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The feasibility of using the transfer matrix method (TMM) to compute the natural vibration characteristics of a flexible
rocket/satellite launch vehicle is explored theoretically. In the approach to the problem, a nonuniform free-free Timoshenko and
Euler-Bernoulli beamlike structure is modeled. A provision is made to take into consideration the effects of shear deformation and
rotary inertia. Large thrust-to-weight ratio leads to large axial accelerations that result in an axial inertia load distribution from
nose to tail which causes the development of significant compressive forces along the length of the launch vehicle. Therefore, it is
important to take into account this effect in the transverse vibration model. Once the transfer matrix of a single component has
been obtained, the product of all component matrices composes the matrix of the entire structure. The frequency equation and
mode shape are formulated in terms of the elements of the structural matrices. Flight test and analytical results validate the present
TMM formulas.

1. Introduction

The transient mass and structural characteristics of a typical
multistage rocket vehicle require the natural-vibration char-
acteristics of the vehicle known at least for the ignition and
burnout time of each stage of flight and frequently for other
conditions such as those at Mach number of 1, maximum
dynamic pressure, and minimum lift. Thrust-to-weight and
length-to-diameter (slenderness) ratios of the launch vehicle
are a continuing need in order to launch heavier payload,
increasing the range and reducing the aerodynamic drag. As
the slenderness ratio increases, the structure becomes more
flexible and the natural frequency of transverse vibrations
reduces. Knowing the vibration characteristic of the rocket is
very important for the computation of its structural dynamic
response, aeroelasticity, flight mechanics, and control. In
addition, the presence of large thrust/acceleration leads to
significant axial forces along the length of the rocket [1],
which have a major impact on the transverse vibration
frequencies of beams. Since inertial measuring units (IMUs)
also sense the local body vibrations, the mass and stiffness
nonuniformities plus the thrust action on elastic missiles can

potentially influence their measurements and thus must be
properly accounted for in an aeroelastic simulation [2].

A highly flexible launch vehicle can be modeled as a
free-free beamlike structure with lateral vibration [2–4].
The selection criteria for either Euler-Bernoulli or Timo-
shenko beam theories are generally determined by some
rules involving beam dimensions (slenderness ratio). The
Euler-Bernoulli beam theory is well suited to model the
behavior of flexure-dominated (or “long”) beams, whereas
the Timoshenko theory applies for shear-dominated (or
“short”) beams where the effect of shear deformation and
rotary inertia has a significant influence on the vibration
characteristics [5]. In this report [5], the authors have built a
method of determining modal data of a non uniform beam
with effects of shear deformation and rotary inertia. They
applied the method to a typical space research launch vehicle
and its fourth-stage configuration. The results prove that
rotary inertia and shear deformation have a significant effect
on the frequencies of the fourth stage but onlyminor effect on
the overall vehicle frequencies. Most research on high flexible
launch vehicle’s vibration characteristics does not consider
the effect of thrust. However, large thrust has a great influence
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on the natural frequencies and mode shapes and has to be
taken into account. The research on vibration characteristics
of beams under the axial compressive/tensile force has a long
history, where also applications to realistic missile/launch
vehicles may be found [1, 2, 6].

In this paper, the transfer matrix method (TMM) will
be applied which has been developed for a long time and
widely used in structure mechanics of the linear and non-
linear systems [7]. Holzer initially applied TMM to solve
problems of torsion vibrations of rods [8]. Myklestad applied
TMM to determine the bending-torsion modes of beams [9].
Thomson applied TMM to more general vibration problems
[10]. Pestel and Leckie listed transfer matrices for elasto-
mechanical elements up to 12th order [11]. Rubin provided
a general treatment of transfer matrices and their relation to
other forms of frequency response matrices [12, 13]. Transfer
matrices have been applied to a wide variety of engineering
programs by a number of researchers, including Targoff [14],
Lin andMcDaniel [15], andMcDaniel andMurthy [16].Many
articles studied and improved the finite element transfer
matrix for structure dynamics [17, 18]. Recently, Rui et al. [19]
developed the transfer matrix method of multibody system
(MS-TMM) and discrete time transfer matrix method (DT-
TMM) for multibody system dynamics.

The purpose of this paper is to present a solution proce-
dure for computing the natural vibrations of a non uniform
beamlike structure, which satisfies the specific needs of a
rocket vehicle designer. Because rocket vehicles are exposed
to large axial loads caused by the thrust and inertia forces
of the vehicle masses, the stability problem is important.
Problems of this kind are non conservative. To ensure proper
calculation of the critical load, the dynamic stability criterion
must be applied which requires a vibration analysis of the
loaded system. The analysis developed in this paper is based
on the transfer matrix method of multibody system [19]
and based on Timoshenko and Euler-Bernoulli beam theory
to calculate the frequencies and mode shapes of realistic
missiles. The method will be proven to accurately describe
not only the mode shape but also slope angle of the elastic
curve, rotation angle, mode moments, and mode shears.
It is inherently applicable to complex structures such as
multistage launch vehicle.

The text is organized as follows. In Section 2, the general
theorem of the method is shown. In Section 3, some results
calculated by TMM and the other method are given that can
validate the proposed method. The conclusions and future
works are presented in Section 4.

2. Modeling of a Launch Vehicle as
a Nonuniform Beamlike Structure

Figure 1 shows a multistage launch vehicle where 𝑀
𝑚
and

𝐿
𝑚

are the total mass and the total length, respectively.
The distributions of axial rigidity, flexural rigidity, mass
per unit length, and shear rigidity along the longitudinal
𝑥-axis are given by 𝐸𝐴(𝑥), 𝐸𝐼

𝑧
(𝑥), 𝜌𝐴(𝑥), and 𝜅

𝑠
𝐺𝐴(𝑥),

respectively. Herein, 𝜌 is the mass density, 𝐴 is the beam
cross-sectional area, 𝐸 is Young’s modulus of elasticity, 𝐺 is
the shearmodulus, and 𝜅s is the Timoshenko shear coefficient

depending on the cross section of the beam.The axial inertia
moment of the cross section is 𝐼

𝑧
. The vehicle is subjected

to an engine thrust 𝑇 at its rear end and leads to an axial
force 𝑆(𝑥) (positive in tension) in each cross section. In the
present study, the structure is divided into 𝑛 segments, where
𝐸𝐴(𝑥), 𝐸𝐼

𝑧
(𝑥), 𝜌𝐴(𝑥), and 𝜅

𝑠
𝐺𝐴(𝑥) distributions are uniform

in each segment. Note that 𝑆(𝑥) will not be uniform due to
the accelerated motion of the missile [2]. In the following,
the segments will be considered as axially loaded beams, and
transfer matrices are derived for this kind of elements.

2.1. Equations of Motion of Axially Loaded Beams. TheTimo-
shenko model is an extension of the Euler-Bernoulli model
by taking into account two additional effects: shear force
effect and rotary motion effect [20]. In any beam, except one
subject to pure bending only, additional deflection due to the
shear stress occurs. The exact solution of the beam vibration
problem requires this deflection to be considered. The angle
between beam axis and 𝑥-axis, given by slope 𝜕V(𝑥, 𝑡)/𝜕𝑥 of
the elastic curve, can be decomposed into two parts, namely,
the rotation angle 𝜃

𝑧
(𝑥, 𝑡) of the cross section about the 𝑧-axis

due to pure bending and the additional angle 𝛾
𝐺
(𝑥, 𝑡) caused

by shear strain, as shown in Figure 2. It shows that 𝑢(𝑥, 𝑡) and
V(𝑥, 𝑡) stand for displacements along the coordinate axes 𝑥

and 𝑦, respectively, where 𝑡 is the time.
For Timoshenko beam, the total slope of the beam, the

bendingmoment𝑀
𝑧
(𝑥, 𝑡), and the shearing force𝑄

𝑦
(𝑥, 𝑡) are

given by
𝜕V (𝑥, 𝑡)

𝜕𝑥
= 𝜃
𝑧
(𝑥, 𝑡) + 𝛾

𝐺
(𝑥, 𝑡) , (1)

𝑀
𝑧
(𝑥, 𝑡) =

−𝐸𝐼
𝑧
𝜕𝜃
𝑧
(𝑥, 𝑡)

𝜕𝑥
, (2)

𝑄
𝑦
(𝑥, 𝑡) = 𝜅

𝑠
𝐺𝐴𝛾
𝐺
(𝑥, 𝑡) = 𝜅

𝑠
𝐺𝐴(

𝜕V (𝑥, 𝑡)

𝜕𝑥
− 𝜃
𝑧
(𝑥, 𝑡)) .

