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Abstract

Adaptive treatment strategies more closely mimic the reality of a physician’s prescrip-

tion process where the physician prescribes a medication to his/her patient and based on that

patient’s response to the medication, modifies the treatment. Two-stage randomization de-

signs, more generally, sequential multiple assignment randomization trial (SMART) designs,

are useful to assess adaptive treatment strategies where the interest is incomparing the entire

sequence of treatments, including the patient’s intermediate response. In thispaper, we in-

troduce the notion of shared-path and separate-path adaptive treatmentstrategies and propose

weighted log-rank statistics to compare overall survival distributions of twoor more two-stage,

shared-path adaptive treatment strategies. Large sample properties of the statistics are derived

and the type I error rate and power of the tests are compared to standard statistics through

simulation.

Keywords: Adaptive treatment strategy; Counting process; Proportional hazard; Survival func-

tion; Two-stage design; Weighted log-rank statistic
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1 Introduction

Physicians rarely choose treatment for a patient randomly from competing treatments, but rather

they prescribe treatments based on their clinical experience in treating patients with similar char-

acteristics and those patients’ individual history of response and adverse reactions to prior treat-

ments. Thus, physicians inherently practice personalizedmedicine, yet many clinical trials con-

tinue to compare two or more treatments at specific time points using randomized, independent

groups. These randomized controlled trial designs lack thedynamic aspect of assessing patients’

intermediate outcomes and possibly modifying therapies inorder to elicit a desired response. Se-

quential multiple assignment randomized trials, SMART, (Murphy, 2005) have been developed to

investigate a sequence of time-varying treatments subjectto modification based on the individual’s

response, more alike treatment strategies that are adoptedby physicians in practice. The SMART

design allows for the assessment and comparison of adaptivetreatment strategies (also known as

dynamic treatment regimes), which consist of a sequence of individually tailored therapies dur-

ing the course of treatment. In a SMART design, a patient’s intermediate outcome is measured

at specific time points whereupon the treatment or its dosageis adjusted accordingly. Biomedical

studies, especially clinical trials for chronic diseases such as cancer, AIDS, depression, and sub-

stance abuse, are utilizing the SMART design to reach conclusions about personalized adaptive

treatment strategies.

To better illustrate the emerging paradigm of adaptive treatment strategies, consider the fol-

lowing examples for treating moderate depression. One adaptive strategy for moderate depression

treatment is, “First treat the patient with Sertraline for 8weeks, if the patient does not respond

(Beck Depression Inventory, BDI, score over 12), treat the patient with Sertraline as well as with

cognitive behavioral therapy (CBT); if the patient responds (BDI score of 12 or under), continue

Sertraline.” Similarly, other adaptive strategies could be considered where alternative treatment

options are prescribed at one or more stages. Another example of an adaptive treatment strategy
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is, “First treat the patient with Escitalopram for 8 weeks, if the patient does not respond, treat the

patient additionally with Bupropion; if the patient responds, continue Escitalopram.” At the end,

one would be interested to compare not just Sertraline to Escitalopram, but rather, the entire se-

quence of Sertraline alone or Sertraline followed by CBT and Escitalopram alone or Escitalopram

followed by the addition of Bupropion. Thus, strategies consisting of initial treatment, intermedi-

ate response and maintenance or second-line treatment are compared to find an optimal course of

treatment for an individual.

Individualized medicine has been one of the major concentrations of the medical community

in recent years and thus, the last decade has brought about a surge in the application of SMART

designs for comparing adaptive strategies in clinical and behavioral research (Stone et al., 1995,

2001; Stroup et al., 2003; Rush et al., 2004; Winter et al., 2006; Marlowe et al., 2007; Matthay

et al., 2009), although not all of these studies had comparisons of adaptive strategies as their main

aim. As a consequence of the increased use of SMART designs, statistical literature experienced a

similar surge in the development of statistical methods foranalyzing data arising from such trials

(Thall et al., 2000; Murphy, 2003, 2005; Dawson and Lavori, 2004; Wahed and Tsiatis, 2004;

Wahed, 2010; Orellana et al., 2010). This article focuses ontime-to-event outcome data and hence

the review of literature will mainly emphasize statisticalmethods for survival analysis in SMART

designs.

