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ABSTRACT: 
 

The problem of scheduling for maximum 
throughput-utility in a network with random 
packet arrivals and time varying channel 
reliability, the network controller assesses the 
condition of its channels and selects a set of links 
for transmission. The success of each transmission 
depends on the collection of links selected and 
their corresponding reliabilities. The goal is to 
maximize a concave, non-decreasing function of 
the time, average through-put on each link. Such a 
function represents a utility function that acts as a 
measure of fairness for the achieved throughput 
vector. 
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Reliability, Concave optimization, and 
optimization. 
 
I.INTRODUCTION: 
 

When the traffic is inside the network 
capacity region, the utility-optimal throughput 
vector is simply the vector of arrival rates, and the 
problem reduces to a network stability problem. In 
this case, it is well known that the network can be 
stabilized by max weight policies that schedule 
links every slot to maximize a weighted sum of 
transmission rates, where the weights are queue 
backlogs. This is typically shown via a Lyapunov 
drift argument (see [1] and references therein). 
This technique for stable control of a queuing 
network was first used for link and server 
scheduling, and has since become a powerful 
method to treat stability in different contexts, 
including switches and computer networks, 
wireless systems and ad-hoc mobile networks with 
rate and power allocation, and systems with 
probabilistic channel errors. 1.  

In the case when traffic is either inside or 
outside of the capacity region, it is known that the 
max-weight policy can be combined with a flow 
control policy to jointly stabilize the network 

while maximizing throughput-utility. This is 
shown via a Lyapunov Optimization argument. 
Utility optimization for the special case of 
“infinitely backlogged” sources, and was perhaps 
first addressed for time-varying wireless 
downlinks without explicit queuing.  

The stability works all use backlog-based 
trans-mission rules, as do the works in which treat 
joint stability and utility optimization. However, 
work introduces an interesting delay-based 
Lyapunov function for proving stability, where the 
delay of the head-of-line packet is used as a 
weight in the max-weight decision. This approach 
intuitively provides tighter control of the actual 
queuing delays. Indeed, a single head-of-line 
packet is scheduled based on the delay it has 
experienced, rather than on the amount of 
additional packets that arrived after it. This delay-
based approach to queue stability is extended, 
where the Modified Largest Weighted Delay First 
algorithm is developed, and which uses a delay-
based exponential rule. However, use delay-based 
rules only in the context of queue stability. To our 
knowledge, there are no prior works that use 
delay-based scheduling to address the important 
issue of joint stability and utility optimization. 
This paper fills that gap. We use a delay-based 
Lyapunov function, and extend the analysis to 
treat joint stability and performance optimization 
via the Lyapunov Optimization technique from 
our prior work. 
 
2. RELATED WORK: 

 
The Network Utility Maximization problem 

has recently been used extensively to analyze and 
design distributed rate allocation in networks such 
as the Internet. A major limitation in the state-of-
the-art is that user utility functions are assumed to 
be strictly concave functions, modeling elastic 
flows. Many applications require inelastic flow 
models where nonconcave utility functions need to 
be maximized. It has been an open problem to find 
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the globally optimal rate allocation that solves 
non-concave network utility maximization, which 
is a difficult non-convex optimization problem. 
We provide a centralized algorithm for off-line 
analysis and establishment of a performance 
benchmark for non-concave utility maximization. 
Based on the semi algebraic approach to 
polynomial optimization, we employ convex sum-
of-squares relaxations solved by a sequence of 
semi definite programs, to obtain increasingly 
tighter upper bounds on total achievable utility for 
polynomial utilities. Surprisingly, in all our 
experiments, a very low order and often a minimal 
order relaxation yields not just a bound on 
attainable network utility, but the globally 
maximized network utility. When the bound is 
exact, which can be proved using a sufficient test, 
we can also recover a globally optimal rate 
allocation. In addition to polynomial utilities, 
sigmoid utilities can be transformed into 
polynomials and are handled. Furthermore, using 
two alternative representation theorems for 
positive polynomials, we present price 
interpretations in economics terms for these 
relaxations, extending the classical interpretation 
of independent congestion pricing on each link to 
pricing for the simultaneous usage of multiple 
links. 