(3)

Another factor that affects in the lateral vibration of the
beam, which is neglected in Euler-Bernoulli’s model, is the
fact that each beam section rotates slightly in addition to
its lateral motion when the beam deflects. The influence of
the beam section rotation is taken into account through the
moment of inertia 𝐽𝜕

2

𝜃
𝑧
(𝑥, 𝑡)/𝜕

2

𝑡, which modifies the equa-
tion of moments acting on an infinitesimal beam element 𝑑𝑥.
Herein, 𝐽 = 𝜌𝐼

𝑧
𝑑𝑥 denotes the rotational inertia.

The equations of motion of the Timoshenko beam under
axial loading can be obtained by three approaches: the prin-
ciple of virtual work, Hamilton’s principle, and the classical
dynamic equilibrium method. The derivation of these equa-
tions is based on the assumption that the shear force acting
on the cross sections is normal to the deflected axis of the
beam column and therefore inclined at an angle 𝛾

𝐺
(𝑥, 𝑡) with

respect to the vertical direction. In this section, the linearized
equations of motion describing the transverse vibration of
a free-free beam will be derived by using the Timoshenko
beam theory and the classical dynamic equilibrium method.
In order to describe the effect of the axial force, it is assumed
that the axial compression force is tangential to the slope of
the beam. It could be also assumed that this force is normal



Mathematical Problems in Engineering 3

𝐸𝐴(𝑥), 𝐸𝐼𝑧(𝑥), 𝜌𝐴(𝑥), 𝜅𝑠𝐺𝐴(𝑥), 𝑆(𝑥)

𝑦
𝑥

𝐿𝑚

𝑇

Figure 1: Multistage launch vehicle scheme.
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Figure 2: Free body diagram of beam element of infinitesimal length 𝑑𝑥 in its deformed state.

to the direction of the shear force, where in [21] both cases
have been considered and for both cases the equations of
motion have been derived. But in [9] nothing has been said
on which method is more accurate. However, in [22] it has
been indicated that the equations of motion, which follow
from the first assumption, are more accurate. Therefore, also
in this paper it is assumed that the axial force is tangential
to the slope of the beam. Consider the free body diagram
of Figure 2; the equations of motion along the axial and
transverse directions and the rotational equation of motion
are given by

𝑄
𝑦
(𝑥, 𝑡)

𝜕V (𝑥, 𝑡)

𝜕𝑥
− (𝑄
𝑦
(𝑥, 𝑡) +

𝜕𝑄
𝑦
(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥)

× (
𝜕V (𝑥, 𝑡)

𝜕𝑥
+

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2
𝑑𝑥) − 𝑆 + (𝑆 +

𝜕𝑆

𝜕𝑥
𝑑𝑥)

= 𝜌𝐴𝑑𝑥
𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑡2
,

(4)

− 𝑄
𝑦
(𝑥, 𝑡) + (𝑄

𝑦
(𝑥, 𝑡) +

𝜕𝑄
𝑦
(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥) − 𝑆

𝜕V (𝑥, 𝑡)

𝜕𝑥

+ (𝑆 +
𝜕𝑆

𝜕𝑥
𝑑𝑥)(

𝜕V (𝑥, 𝑡)

𝜕𝑥
+

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2
𝑑𝑥)

= 𝜌𝐴𝑑𝑥
𝜕
2V (𝑥, 𝑡)

𝜕𝑡2
,

(5)

𝑄
𝑦
(𝑥, 𝑡)

𝑑𝑥

2
+ (𝑄
𝑦
(𝑥, 𝑡) +

𝜕𝑄
𝑦
(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥)

𝑑𝑥

2
+ 𝑀
𝑧
(𝑥, 𝑡)

− (𝑀
𝑧
(𝑥, 𝑡) +

𝜕𝑀
𝑧
(𝑥, 𝑡)

𝜕𝑥
𝑑𝑥) + 𝑆

𝜕V (𝑥, 𝑡)

𝜕𝑥

𝑑𝑥

2

− (𝑆 +
𝜕𝑆

𝜕𝑥
𝑑𝑥)(

𝜕V (𝑥, 𝑡)

𝜕𝑥
+

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2
𝑑𝑥)

𝑑𝑥

2

= 𝜌𝐼
𝑧
𝑑𝑥

𝜕
2

𝜃
𝑧
(𝑥, 𝑡)

𝜕𝑡2
.

(6)

The high-order term (𝑑𝑥2) appearing in conjunctionwith
the compression term is neglected [22]. If the segment is
considered as bar vibrating in axial direction with a uniform
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strain in every segment, the uniaxial force resulting from
stress is 𝑆 = 𝐸𝐴(𝑥)𝜕𝑢/𝜕𝑥. After simplifying calculations, (4)–
(6) reduce to

𝐸𝐴
𝜕
2

𝑢

𝜕𝑥2
= 𝜌𝐴

𝜕
2

𝑢 (𝑥, 𝑡)

𝜕𝑡2
, (7)

𝜕𝑄
𝑦
(𝑥, 𝑡)

𝜕𝑥
+ 𝑆

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2
= 𝜌𝐴

𝜕
2V (𝑥, 𝑡)

𝜕𝑡2
, (8)

−
𝜕𝑀
𝑧
(𝑥, 𝑡)

𝜕𝑥
+ 𝑄
𝑦
(𝑥, 𝑡) = 𝜌𝐼

𝑧

𝜕
2

𝜃
𝑧
(𝑥, 𝑡)

𝜕𝑡2
. (9)

Substituting the expressions for bending moment (2) and
shear force (3) into the two governing equations (8) and (9)
gives

𝜅
𝑠
𝐺𝐴(

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2
−

𝜕𝜃
𝑧
(𝑥, 𝑡)

𝜕𝑥
) + 𝑆

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2

= 𝜌𝐴
𝜕
2V (𝑥, 𝑡)

𝜕𝑡2
,

(10)

𝐸𝐼
𝑧

𝜕
2

𝜃
𝑧
(𝑥, 𝑡)

𝜕𝑥2
+ 𝜅
𝑠
𝐺𝐴(

𝜕V (𝑥, 𝑡)

𝜕𝑥
− 𝜃
𝑧
(𝑥, 𝑡))

= 𝜌𝐼
𝑧

𝜕
2

𝜃
𝑧
(𝑥, 𝑡)

𝜕𝑡2
.