Prior to the invention of the terms ‘adaptive treatment strategies’ or ‘dynamic treatment regimes’

survival data from SMART designs had been analyzed separately for each stage ignoring past or

future treatment phases. Lunceford et al. (2002) first showed how to estimate point-wise sur-

vival probabilities or overall mean survival for adaptive treatment strategies arising from two-stage

SMART designs. Methods proposed therein basically used marginal models employing inverse-

probability-of-treatment-weighting for estimation. Their analysis, while improving upon stage-

specific analysis, was not applicable for comparing overallsurvival curves under different treat-

ment strategies.
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The first valid attempt in developing a test comparing overall survival curves under two adaptive

treatment strategies was taken by Guo in his 2005 dissertation. He provided an inverse-weighted

version of the log-rank test for comparing two separate-path adaptive treatment strategies (strate-

gies that do not share the same treatment paths, see Section 2). Lokhnygina and Helterbrand (2007)

extended the idea of Lunceford et al. (2002) to the Cox proportional hazards model and proposed

a weighted version of the score equation and score test to compare induction strategies for a fixed

second-stage treatment. Generalizing the proportional hazards assumption and creating a more

robust statistic, Feng and Wahed (2008) utilized the inverse-probability-of-treatment-weighting

method developed in Guo (2005) to present a supremum weighted log-rank statistic, but again

only to compare two separate-path adaptive strategies.

The goal of this article is to present methods for comparing two shared-path adaptive treatment

strategies (strategies that share some of the same treatment paths, see Section 2). In addition, we

would like to compare more than two adaptive treatment strategies which may share the same treat-

ment paths using test statistics similar to k-sample log-rank tests (Harrington and Fleming, 1982).

Naive approaches to comparing survival curves of two or moreshared-path adaptive treatment

strategies include: (i) ignoring the induction treatments, comparing second-line therapies condi-

tioning on patients who were eligible to receive second-stage treatments, or (ii) using the statistics

provided in Guo (2005), Lokhnygina and Helterbrand (2007),or in Feng and Wahed (2008), but

ignoring that these statistics were created for comparing separate-path adaptive treatment strate-

gies, or (iii) forming groups where each group includes all of the patients who follow each adaptive

treatment strategy and applying the standard unweighted log-rank test. The first option ignores the

two-stage design and answers a different question than thatis intended, the second option inflates

the variance of the stated statistics, and the third option forms groups which contain some of the

same patients violating the standard log-rank assumption that groups are statistically independent.

Comparison of shared-path adaptive treatment strategies ischallenging since the correlation

between survival curves needs to be accounted for in the estimation process. Accounting for this

3



correlation, for example, allows us to compare treatment strategies that share the same initial treat-

ment. In this paper we first propose a weighted log-rank statistic to compare two shared-path

adaptive treatment strategies and then extend it to comparethe overall survival distributions of

more than two shared-path adaptive treatment strategies.

2 Setup

2.1 Definitions

Consider a two-stage SMART design in which patients are first randomized to receive treatment

A, levelA1 orA2, and those who respond to the initial treatmentA, receive maintenance treatment

B, randomly allocated to levelsB1 or B2 (see Figure 1). For simplicity, we will use response

to indicate ‘response to the previous treatment and consentto the following treatment’. We are

interested in the outcomes of patients who follow the various treatment strategiesAjBk, j, k = 1, 2,

where the strategyAjBk is defined as follows.

Definition 1. Adaptive Treatment Strategy AjBk: ‘Treat with Aj followed by Bk if the patient is

eligible and consents to subsequent second-line therapy’.

Furthermore, we classify strategies into shared-path and separate-path as follows:

Definition 2. Shared-Path Adaptive Treatment Strategies: Two two-stage adaptive treatment

strategies are shared-path if individuals treated with one strategy share a common path of treatment

with individuals treated with the other strategy.

For example, consider strategiesA1B1 andA1B2. StrategyA1B1 dictates that a patient be

treated withA1 and then byB1 only if the patient responds toA1. Similarly, strategyA1B2 dictates

that a patient be treated withA1 and then byB2 only if the patient responds toA1. Thus, a

patient who is treated under strategyA1B1 but did not respond toA1 will receive exactly the

same sequence of treatment as a patient who is treated under strategyA1B2 but did not respond.

