) that is more
restrictive than the hard limits imposed by (9).

• Stochastic control actions (i.e. switching on/off) are de-
termined on the basis of the current device temperature
uslow(t). The result of the control scheme is that the
expected power consumption of appliance a equals the
target value: E[P a(t)] = Π(t)P a

avg. Independence be-
tween appliances and the law of large numbers guarantee
that the aggregate power consumption tracks Π(t).

V. RESULTS

The control strategy specified above has been applied to a
homogeneous population of 10,000 simulated appliances using
the parameters (3) and (8) (approximately enforced using (9)).
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Fig. 4. Simulated relative power consumption of a collection of N = 10 000
second order refrigerator models. The aggregate power consumption (black
trace) closely tracks the control signal (red line).

Figure 4 shows an example where the aggregated refrigera-
tors provide frequency response services (secondary frequency
response in the GB context). Their aggregate power consump-
tion is reduced to 50% of the steady state level, and this is
maintained for 30 minutes, after which a controlled payback
period is initiated. The red line shows the reference signal,
and the black line depicts the simulated aggregate power
consumption (relative to the steady state level) of 10,000
refrigerators.

Figures 5 and 6 illustrate the nondisruptive nature of the
proposed controller. Figure 5 shows the temperature trace of
a single refrigerator in the population. It stays within the
temperature envelope ΩT at all times, despite large swings
in aggregate power consumption. Similarly, Figure 6 shows
snapshots of 200 appliance temperatures at five stages during
the control cycle shown in Figure 4. In addition to the nondis-
ruptive nature of the controller, this figure illustrates how the
accessible temperature domain is temporarily restricted during
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Fig. 5. Temperature dynamics of a second order refrigerator model subjected
to the power modulation control signal shown in Figure 4. The dotted line
delineates the accessible temperature envelope ΩT .

the provision of frequency services (dashed line). The full
temperature envelope is accessible again after the payback
period (final snapshot). Finally, Figure 2 (t > 0) illustrates the
qualitative difference between nondisruptive control for first
and second order models, for a similar power profile Π(t).

VI. CONCLUSIONS AND FURTHER WORK

We have demonstrated that a definition of nondisruptiveness
in terms of a system’s slow temperature mode results in
simplified control using an embedded first order system. This
enables the use of an advanced stochastic controller [3] for
decentralised and accurate control of the aggregate power
consumption. To implement this controller, appliances will
need to estimate both their thermal models and slow mode
temperature uslow(t). Future work will consider the impact
of inevitable errors in the estimation process on both the
aggregate power consumption and quality of service.
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Fig. 6. Snapshots of temperatures of 200 refrigerators with random initial
conditions. Appliances in the on state are blue (cooling) and those in the off
state are red (heating). The accessible temperature envelope ΩT is shown
with a dotted line, and the variable lower bound uslow

low (t) is shown with a
dashed line.
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