(11)

These results are the governing equations for the Tim-
oshenko beam under axial force. There are two modes of
deformation coupled by the governing equations. One mode
of deformation is simply the transverse deflection of the beam
as measured by V(𝑥, 𝑡); the other mode is the transverse
shearing deformation 𝛾

𝐺
(𝑥, 𝑡), as measured by the difference

(𝜕V(𝑥, 𝑡)/𝜕𝑥 − 𝜃
𝑧
(𝑥, 𝑡)). It is more convenient to deal with

a higher-order differential equation than with two-coupled
equations of lower order.The steps that need to be performed
tomerge the two equations (10) and (11) into a single equation
are the following: (1) differentiate (11) with respect to 𝑥 result-
ing in partial derivatives 𝜕𝜃

𝑧
(𝑥, 𝑡)/𝜕𝑥, 𝜕

3

𝜃
𝑧
(𝑥, 𝑡)/𝜕𝑥

3, and
𝜕
3

𝜃
𝑧
(𝑥, 𝑡)/𝜕𝑥𝜕𝑡

2; (2) derive the expression of 𝜕𝜃
𝑧
(𝑥, 𝑡)/𝜕𝑥

as a function of V(𝑥, 𝑡) from (10); by differentiating this
expression first with respect to 𝑥 two times and later with
respect to 𝑡 two times, find expressions for 𝜕3𝜃

𝑧
(𝑥, 𝑡)/𝜕𝑥

3 and
𝜕
3

𝜃
𝑧
(𝑥, 𝑡)/𝜕𝑥𝜕𝑡

2 as functions of V(𝑥, 𝑡); (3) substitute these
three partial derivatives of 𝜃

𝑧
(𝑥, 𝑡) into the differentiated

equation (11) in order to have a single differential equation
in the only unknown dependent variable V(𝑥, 𝑡). After some
simple algebra, the latter reads [23] as

𝐸𝐼
𝑧
(1 +

𝑆

𝜅
𝑠
𝐺𝐴

)
𝜕
4V (𝑥, 𝑡)

𝜕𝑥4
− (

𝐸𝐼
𝑧
𝜌𝐴

𝜅
𝑠
𝐺𝐴

+ 𝜌𝐼
𝑧
+

𝑆𝜌𝐼
𝑧

𝜅
𝑠
𝐺𝐴

)

×
𝜕
4V (𝑥, 𝑡)

𝜕𝑥2𝜕𝑡2
− 𝑆

𝜕
2V (𝑥, 𝑡)

𝜕𝑥2
+ 𝜌𝐴

𝜕
2V (𝑥, 𝑡)

𝜕𝑡2

+
𝜌
2

𝐼
𝑧
𝐴

𝜅
𝑠
𝐺𝐴

𝜕
4V (𝑥, 𝑡)

𝜕𝑡4
= 0.

(12)

Equations (7) and (12) can be transformed into an ordi-
nary differential equation (ODE) by separation of variables.

When the beam performs one of its natural modes of oscilla-
tion, that is, steady-state vibration with angular frequency 𝜔,
the displacements, rotation angle, moment, and shears take
the following form:

𝑢 (𝑥, 𝑡) = 𝑢̂ (𝑥) cos (𝜔𝑡) ,

V (𝑥, 𝑡) = V̂ (𝑥) cos (𝜔𝑡) ,

𝜃
𝑧
(𝑥, 𝑡) = 𝜃̂

𝑧
(𝑥) cos (𝜔𝑡) ,

𝑀
𝑧
(𝑥, 𝑡) = 𝑀̂

𝑧
(𝑥) cos (𝜔𝑡) ,

𝑄
𝑥
(𝑥, 𝑡) = 𝑄̂

𝑥
(𝑥) cos (𝜔𝑡) ,

𝑄
𝑦
(𝑥, 𝑡) = 𝑄̂

𝑦
(𝑥) cos (𝜔𝑡) .

(13)

Herein, 𝑢̂(𝑥), V̂(𝑥), 𝜃̂
𝑧
(𝑥), 𝑀̂

𝑧
(𝑥), 𝑄̂

𝑥
(𝑥), and 𝑄̂

𝑦
(𝑥) are

the amplitudes. It should be noted that 𝜅
𝑠
𝐺𝐴, 𝐸𝐼

𝑧
and 𝐸𝐴 are

functions of 𝑥 only; therefore

𝜕 (𝜅
𝑠
𝐺𝐴)

𝜕𝑥
≡

𝑑 (𝜅
𝑠
𝐺𝐴)

𝑑𝑥
,

𝜕 (𝐸𝐼
𝑧
)

𝜕𝑥
≡

𝑑 (𝐸𝐼
𝑧
)

𝑑𝑥
,

𝜕 (𝐸𝐴)

𝜕𝑥
≡

𝑑 (𝐸𝐴)

𝑑𝑥
.

(14)

Substituting (13) in (7) and (12) and performing the
indicated differentiations yield

𝑑
2

𝑢̂ (𝑥)

𝑑𝑥2
+

𝑚𝜔
2

𝐸𝐴
𝑢̂ (𝑥) = 0, (15)

(1 +
𝑆

𝜅
𝑠
𝐺𝐴

)
𝑑
4V̂ (𝑥)

𝑑𝑥4

+[−
𝑆

𝐸𝐼
𝑧

+
𝜌𝐴𝜔
2

𝜅
𝑠
𝐺𝐴

+

𝜌𝐴𝑟
2

𝑔
𝜔
2

𝐸𝐼
𝑧

(1 +
𝑆

𝜅
𝑠
𝐺𝐴

)]
𝑑
2V̂ (𝑥)

𝑑𝑥2
,

+ (

(𝜌𝐴)
2

𝑟
2

𝑔
𝜔
4

𝐸𝐼
𝑧
𝜅
𝑠
𝐺𝐴

−
𝜌𝐴𝜔
2

𝐸𝐼
𝑧

) V̂ (𝑥) = 0,

(16)

where 𝑟
𝑔
≡ √𝐼
𝑧
/𝐴 is the radius of gyration. From the deriva-

tion, it is clear that 𝑢̂(𝑥) and V̂(𝑥), which are found as solutions
of (15) and (16), are the longitudinal and transverse vibration
mode shapes of the considered beam for a corresponding
frequency 𝜔. If the Euler-Bernoulli model is adopted instead,
the rotary inertia and shear deformation effects are neglected.
The corresponding equation of motion can be derived by
setting 𝜌𝐼

𝑧
(represented in rotary inertia) equal to zero in

(6) and by letting the modulus 𝐺 tend to infinity (which is
equivalent to imposing vanishing shear deformation). With
these simplifications, (16) reduces to the equation of an axially
loaded Euler-Bernoulli beam:

𝑑
4V̂ (𝑥)

𝑑𝑥4
−

𝑆

𝐸𝐼
𝑧

𝑑
2V̂ (𝑥)

𝑑𝑥2
−

𝑚𝜔
2

𝐸𝐼
𝑧

V̂ (𝑥) = 0. (17)
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The shear forces 𝑄
𝑥
(𝑥, 𝑡) and 𝑄

𝑦
(𝑥, 𝑡) at any section of

the beam are related to the deflections 𝑢(𝑥, 𝑡) and V(𝑥, 𝑡) and
rotation angle 𝜃

𝑧
(𝑥, 𝑡) by

𝑄
𝑥
(𝑥, 𝑡) = −𝐸𝐴

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
, (18a)

𝑄
𝑦
(𝑥, 𝑡) =

𝜕𝑀
𝑧
(𝑥, 𝑡)

𝜕𝑥
+ 𝑚𝑟
2

𝑔

𝜕
2

𝜃
𝑧
(𝑥, 𝑡)

𝜕𝑡2
+ 𝑆

𝜕V (𝑥, 𝑡)

𝜕𝑥
.