Therefore, strategiesA1B1 andA1B2 are shared-path adaptive treatment strategies. Similarly, the
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pair (A2B1, A2B2) are shared-path.

Strategies that do not share a common path of treatment will be referred to as separate-path

treatment strategies. As an example, strategiesA1B1 andA2B1 are separate-path adaptive treat-

ment strategies since patients treated withA1B1 can not receive a treatment sequence received by

patients treated withA2B1. Similarly, pairs(A1B1, A2B2), (A1B2, A2B1), and(A1B2, A2B2) are

also separate-path.

2.2 Counterfactuals

Counterfactual (or potential) outcomes (Rubin, 1974; Holland, 1986) are often used to construct

estimands of interest from a population. In reality, every individual follows one specific treat-

ment strategy, therefore for each individual, we observe only one outcome for the specific treat-

ment strategy he/she followed. In theory, however, individuals in the population could follow any

treatment strategyAjBk and one can envision one outcome for each possible strategy for each

individual, hence every individual has his/her own set of imaginary outcomes for every possible

treatment strategy. This entire set of possible outcomes for an individual is referred to as his/her

counterfactual outcomes. These outcomes will help us identify the variables whose distributions

are compared across treatment strategies.

In order to define patients’ counterfactual outcomes, whichin this setting are the potential

survival times, we introduce the following notation. For patient i, let Rji = 1 if the ith patient

responded to the initial treatmentAj andRji = 0 if the ith patient did not respond to initial

treatmentAj. Let TNR
ji be the survival time for patienti if he/she received but did not respond

to therapyAj. Further, letTR
jki denote the the survival time for patienti if he/she received and

responded to treatmentAj. For treatment strategyAjBk, a particular patient may respond toAj

or fail to respond toAj while receiving at most one treatment at stage one or stage two. Since

every patient only follows one path within a treatment strategy, we cannot observeRji, TNR
ji , and

TR
jki, for all j, k = 1, 2, for each patient. Consequently, these variables are the counterfactuals or

5



potential random variables. For patienti following strategyAjBk, the potential survival time,Tjki,

can be expressed in terms of his/her counterfactual outcomes asTjki = (1−Rji)T
NR
ji +RjiT

R
jki.

We will use these potential survival times to construct a weighted log-rank statistic to compare

two or more separate-path or shared-path adaptive treatment strategies. First we will focus on

comparing two shared-path adaptive treatment strategies,A1B1 andA1B2 or, equivalently, the

distributions ofT11 andT12, and then generalize our statistic to compare more than two groups

with a specific extension to compare all four strategies,A1B1, A1B2, A2B1 andA2B2.

2.3 Observed data & assumptions

The observed data for a two-stage design described in Figure1 can be represented as a set of

random vectors{Xi, Ri, RiT
R
i , RiZi, Ui, δi}, for i = 1, . . . , n, whereXi = 2− j if the ith patient

is randomized to induction treatmentAj (j = 1, 2), Ri is the observed response indicator such that

Ri = 1 if the ith patient is a responder toAj andRi = 0 otherwise,Zi = 2 − k if patient i is

assigned to treatmentBk (k = 1, 2), the event time isUi = min(Ti, Ci), whereCi is the potential

censoring time andTi is the survival time for patienti, andδi = I(Ti ≤ Ci). If TR
i denotes the

time to response for patienti who has responded to initial treatment, then the observed response

Ri can be expressed asRi = XiR1iI(Ci > TR
i ) + (1 − Xi)R2iI(Ci > TR

i ), whereRji is the

counterfactual response defined in Section 2.2.