The standard Network Utility Maximization 
(NUM) problem has a static formulation, which 
fails to capture the temporal dynamics in modern 
networks. This work considers a dynamic version 
of the NUM problem by introducing additional 
constraints, referred to as delivery contracts. Each 
delivery contract specifies the amount of 
information that needs to be delivered over a 
certain time interval for a particular source and is 
motivated by applications such as video streaming 
or webpage loading. The existing distributed 
algorithms for the Network Utility Maximization 
problems are either only applicable for the static 
version of the problem or rely on dual 
decomposition and first order (gradient or sub 
gradient) methods, which are slow in convergence. 
In this work, we develop a distributed Newton-
type algorithm for the dynamic problem, which is 
implemented in the primal space and involves 
computing the dual variables at each primal step. 
We propose a novel distributed iterative approach 

for calculating the dual variables with finite 
termination based on matrix splitting techniques. 
It can be shown that if the error level in the 
Newton direction (resulting from finite 
termination of dual iterations) is below a certain 
threshold, then the algorithm achieves local 
quadratic convergence rate to an error 
neighborhood of the optimal solution in the primal 
space. Simulation results demonstrate significant 
convergence rate improvement of our algorithm, 
relative to the existing first-order methods based 
on dual decomposition. 
We describe Wireless Network Utility 
Maximization, WNUM, and compare its 
performance to traditional NUM along the 
dimensions of rate, delay and reliability under flat 
fading. Both coded and uncoded links are 
considered as are networks with interfering links. 
In each case, WNUM is shown to offer superior 
performance in simulations operating under 
Rayleigh fading due to its ability to adapt to 
changing channel conditions. A general method 
for finding adaptive optimal policies is presented 
that is sample- based and that makes no 
assumptions about the distribution of channel 
states. WNUM uses optimal policies to adapt to 
changing channel conditions by adjusting network 
resources. We present the optimal adaptive control 
policies for WNUM in the single link case and 
describe a FROEC based algorithm for the 
multiple interfering link case. These policies are 
sample-based and make no assumptions about the 
distribution of channel states. NUM does not 
model the physical layer and consequently is 
unable to exploit good channel conditions or 
respond to poor channel conditions, resulting in 
relatively inferior performance. Future research 
work includes extending this formulation to 
broader types of reliability mechanisms and 
extending the formulation to traffic with QoS 
requirements. 
 
3. PROBLEM STATEMENT: 

In the present paper, we claim only that the 
achieved utility is within O(1=D) of the largest 
possible utility achievable by any stabilizing 
algorithm. However, because (for large D) our 
utility is close to this ideal utility value, it is even 
closer to the maximum utility that can be achieved 
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subject to the worst-case delay constraint. Further, 
our approach offers the low complexity 
advantages associated with Lyapunov drift and 
Lyapunov Optimization. Specifically, the policy 
makes real-time transmission decisions based only 
on the current system state, and does not require a-
prior knowledge of the channel state probabilities. 
The flow control decisions here can also be 
implemented in a distributed fashion at each link, 
as is the case with most other Lyapunov based 
utility optimization algorithms (this is not 
necessarily the case for dynamic pro-gramming or 
Markov decision theory approaches). 

  
It is important to distinguish our work, which 

considers actual network delay, with work that 
approximates network delay as a convex function 
of a flow rate (such as in [30][27]). While it is 
known that average queue congestion and delay is 
convex if traffic is probabilistically split [31], this 
is not necessarily true (or relevant) for 
dynamically controlled networks, particularly 
when the control depends on the queue backlogs 
and delays themselves. Actual network delay 
problems involve not only optimization of rate 
based utility functions, but engineering of the 
Lagrange multipliers (which are related to queue 
backlogs) associated with those utility functions.  