(18b)

Using (13), (18a) and (18b) can be written as

𝑄̂
𝑥
(𝑥) = −𝐸𝐴

𝜕𝑢̂ (𝑥)

𝜕𝑥
, (18c)

𝑄̂
𝑦
(𝑥) =

𝜕𝑀̂
𝑧
(𝑥)

𝜕𝑥
+ 𝑚𝑟
2

𝑔

𝜕
2

𝜃̂
𝑧
(𝑥)

𝜕𝑡2
+ 𝑆

𝜕V̂ (𝑥)

𝜕𝑥
. (18d)

In the model for a launch vehicle (Figure 1), the beam
will represent the segments. For 𝑗th segment of the rocket, let
𝑥
𝑗
= 𝑥/𝐿

𝑚
be the dimensionless length coordinate such that

it takes values 0 ≤ 𝑥
𝑗
≤ 𝑙
𝑗
(𝑙
𝑗
= 𝑙
𝑗
/𝐿
𝑚
), where 𝑙

𝑗
is the length

of the segment. To express (15) and (16) in dimensionless
form, the following quantities are defined:

𝑢̃ =
𝑢̂

𝐿
𝑚

, Ṽ =
V̂

𝐿
𝑚

,

𝐷
𝑛

=
𝑑
𝑛

𝑑𝑥
𝑛

𝑗

, 𝑘
2

=

𝑆
𝑗
𝐿
2

𝑚

𝐸𝐼
𝑧0

,

𝑅
2

= (

𝑟
𝑔𝑗

𝐿
𝑚

)

2

, 𝑝
2

=
𝜌𝐴
0
𝜔
2

𝐿
4

𝑚

𝐸𝐼
𝑧0

,

𝑀̃
𝑧𝑗

(𝑥) =

𝑀̂
𝑧𝑗

(𝑥) 𝐿
𝑚

(𝐸𝐼
𝑧0
𝛼)

, 𝑄̃
𝑦𝑗

(𝑥) =

𝑄̂
𝑦𝑗

(𝑥) 𝐿
2

𝑚

(𝐸𝐼
𝑧0
𝛼)

,

𝑄̃
𝑥𝑗

(𝑥) =

𝑄̂
𝑥𝑗

(𝑥)

𝐸𝐴
0

, 𝜃̃
𝑧𝑗

(𝑥) = 𝜃̂
𝑧
(𝑥) ,

𝛽 = √
𝜌𝐴
0
𝜔
2

𝐿
2

𝑚

𝐸𝐴
0

, 𝛼 = 1 + (
𝑘
2

𝜅
𝑠
𝐺𝐴

) ,

𝐸𝐼
𝑧𝑗

= 𝐸𝐼
𝑧0
𝐸𝐼
𝑧
, 𝜅

𝑠
𝐺𝐴
𝑗
= (

𝐸𝐼
𝑧0

𝐿2
𝑚

)𝜅
𝑠
𝐺𝐴,

𝐸𝐴
𝑗
= 𝐸𝐴
0
𝐸𝐴, 𝜌𝐴

𝑗
= 𝜌𝐴
0
𝑚,

(19)

where𝐸𝐼
𝑧0
,𝐸𝐴
0
, and 𝜌𝐴

0
are reference quantities. In order to

simplify the notation, 𝐸𝐼
𝑧
, 𝐸𝐴, and 𝜌𝐴 are consistently used

for 𝐸𝐼
𝑧
, 𝐸𝐴, and𝑚, respectively. Inserting (19) into (15) and

(16), one gets

𝐷
2

[𝑢̃ (𝑥)] + 𝛽
2
𝑚

𝐸𝐴

𝑢̃ (𝑥) = 0, (20)

𝐷
4

[Ṽ (𝑥)] + 𝑏
0
𝐷
2

[Ṽ (𝑥)] + 𝑐
0
Ṽ (𝑥) = 0, (21)

where

𝑏
0
= {(

−𝑘
2

𝐸𝐼
𝑧
𝛼

) + 𝑚𝑝
2

[
1

𝜅
𝑠
𝐺𝐴𝛼

+
𝑅
2

𝐸𝐼
𝑧

]} ,

𝑐
0
=

𝑝
2

𝐸𝐼
𝑧
𝛼

[
𝑝
2

𝑅
2

𝑚
2

𝜅
𝑠
𝐺𝐴

− 𝑚] .

(22)

2.2. Solution to the Beam Differential Equations (Longitudinal
and Flexural). The characteristic equation of the flexural
beam (21) has the following form:

𝑧̃
2

+ 𝑏
0
𝑧̃ + 𝑐
0
= 0, (23)

where 𝑧̃ =̂ 𝐷
2

[Ṽ(𝑥)], with solutions 𝑧̃
1

= (−𝑏
0
+ √Δ)/2, and

𝑧̃
2

= (−𝑏
0
− √Δ)/2 where Δ = 𝑏

2

0
− 4𝑐
0
. It can be seen from

(22) that Δ > 0 and z̃
2
< 0 for all𝜔. However, z̃

1
has two sign

possibilities.

(1) 𝑧̃
1
> 0 ⇔ √Δ > 𝑏

0
⇒ √𝑏

2

0
− 4𝑐
0
> 𝑏
0
⇒ 𝑐
0
< 0. That

means that 𝑝2 < 𝜅
𝑠
𝐺𝐴/𝑅

2

𝑚 or 𝜔
2

< 𝜅
𝑠
𝐺𝐴/𝜌𝐼.

(2) 𝑧̃
1
< 0 ⇔ 𝜔 > √𝜅

𝑠
𝐺𝐴/𝜌𝐼. In the present study, only

𝑧̃
1
> 0 will be considered. Therefore, the roots of (23)

are 𝐷[Ṽ(𝑥)] ∈ {±√𝑧̃
1
, ±𝑖√−𝑧̃

2
}. This gives a general

solution in the following form

Ṽ
𝑗
(𝑥) = 𝐶

󸀠

1𝑗
𝑒
√𝑧̃1𝑥 + 𝐶

󸀠

2𝑗
𝑒
−√𝑧̃1𝑥 + 𝐶

󸀠

3𝑗
𝑒
𝑖√𝑧̃2𝑥

+ 𝐶
󸀠

4𝑗
𝑒
−𝑖√𝑧̃2𝑥,

(24)

where the constants 𝐶󸀠
1
, 𝐶󸀠
2
, 𝐶󸀠
3
, and 𝐶

󸀠

4
are to be determined

from the boundary conditions of the beam. Noting that
sinh𝑥 = (1/2)(𝑒

𝑥

− 𝑒
−𝑥

), cosh𝑥 = (1/2)(𝑒
𝑥

+ 𝑒
−𝑥

), sin𝑥 =

(1/2𝑖)(𝑒
𝑖𝑥

− 𝑒
−𝑖𝑥

), and cos𝑥 = (1/2)(𝑒
𝑖𝑥

+ 𝑒
−𝑖𝑥

), (24) can be
rewritten as
Ṽ
𝑗
(𝑥) = 𝐶

1𝑗
cosh (𝜆

1𝑗
𝑥) + 𝐶

2𝑗
sinh (𝜆

1𝑗
𝑥) + 𝐶

3𝑗
cos (𝜆

2𝑗
𝑥)

+ 𝐶
4𝑗
sin (𝜆

2𝑗
𝑥) ,

(25)
where

𝜆
2

1𝑗
=

󵄨󵄨󵄨󵄨𝑧̃1
󵄨󵄨󵄨󵄨 =

(−𝑏
0
+ √Δ)

2
; 𝜆

2

2𝑗
=

󵄨󵄨󵄨󵄨𝑧̃2
󵄨󵄨󵄨󵄨 =

(𝑏
0
+ √Δ)

2
.

(26)
Substituting (3) into (1) and the result in (2) yields the
variable 𝑀

𝑧
(𝑥, 𝑡). Then substitute (8) into 𝑀

𝑧
(𝑥, 𝑡), use (13),

differentiate it with respect to 𝑥, and substitute it back into
(18d). This finally gives

𝑄̂
𝑦
(𝑥)(1 −

𝜌𝐴𝑟
2

𝑔
𝜔
2

𝜅
𝑠
𝐺𝐴

)

= −𝐸𝐼
𝑧
(1 +

𝑆

𝜅
𝑠
𝐺𝐴

)
𝜕
3V̂ (𝑥)

𝜕𝑥3

− (
𝐸𝐼
𝑧
𝜌𝐴𝜔
2

𝜅
𝑠
𝐺𝐴

+ 𝜌𝐴𝑟
2

𝑔
𝜔
2

− 𝑆)
𝜕V̂ (𝑥)

𝜕𝑥
.

(27)
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The shear force can be obtained by the substitution of (19)
into (27) as

𝑄̃
𝑦𝑗

(𝑥) = 𝐴
𝑄
𝐷
3

[Ṽ (𝑥)] + 𝐵
𝑄
𝐷 [Ṽ (𝑥)] , (28)

where

𝐴
𝑄

= −
𝐸𝐼
𝑧

(1 − 𝑝
2

𝑅
2

(𝑚/𝜅
𝑠
𝐺𝐴))

,

𝐵
𝑄

= −

(𝑝
2

(𝐸𝐼
𝑧
𝑚/𝜅
𝑠
𝐺𝐴) + 𝑝

2

𝑅
2

𝑚 − 𝑘
2

)

𝛼 (1 − 𝑝
2

𝑅
2

(𝑚/𝜅
𝑠
𝐺𝐴))

.

(29)

Substituting the result (28) into (1) and (2) and after several
manipulations, one gets

𝜃̃
𝑧𝑗

(𝑥) = 𝐴
𝜃
𝐷
3

[Ṽ (𝑥)] + 𝐵
𝜃
𝐷 [Ṽ (𝑥)] ,

𝑀̃
𝑧𝑗

(𝑥) = 𝐴
𝑀
𝐷
4

[Ṽ (𝑥)] + 𝐵
𝑀
𝐷
2

[Ṽ (𝑥)] ,

(30)

where

𝐴
𝜃
= −

𝛼

𝜅
𝑠
𝐺𝐴

𝐴
𝑄
, 𝐵

𝜃
= 1 −

𝛼

𝜅
𝑠
𝐺𝐴

𝐵
𝑄
,

𝐴
𝑀

=
𝐸𝐼
𝑧

𝜅
𝑠
𝐺𝐴

𝐴
𝑄
, 𝐵

𝑀
=

𝐸𝐼
𝑧

𝜅
𝑠
𝐺𝐴

𝐵
𝑄

−
𝐸𝐼
𝑧

𝛼
.

(31)

For the longitudinal vibration (20), the characteristic equa-
tion has the following form:

𝑧
2

+ 𝛽
2

= 0 󳨐⇒ 𝑧 = ±𝑖𝛽, (32)

where 𝑧̃ =̂ 𝐷[𝑢(𝑥)]. This gives the solution

𝑢̃
𝑗
(𝑥) = 𝐶

5𝑗
cos (𝛽

𝑗
𝑥) + 𝐶

6𝑗
sin (𝛽

𝑗
𝑥) . (33)

In dimensionless form, the shear force 𝑄̃
𝑥𝑗
(𝑥) at section 𝑗th

can be obtained by substituting (33) into (18c) and (19):

𝑄̃
𝑥𝑗

(𝑥) = 𝐴
𝑢
𝐷 [𝑢̃ (𝑥)] , where 𝐴

𝑢
= −𝐸𝐴𝛽

𝑗
. (34)

2.3. TransferMatrixMethod (TMM) forDistributed Parameter
Models. The introduction of the transfer matrix method into
the continuum modeling process provides a very useful tool
to facilitate the application of distributed parameter models
to more complex configurations. In TMM approach, the
continuity relations of displacement, rotation angle, moment,
and shear at the interface of adjacent beam segments are
performed. For the flexural beam, denoted by superscript 𝑓,
(25), and (28)–(31) can be written in matrix form as

Z𝑓 (𝑥) = B𝑓 (𝑥)C𝑓. (35)

Herein, Z𝑓(𝑥) is the state vector at an arbitrary posi-
tion 𝑥 containing the model variables, that is, Z𝑓(𝑥) =

{Ṽ, 𝜃̃
𝑧
, 𝑀̃
𝑧
, 𝑄̃
𝑦
}
𝑇

.The coefficient vectorC𝑓 = {𝐶
1
, 𝐶
2
, 𝐶
3
, 𝐶
4
}
𝑇

summarizes unknown constants to be adopted to boundary
conditions and

B𝑓 (𝑥) =

[
[
[
[

[

𝑐ℎ 𝑠ℎ 𝑐 𝑠

(𝐴
𝜃
𝜆
3

1
+ 𝐵
𝜃
𝜆
1
) 𝑠ℎ (𝐴

𝜃
𝜆
3

1
+ 𝐵
𝜃
𝜆
1
) 𝑐ℎ (𝐴

𝜃
𝜆
3

2
− 𝐵
𝜃
𝜆
2
) 𝑠 (−𝐴

𝜃
𝜆
3

2
+ 𝐵
𝜃
𝜆
2
) 𝑐

(𝐴
𝑀
𝜆
4

1
+ 𝐵
𝑀
𝜆
2

1
) 𝑐ℎ (𝐴

𝑀
𝜆
4

1
+ 𝐵
𝑀
𝜆
2

1
) 𝑠ℎ (𝐴

𝑀
𝜆
4

2
− 𝐵
𝑀
𝜆
2

2
) 𝑐 (𝐴

𝑀
𝜆
4

2
− 𝐵
𝑀
𝜆
2

2
) 𝑠

(𝐴
𝑄
𝜆
3

1
+ 𝐵
𝑄
𝜆
1
) 𝑠ℎ (𝐴

𝑄
𝜆
3

1
+ 𝐵
𝑄
𝜆
1
) 𝑐ℎ (𝐴

𝑄
𝜆
3

2
− 𝐵
𝑄
𝜆
2
) 𝑠 (−𝐴

𝑄
𝜆
3

2
+ 𝐵
𝑄
𝜆
2
) 𝑐

]
]
]
]

]

, (36)

where 𝑐ℎ = cosh(𝜆
1
𝑥), 𝑠ℎ = sinh(𝜆

1
𝑥), 𝑐 = cos(𝜆

2
𝑥) and

𝑠 = sin(𝜆
2
𝑥). Considering a beam segment 𝑗th of length 𝑙

𝑗
,

the input end 0 may be assigned to 𝑥 = 0 resulting in

Z𝑓
0,𝑗

= [B𝑓 (0)]
𝑗

C𝑓
𝑗
. (37)

Therefore, the coefficient vector can be expressed as

C𝑓
𝑗

= [B𝑓 (0)]
−1

𝑗

Z𝑓
0,𝑗

. (38)

For the beam segment output end (𝑗 + 1) at 𝑥 = 𝑙
𝑗
, (35) and

(38) give

Z𝑓
𝑗+1,𝑗

= [B𝑓 (𝑙)]
𝑗

C𝑓
𝑗

= [B𝑓 (𝑙)]
𝑗

[B𝑓 (0)]
−1

𝑗

Z𝑓
0,𝑗

. (39)

Applying the continuity equations as

Z𝑓
𝑗,𝑗

= Z𝑓
𝑗−1,𝑗

, (40)

this results in

Z𝑓
𝑗+1,𝑗

= U𝑓
𝑗
Z𝑓
0,𝑗

, (41)

where

U𝑓
𝑗

= [B𝑓 (𝑙)]
𝑗

[B𝑓 (0)]
−1

𝑗

=

[
[
[

[

V
11

V
12

V
13

V
14

V
21

V
22

V
23

V
24

V
31

V
32

V
33

V
34

V
41

V
42

V
43

V
44

]
]
]

]

𝑓

𝑗

. (42)
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0 1 2

𝑙1 𝑙2

𝑗 − 1 𝑗 + 1𝑗

𝑗−1,𝑗𝒁 𝒁𝑗,𝑗+1

· · · · · ·
𝑛 − 1 𝑛

𝑛 + 1

Figure 3: Beam with 𝑛 segments.

1 2 9
0 10

……

Figure 4: Beam example with free-free boundary conditions.