  
The network is assumed to be a 1-hop network 

that operates in discrete time with normalized 
timeslots t 2 f0; 1; 2; : : :g. There are L links, and 
packets arrive randomly every slot and are queued 
separately for transmission over each link. We let 
A(t) = (A1(t); : : : ; AL(t)) be the process of random 
packet arrivals, where Al(t) is the number of 
packets that arrive to link l on slot t. For 
simplicity, we assume all packets have fixed size, 
and that there is at most one packet arrival to each 
link per slot, so that Al(t) 2 f0; 1g for all links l 
and slots t. The arrival vector A(t) is assumed to 
be i.i.d. over slots, and further the arrival 
processes Al(t) for different links in each slot are 
assumed to be independent. Let Q(t) = (Q1(t); : : : ; 
QL(t)) denote the integer number of packets 
currently stored in each of the L queues. All 
packets are marked with their integer arrival slot, 
which is used to determine their delay in the 
system. The one-step queueing equation for each 

link l is: 
 

Ql(t + 1) = max[Ql(t)      l(t)    Dl(t); 0] + Al(t)     
(1) 

 
where l(t) represents the amount of packets 
successfully served on slot t, and Dl(t) represents 
the number of packets dropped on slot t. A packet 
can be dropped at any time, al-though in our 
specific algorithm we impose a 2-stage structure 
that first makes a transmission decision and then 
makes a dropping decision in reaction to the 
feedback obtained from the transmission. 
 
 

 
 
Fig. Example illustrating network resource 
allocation. The large circles indicate routers that 
route packets in the core network. We assume that 
links L1, L3 and L5 have capacity 2, while L2 and 
L4 have capacity 1. The access links of the 
sources are unconstrained. There are three flows in 
the system. 
 
4. IMPLEMENTATION METHODS 
 
A.  Time Varying Link Reliability  

For simplicity, we assume that each link can 
transmit at most one packet per slot, so that l(t) 2 
f0; 1g for all links l and all slots t. Let x(t) = (x1(t); 
: : : ; xL(t)) denote a transmission vector, where 
xl(t) 2 f0; 1g, and xl(t) = 1 if link l attempts 
transmission on slot t. Let X denote the set of all 
allowable link transmission vectors, possibly 
being the set of all 2L such vectors, but also 
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possibly incorporating some constraints (such as 
permutation constraints for N N packet switches). 
In principle, it is useful to assume a link can 
transmit even if it does not have a packet, in which 
case a null packet is transmitted. Let S(t) = (S1(t); : 
: : ; SL(t)) denote a link condition vector for slot t, 
which determines the probability of successful 
transmission on each slot. Specifically, given 
particular x(t) and S(t) vectors, the probability of 
successful transmission on link l is given by a 
reliability function: 
 

Pr[ link l success jx(t); S(t)] =    l(x(t); S(t))     
(2)  

The reliability function l(x; S) for each l 2 f1; : : 
: ; Lg is general and is assumed only to take real 
values between 0 and 1 (representing 
probabilities), and to have the property that l(x; S) 
= 0 whenever xl = 0. We assume that the channel 
condition vector S(t) is i.i.d. over slots, taking 
values in a set S of arbitrary cardinality, and that 
S(t) is known to the network controller at the 
beginning of each slot t. In practice, S(t) 
represents the result of a channel measurement or 
estimation that is done every slot. The estimate 
might be inexact, in which case the reliability 
function l(x(t); S(t)) represents the probability that 
the actual network channels on slot t are sufficient 
to support the attempted transmission over link l 
(given x(t) and the estimate S(t) for slot t).  

We assume the reliability function is known. 
Recent online techniques for estimation of packet 
error rates are considered in [32]. In the context of 
[32], a number of other decision parameters to be 
chosen on each slot also affect reliability, such as 
modulation, power levels, sub band selection, 
coding type, etc. These choices can be represented 
as a parameter space I. In this case, the reliability 
function can be extended to include the parameter 
choice I(t) 2 I made every slot: l(x(t); S(t); I(t)). 
This does not change our mathematical analysis 
(see also Remark 1 in Section III-F), although for 
simplicity we focus on the reliability function 
structure of (2).  