The components V
𝑙𝑚

(𝑙, 𝑚 = 1, 2, 3, 4) of the transfer matrix
U𝑓
𝑗
are listed in the appendix. For the longitudinal vibration,

denoted by superscript 𝑙, the state vector is given as Z𝑙(𝑥) =

{𝑢̃, 𝑄̃
𝑥
}
𝑇, the coefficient vector C𝑙 = {𝐶

5
, 𝐶
6
}
𝑇, and B𝑙(𝑥) =

[
𝑐 𝑠

−𝐴𝑢𝑠 𝐴𝑢𝑐
], where 𝑐 = cos(𝛽 𝑥) and 𝑠 = sin(𝛽 𝑥). Following

the pervious procedures, the longitudinal transfer matrix U𝑙
𝑗

of the 𝑗th segment may be deduced as

U𝑙
𝑗
= [

[

𝑐
𝑠

𝐴
𝑢

−𝐴
𝑢
𝑠 𝑐

]

]

𝑙

𝑗

= [
𝑢
11

𝑢
12

𝑢
21

𝑢
22

]

𝑙

𝑗

. (43)

By combining the state vectors Z𝑙(𝑥) and Z𝑓(𝑥) in one
column, that is, Z(𝑥) = {𝑢̃, Ṽ, 𝜃̃

𝑧
, 𝑀̃
𝑧
, 𝑄̃
𝑥
, 𝑄̃
𝑦
}
𝑇

, the transfer
matrix of a beam vibrating longitudinally in the 𝑥-direction
and transversely in the 𝑦-direction is

U =

[
[
[
[
[
[
[

[

𝑢
11

0 0 0 𝑢
12

0

0 V
11

V
12

V
13

0 V
14

0 V
21

V
22

V
23

0 V
24

0 V
31

V
32

V
33

0 V
34

𝑢
21

0 0 0 𝑢
22

0

0 V
41

V
42

V
43

0 V
44

]
]
]
]
]
]
]

]

. (44)

A vibrating beam comprised of 𝑛-segments, see Figure 3, is
used as an example to showhow to deduce the overall transfer
equation and overall transfer matrix of the system. There are
𝑛 + 1 connection and boundary points where Z

0,1
, and Z

𝑛+1,𝑛

are the boundary state vectors.
The transfer equations of the 𝑛 segments, respectively, are

Z
2,1

= U
1
Z
0,1

,

Z
3,2

= U
2
Z
1,2

, . . . ,Z
𝑛+1,𝑛

= U
𝑛
Z
𝑛−1,𝑛

.

(45)

The overall transfer equation of system is given by

Z
𝑛,𝑛+1

= U
𝑛
Z
𝑛,𝑛−1

= U
𝑛
U
𝑛−1

Z
𝑛−1,𝑛−2

= ⋅ ⋅ ⋅ = UZ
0,1

, (46)

where

U =

𝑛

∏

𝑘=1

U
𝑘
= U
𝑛
U
𝑛−1

⋅ ⋅ ⋅U
1

=

[
[
[
[
[
[
[

[

𝑢
11

0 0 0 𝑢
12

0

0 V
11

V
12

V
13

0 V
14

0 V
21

V
22

V
23

0 V
24

0 V
31

V
32

V
33

0 V
34

𝑢
21

0 0 0 𝑢
22

0

0 V
41

V
42

V
43

0 V
44

]
]
]
]
]
]
]

]

(47)

is 6 × 6 transfer matrix of the whole beam structure, which
is obtained by multiplying the transfer matrices of every
segment in sequence.

2.4. Determination of Natural Frequencies and Mode Shapes
of a Free-Free Beam. The components of the transfer matrix
are all functions of the natural frequency of the system. The
overall transfer equation (47) only involves boundary state
vectors, and the state vectors at all other connection points do
not appear. The state vectors at the boundary are composed
of displacements, rotation angles, bending moments, and
shear and axial forces which are partly known and partly
unknown. For free ends on both sides, the force and moment
components are zero. Figure 4 shows an example sketch of an
elastic beam divided into 9 segments and free boundaries at
sections 0 and 10.

From (46), one obtains the relationship between left
side Z

0,1
= {𝑢̃ Ṽ 𝜃̃

𝑧
𝑀̃
𝑧
𝑄̃
𝑥

𝑄̃
𝑦
}
𝑇

0,1

and right side Z
10,9

=

{𝑢̃ Ṽ 𝜃̃
𝑧
𝑀̃
𝑧
𝑄̃
𝑥

𝑄̃
𝑦
}
𝑇

10,9

to take the following form:

𝑢̃
10,9

= 𝑢
11
𝑢̃
0,1

+ 𝑢
12
𝑄̃
𝑥0,1

, (48a)

Ṽ
10,9

= V
11
Ṽ
0,1

+ V
12
𝜃̃
𝑧0,1

+ V
13
𝑀̃
𝑧0,1

+ V
14
𝑄̃
𝑦0,1

, (48b)

𝜃̃
𝑧10,9

= V
21
Ṽ
0,1

+ V
22
𝜃̃
𝑧0,1

+ V
23
𝑀̃
𝑧0,1

+ V
24
𝑄̃
𝑦0,1

, (48c)

𝑀̃
𝑧10,9

= V
31
Ṽ
0,1

+ V
32
𝜃̃
𝑧0,1

+ V
33
𝑀̃
𝑧0,1

+ V
34
𝑄̃
𝑦0,1

, (48d)

𝑄̃
𝑥10,9

= 𝑢
21
𝑢̃
0,1

+ 𝑢
22
𝑄̃
𝑥0,1

, (48e)

𝑄̃
𝑦10,9

= V
41
Ṽ
0,1

+ V
42
𝜃̃
𝑧0,1

+ V
43
𝑀̃
𝑧0,1

+ V
44
𝑄̃
𝑦0,1

. (48f)
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Table 1: Frequency parameter 𝑝2 for a free-free Euler-Bernoulli square beam under axial load for 𝐸𝐼
𝑧
= 200 × 10

9N/m2; 𝐺 = 1 × 10
90N/m2;

𝜌 = 7800 kg/m3; 𝑏 = ℎ = 0.01m; 𝐿
𝑚

= 1m.

Axial load 𝛾 Mode 𝑝
2 [24] 𝑝

2 [TMM]

−0.999
1 0.84680644 0.84680659
2 7.22386030 7.223860352
3 10.6308452 10.630845189

0.0

1 0.00000000 0.000000000
2 4.73004074 4.7300407450
3 7.85320462 7.853204624
4 10.9956078 10.995607838

1.0

1 3.26787488 3.267874878
2 5.59376731 5.593767306
3 8.35398454 8.353984538
4 11.3264204 11.326420425

For a free-free beam, the bending moment and forces at its
left and right sides are zero, that is,

𝑀̃
𝑧0,1

= 𝑄̃
𝑥0,1

= 𝑄̃
𝑦0,1

= 0, (49a)

𝑀̃
𝑧10,9

= 𝑄̃
𝑥10,9

= 𝑄̃
𝑦10,9

= 0, (49b)

resulting in lower three equations of (48a)–(48f) which may
be written in matrix form as

Z󸀠
10,9

= U󸀠Z󸀠
0,1

󳨐⇒

{

{

{

0

0

0

}

}

}10,9

= [

[

0 V
31

V
32

𝑢
21

0 0

0 V
41

V
42

]

]

{

{

{

𝑢̃

Ṽ

𝜃̃
𝑧

}

}

}0,1

.

(50)

Non-trivial solutions for (50) require that its coefficient
determinant vanishes, that is,

Δ (𝜔) = detU󸀠 = 0 󳨐⇒

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0 V
31

V
32

𝑢
21

0 0

0 V
41

V
42

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0, (51)

where detU󸀠 is a function of 𝜔. Equation (51) is called the
characteristic equation or frequency equation whose roots
are the natural frequencies 𝜔 of the undamped system.These
roots are determined by “guess and check.” For a given
frequency, the algorithm checks the sign of the determinant
Δ(𝜔) in (51). Starting from an initial frequency, it is increased
by Δ𝜔 and the sign of Δ(𝜔 + Δ𝜔) is rechecked. A root occurs
when there is a sign change. If there is no sign change, the
incrementalΔ𝜔 is increased by a factor (e.g., 1.6) and search is
continued. Else𝜔 is overestimated;Δ𝜔 is decreased by a factor
(e.g., 3.2) and the calculation starts from the old frequency
before the sign change occurs. The frequency is obtained if
Δ𝜔 − 𝜀 ≤ 0 where 𝜀 (e.g., 10−9) is the required precision for
the frequency estimation. It is anticipated that the second root
is at least twice the value of the first. Hence, a larger Δ𝜔 in the
algorithm is assumed for the iteration of the second root, and
so on. Once the converged value of a natural frequency 𝜔

𝑘

(where 𝑘 is a mode counter) is determined, one may generate
the corresponding free vibrationmode shapes. For a free-free

beam, the full initial state variables (or initial parameters) are
given by

Z
0,1

= {𝑢̃ (0) =?, Ṽ (0) =?, 𝜃̃
𝑧
(0) =?, 𝑀̃

𝑧
(0) = 0,

𝑄̃
𝑥
(0) = 0, 𝑄̃

𝑦
(0) = 0}

𝑇

0,1

.

(52)

In (52), the values of 𝑀̃
𝑧0,1

, 𝑄̃
𝑥0,1

, and 𝑄̃
𝑦0,1

are equal to
zero (49a), while those of 𝑢̃

0,1
, Ṽ
0,1
, and 𝜃̃

0,1
are unknowns.

Using Singular Value Decomposition (SVD), the unknown
variables are determined from the solution of linear homoge-
nous equations (50). SVD is based on a theorem from linear
algebra, which says that a rectangular 𝑚 × 𝑛 matrix U󸀠
can be broken down into the product of three matrices—an
orthogonal𝑚×𝑚matrixU, an𝑚×𝑛 diagonal matrixD, and
the transpose of an 𝑛 × 𝑛 orthogonal matrix V [25]:

U󸀠
𝑚×𝑛

= U
𝑚×𝑚

D
𝑚×𝑛

V𝑇
𝑛×𝑛

, (53)

where U𝑇U = I; V𝑇V = I. The columns of U are orthogonal
eigenvectors of U󸀠U󸀠𝑇, the columns of V are orthonormal
eigenvectors ofU󸀠𝑇 U󸀠, andD is a diagonalmatrix containing
the square roots of eigenvalues from U or V in descending
order. Substitution of (53) in (50) yields

Z󸀠
10,9

= UDV𝑇Z󸀠
0,1

⋅ ⋅ ⋅UDV𝑇Z󸀠
0,1

= 0. (54)

The solutions Z󸀠
0,1

are given by the columns of V correspond-
ing to zero singular values. By using (45) further, the values
of the state vector are found for each of the other segments.

2.5. Axial Force for ConstantThrust Trajectory. Theaxial force
𝑆 is defined as compressive force acting on the beam for the
𝑗th rocket segment and may be calculated at the centre of
gravity of the segment by summing up the inertias of all the
segments preceding the current one and taking the average
inertia force for the current segment [2, 6]. For the constant
thrust trajectory, it can be presented as

𝑆
𝑗
(𝑥) =

𝑇

𝑀
𝑚

[𝑀
𝑚

−

𝑗−1

∑

𝑘=1

𝜌𝐴
0
𝑚
𝑘
𝑙
𝑘
−

1

2
𝜌𝐴
0
𝑚
𝑗
𝑙
𝑗
] . (55)
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Table 2: Natural frequencies (Hz) according tomeasured values, ANSYS, and TMMof a free-free short Timoshenko aluminum square beam.
Mode Measured [26] ANSYS [26] TMM
1 27359.6 27417.6 (+0.212%) 27407.233 (+0.174%)
2 60862.0 60882.0 (+0.0328%) 60851.321 (+0.0175%)
3 97609.5 97734.4 (+0.128%) 97796.367 (+0.191%)
4 131494 131658.0 (+0.124%) 132277.502 (+0.595%)

Table 3: A comparison of TMM using different numbers of segments with flight test and computed data.
TMM Flight test [27]

time from launch
(0.25 to 0.75 sec)

Computed data [27]
time from launch
(0.0 to 1.0 sec)

Mode Number of segments
50 100 400 1000

1 12.95 37.18 10.58 10.58 ≈10.5 10.5 to 10.9
2 11.55 35.75 35.03 35.02 — —
3 10.58 66.25 62.41 62.54 — —

3. Comparison Examples

3.1. Free-Free Uniform Euler-Bernoulli Beam under Axial
Force. In the case where the shear deformation and rotary
inertia are disregarded (see (17)), the free-free beam has exact
analytical solutions. From Table 1 a perfect concordance [24]
and TMM for only one spanwise segment can be observed.
Herein, 𝛾(≡ 𝑇/𝑇

𝑐𝑟
≡ 𝑇𝐿
2

𝑚
/𝜋
2

𝐸𝐼
𝑧
) is the ratio of axial force to

the buckling load 𝛾(≡ 𝑇/𝑇
𝑐𝑟

≡ 𝑇𝐿
2

𝑚
/𝜋
2

𝐸𝐼
𝑧
). A negative sign

in 𝛾 indicates a compressive force.

3.2. Free-Free Uniform Timoshenko Beam. A good agreement
can be also observed from Table 2 between measured [26],
ANSYS [26], and the TMM values for a single segment. The
geometry and material data are as follows:

𝐸𝐼
𝑧
= 72.66611 × 10

9N/m2
, 𝐺 = 27.17481 × 10

9N/m2
,

𝜌 = 2817.9111 kg/m3
, 𝑏 = 0.01009m,

ℎ = 0.01004m, 𝐿
𝑚

= 0.04004m,

𝑘
𝑠
= 0.869877423.

(56)

Percentage differences between the predicted and the mea-
sured values are shown in parentheses.

3.3. Free-Free Nonuniform Beam: Two-Stage Launch Vehicle.
A numerical example has been carried out by using Euler-
Bernoulli beams for a two-stage launch vehicle [27]. Figure 5
shows the axial variations of flexural stiffness 𝐸𝐼

𝑧
and mass

per unit length 𝜌𝐴 distributions. Table 3 illustrates a com-
parison of TMMusing different equal segments (i.e., uniform
𝐸𝐼
𝑧
and 𝜌𝐴 distributions along each segment) with in-flight

frequencies of oscillation obtained from telemetry data with
computed first-mode undamped natural frequencies of the
free-free two-stage vehicle [27]. A very good concordance
can be observed. The number of segments depends mainly
on the physical properties and the complexity of the launch
vehicle. However, for this example, 400 segments give good
convergence as shown in Table 3.

3.4. Free-Free Nonuniform Beam: Multistage Launch Vehicle
with the Effect of Shear Deformation and Rotary Inertia. A
numerical example is also presented for an actual vehicle [5].
The vehicle has four stages. The computation is carried out
with both Euler-Bernoulli and Timoshenko approaches for
high aspect ratio (𝐿/𝐷 ≈ 25, for whole launch vehicle) and
low aspect ratio (𝐿/𝐷 ≈ 5, for fourth stage only). The basic
physical characteristics of the multistage vehicle required as
input are illustrated in Figure 6 including the axial variations
of flexural stiffness𝐸𝐼

𝑧
,mass per unit length𝜌𝐴, shear rigidity

𝑘
𝑠
𝐺𝐴, and radius of gyration 𝑟

𝑔
. The number of segments

used is 1000. The first three frequencies computed by TMM
are in good agreement with [5] as shown in Table 4.The slope
of the elastic curve is computed by using (1). Inspection of
the data presented in Table 4 and Figures 7, 8, and 9 shows
that rotary inertia and shear deformation have minor effects
for 𝐿/𝐷 ≈ 25 only, while it has a significant effect on the
data for 𝐿/𝐷 ≈ 5. Dominant effects are noted in reduction of
frequencies, and large effects are pronounced on the moment
and shear.