We assume that ACK/NACK information is 
given at the end of the slot to inform each link if 
its transmission was successful or not. Packets that 
are not successful do not leave the queue (unless 
they are dropped in a packet drop decision). With 
this model of link success, the transmission 
variable l(t) in (1) is given by: 

l(t) = xl(t)1l(t)  

where 1l(t) is an indicator variable that is 1 if the 
transmission over link l is successful, and 0 
otherwise. That is: 

1     with probability    l(x(t); S(t)) 
1l(t) =     0     with probability 1       l(x(t); S(t))  

The successes/failures over each link on slot t are 
assumed to be independent of past history given 
the current x(t) and S(t) values. The 
successes/failures might be correlated over each 
link. This is not captured in the l(x; S) functions 
alone, and can only be fully described by a joint 
success distribution function for all 2L possible 
success/failure outcomes for a given x and S. 
However, it turns out that the network capacity 
region, and hence the associated maximum utility 
point, is independent of such inter-link success 
correlations [11]. Hence, it suffices to use only the 
marginal distribution functions l(x; S) for each l 2 
f1; : : : ; Lg. 
 
B.  Examples of Packet Switches and Wireless 
Networks  

The above model applies to a wide class of 1-
hop networks. For example, it applies to the N N 
packet switch models of [4][6] by defining S(t) to 
be a null vector (so that there is no notion of 
channel variation), and by defining the set X of all 
allowable link vectors to be the set of all vectors 
that satisfy the permutation constraints associated 
with the N N crossbar. For wireless networks with 
interference but without time varying channels, 
the set X can be defined as all link activations that 
do not interfere with each other (i.e., that do not 
produce collisions), as in [2]. The reliability 
function l( ) can be used to extend the model to 
treat cases where interfering links result in 
probabilistic reception (rather than collision).  

Further, the opportunistic scheduling systems of 
[3] with time-varying ON/OFF channels can be 
modeled with S(t) being the vector of ON/OFF 
channel states on each slot, and with the function 
l(x; S) taking the value 1 whenever xl = 1 and Sl = 
ON, and 0 otherwise. Finally, the model supports 
probabilistic reception in the case when the link 
reliability can vary from slot to slot.  

A simple example is when Sl(t) represents the 
current probability that a link l transmission would 
be successful, so that:  

Sl(t) if 
xl(t) = 1 l(x(t); S(t)) = 0 if xl(t) = 0 

 
This example has the success probability over link 
l a pure function of xl(t) and Sl(t), and hence 



International Journal of Computer Trends and Technology (IJCTT) – volume 4 Issue 6–June 2013  
 

ISSN: 2231-2803           http://www.ijcttjournal.org  Page 1741 
 

implicitly assumes that the set X limits all 
simultaneous link transmissions to orthogonal 
channels. More complex inter-channel 
interference models can be described by more 
complex l(x; S) functions. 
 
5. CONCLUSION 
 

We have established a delay-based policy 
for joint stability and utility optimization. The 
policy provides deterministic worst-case delay 
bounds, with total throughput-utility that is 
inversely proportional to the delay guarantee. The 
Lyapunov Optimization approach for this delay-
based problem is significantly different from that 
of backlog-based policies. Further, delay-based 
scheduling must overcome difficult issues 
involving the correlation between inter-arrival 
times and virtual queue states. Several new 
techniques were introduced to solve the problem, 
including the structure of dropping packets at the 
head-of-line (rather than immediately upon 
arrival), introducing the concept of concavely 
extending a utility function, and using a delayed 
arrival process in the virtual queues to maintain 
required independence. We believe these results 
add significantly to our understanding of network 
delay and delay-efficient control laws. 
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