4. Typical Guided Rocket for Constant Thrust

A numerical example has also been carried out for a typical
guided rocket with flexural rigidity, axial compressive force,
and mass per unit length distributions as shown in Figures
10(a), 10(b), and 10(c).The structure is divided into 600 equal
segments, and two moments of the flight time are selected,
that is, initial (𝑡 = 0) and burn-out (𝑡 = 50 sec) times. The
axial compressive force is considered for a nominal value of
thrust as shown in Figure 10(b).

Figure 11 shows the effect of increased operating thrust
on the first natural frequency at 𝑡 = 0 (maximum mass)
and 𝑡 = 50 sec (minimum mass). It highlights the following
general notes: (1) increasing the thrust magnitude tends to
a reduction in the vehicle’s frequencies; (2) mass depletion
(𝑡 = 50 sec) leads to increase in the acceleration and the axial
force distribution as shown in Figure 10(b), and consequently
it exhibits higher vehicle’s frequency in comparison with
maximum mass (𝑡 = 0) but lower allowable thrust range.
This fact can be shown readily from Figure 11. For 𝑡 = 50 sec,
the critical buckling thrust (associated with zero frequency)
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Figure 5: Variation of (a) flexural stiffness and (b) mass distribution, for a two-stage launch vehicle prior the launch [27].
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Figure 6: Parameters of a multistage launch vehicle [5]: (a) flexural stiffness, (b) shear rigidity, (c) mass, and (d) radius of gyration.

is lower than that at 𝑡 = 0. In turn, it will limit the maximum
operating thrust.

Figure 12 illustrates the effect of maximum operating
thrust (in the vicinity of critical buckling thrust taken
from Figure 11), that is, 𝑇 = 1.5 × 10

6N|
𝑡=0

and 𝑇 =

1.2 × 10
6N|
𝑡=50 sec, on the first natural mode shape. For both

cases, the deflections of the mode shape with thrust are
decreased at the rear end in comparisonwithout thrust, while

increasing at the nose. It should be noted that this fact has
been also concluded by Pourtakdoust and Assadian [2].

5. Conclusions

Starting from an elementary beam formulation for a nonuni-
form flexible beamlike structure, the free vibration analysis
is performed using the Transfer Matrix Method (TMM).
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Table 4: First three frequencies (rad/sec) of high and low aspect ratio for a multistage launch vehicle: comparison between [5] and TMM.

Mode

Timoshenko beam Euler-Bernoulli beam
With rotary inertia and With rotary inertia With shear deformation (without rotary inertia
shear deformation only only and shear deformation)

Reference [5] TMM Reference [5] TMM Reference [5] TMM Reference [5] TMM
Whole multistage launch vehicle (𝐿/𝐷 ≈ 25)

1 16.017 16.005 16.054 16.042 16.083 16.069 16.120 16.107

2 46.521 46.492 47.195 47.172 46.770 46.735 47.457 47.428

3 93.943 93.710 97.566 97.393 94.727 94.471 98.686 98.322
Upper stage of the launch vehicle (𝐿/𝐷 ≈ 5)

1 334.776 335.019 400.968 401.468 348.945 349.146 438.557 439.003

2 760.445 760.596 1104.970 1106.305 803.663 803.364 1367.317 1369.986

3 960.819 959.593 1655.463 1659.978 1049.897 1048.378 2292.381 2290.001
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Figure 7: Effects of shear deformation and rotary inertia on (a) mode shape, (b) rotation angle, (c) moment, and (d) shear of first mode for
𝐿/𝐷 ≈ 25: Q Timoshenko model; —Euler-Bernoulli model.

The free-free beam is subjected to variable axial compressive
force and modeled by both Euler-Bernoulli and Timoshenko
theory. The latter solution includes the influences of rotary
inertia and shear deformation. For forward applications, the
beam is divided into piecewise constant property segments.
For the free vibration, the exact solution is obtained using
the beam functions. Numerical examples for launch various
vehicles are included to demonstrate the validity of TMM.

The methodology proposed in this research with inclu-
sion of rotary inertia, shear deformation, and thrust effect

allows for more realistic simulations of a flexible vehicle. The
accuracy of this methodology has a great influence on the
vibrational characteristics, control/navigation system, vehicle
dynamics and aeroelastic analyses.

Ongoing research to be published in part II is devoted to
modeling of Closed Structure Systems. This system consists
of a multibeam-like structure, rigid joints, springs, and rigid
bodies. Special attention is focused on how the transfer
equations and transfer matrices of the global system can be
developed conveniently (see Figure 13).
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Figure 8: Effects of shear deformation and rotary inertia on the first three natural vibrations on mode shape ((a), (b), (c)) and rotation angle
and slope of elastic curve ((d), (e), (f)) for upper stage of the launch vehicle (𝐿/𝐷 ≈ 5).

Appendix

Considering (42), the components of the transfer matrix U𝑓
𝑗

can be stated as follows:

V
11

=

𝜆
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1
(𝐵
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) 𝑐 + 𝜆

2

2
(𝐵
𝑀

− 𝐴
𝑚
𝜆
2

2
) 𝑐ℎ

(𝜆
2

1
+ 𝜆
2

2
) (𝐵
𝑀

+ 𝐴
𝑀

(𝜆
1
− 𝜆
2
) (𝜆
1
+ 𝜆
2
))

,

V
12

=

−𝜆
1
(𝐵
𝑄

+ 𝐴
𝑄
𝜆
2

1
) 𝑠 + 𝜆

2
(𝐵
𝑄

− 𝐴
𝑄
𝜆
2

2
) 𝑠ℎ

𝜆
1
𝜆
2
(𝜆
2

1
+ 𝜆
2

2
) (𝐴
𝜃
𝐵
𝑄

− 𝐴
𝑄
𝐵
𝜃
)

,

V
13

=
−𝑐 + 𝑐ℎ

(𝜆
2

1
+ 𝜆
2

2
) (𝐵
𝑀

+ 𝐴
𝑀

(𝜆
1
− 𝜆
2
) (𝜆
1
+ 𝜆
2
))

,

V
14

=

𝜆
1
(𝐵
𝜃
+ 𝐴
𝜃
𝜆
2

1
) 𝑠 + (−𝐵

𝜃
𝜆
2
+ 𝐴
𝜃
𝜆
3

2
) 𝑠ℎ

𝜆
1
𝜆
2
(𝜆
2

1
+ 𝜆
2

2
) (𝐴
𝜃
𝐵
𝑄

− 𝐴
𝑄
𝐵
𝜃
)

,

V
21

= (𝜆
1
𝜆
2
(𝜆
1
(𝐵
𝑀

+ 𝐴
𝑚
𝜆
2

1
) (−𝐵
𝜃
+ 𝐴
𝜃
𝜆
2

2
) 𝑠

+ (𝐵
𝜃
+ 𝐴
𝜃
𝜆
2

1
) 𝜆
2
(𝐵
𝑀

− 𝐴
𝑚
𝜆
2

2
) 𝑠ℎ))

× ((𝜆
2

1
+ 𝜆
2

2
) (𝐵
𝑀

+ 𝐴
𝑀

(𝜆
1
− 𝜆
2
) (𝜆
1
+ 𝜆
2
)))
−1

,



Mathematical Problems in Engineering 13

0 4

0
−0.6

−0.8

−1.2

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

(a) (d)

𝑥 𝑥

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

𝑥 𝑥

0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1
𝑥 𝑥

(b) (e)

(f )(c)

2

1

0

−1

10

0

−10

−20

−4

−8

80

40

0

−40

4

0

−4

𝑀
𝑧
(𝑥

)
𝑀

𝑧
(𝑥

)
𝑀

𝑧
(𝑥

)

𝑄
𝑦

(𝑥
)

𝑄
𝑦

(𝑥
)

𝑄
𝑦

(𝑥
)

Figure 9: Effects of shear deformation and rotary inertia on the first three natural vibrations on moment ((a), (b), (c)) and shear force ((d),
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