First we make the stable unit treatment value assumption or consistency (Rubin, 1974) to relate

the uncensored survival timeTi to the counterfactual outcomes. Explicitly, this assumption is given

asTi =
∑J

j=1 Xji{(1−Rji)T
NR
ji +RjiZiT

R
j1i +Rji(1− Zi)T

R
j2i}. Thus, an individual’s survival

time is not related to others’ treatment allocation. Other frequently made assumptions such as

‘no unmeasured confounders’ and positivity (all treatmentstrategies have positive probability of

being observed) follow from random assignment of treatments. Since most clinical trials have

limited follow-up, the survival time here is restricted to timeL, whereL is some value less than

the maximum follow-up time for all patients in the sample.
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3 Log-rank statistic for comparing two dependent strategies

3.1 The statistic

The standard unweighted log-rank test statistic is well known, well documented and commonly

used to compare survival curves for independent groups following a specified strategy. If there

were no second randomization and each patient was set to follow eitherA1B1 or A1B2, data

from patients receivingA1B1 would be considered independent of the data from patients receiv-

ing A1B2. To compare the two independent groups of patients following predetermined strategies

A1B1 andA1B2 (to test the null hypothesis of no difference between the twosurvival distributions)

based on the observed data{U1ki = min(T1ki, Ci), δ1ki = I(T1ki ≤ Ci), k = 1, 2; i = 1, . . . , n},

we would use the standard unweighted log-rank test statistic

Zn(t) =

∫ t

0

Y11(s)Y12(s)

Y11(s) + Y12(s)

{

dN11(s)

Y11(s)
−

dN12(s)

Y12(s)

}

, (1)

whereN1ki(s) = I(U1ki ≤ s, δki = 1), Y1ki(s) = I(U1ki ≥ s), N1k(s) =
∑n

i=1 N1ki(s), and

Y1k(s) =
∑n

i=1 Y1ki(s) for k = 1, 2. Under the null hypothesis,n−1/2Zn(t) is asymptotically

normally distributed with mean zero and a variance that can be consistently estimated from the

observed event times. For details of the properties of the standard unweighted log-rank statistic,

we refer the readers to Fleming and Harrington (1991).

The standard unweighted log-rank statistic is inadequate,however, to test survival curves in a

two-stage randomized design. First, the standard unweighted log-rank statistic does not account for

the second randomization in a two-stage SMART design. In such design,U11i is not observed for

patienti who responded toA1, but is randomized to maintenance treatmentB2 and likewise,U12i

is not observed for patienti who responded toA1, but is randomized to maintenance treatmentB1.

Second, since non-responders toA1 are consistent with both adaptive treatment strategiesA1B1

andA1B2, the non-responders toA1 are common to both groups. Hence, the two groups of patients
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following adaptive treatment strategiesA1B1 andA1B2 are not statistically independent.

The first inadequacy of the standard unweighted log-rank statistic has been addressed by Guo

in his unpublished 2005 PhD thesis from North Carolina State University (Guo, 2005), where a

weighted version of the log-rank statistic was proposed to account for the second randomization.

This statistic weights the at-risk and event processes according to the response status and ran-

domization probability for each individual. This weightedlog-rank statistic and the corresponding

supremum version (Feng and Wahed, 2008), however, are only applicable to testing separate-path

strategies (e.g.A1B1 vs. A2B1). Since the second inadequacy of the standard unweighted log-

rank statistic remains even with the weighted log-rank statistic, we will address it in this article.

Specifically, we propose a weighted log-rank statistic to test the hypothesisH0 : Λ11(t) = Λ12(t)

accounting for the fact that patients followingA1B1 includes a group of patients who also follow

A1B2.

We present the notation for time-dependent weights which isadapted from Guo and Tsiatis

(2005). Explicitly, letW11i(s) = Xi{1 − Ri(s) +
Ri(s)Zi

π
}/φ be the weight assigned to theith

patient at times for the purpose of estimating quantities related to the strategy A1B1, where

Ri(s) = 1 if the ith patient responded toA1 by time s, 0, otherwise,π is the known proba-

bility of a patient being assigned to maintenance therapyB1, andφ is the probability of being

assigned toA1. Similarly, W12i(s) = Xi{1 − Ri(s) +
Ri(s)(1−Zi)

1−π
}/φ for estimating quantities

related to the strategyA1B2. Note that if a patient randomized toA1 has not responded by time

s, W11i(s) = W12i(s) = 1/φ, confirming that the non-responders are consistent with both strate-

gies; if the patient has responded and is randomized toB1 by time s, W11i(s) = 1/(φπ) and

W12i(s) = 0; if the patient has responded and is randomized toB2 by times, however,W11i(s) = 0

andW12i(s) = 1/{φ(1− π)}. This construction of weights is based on the fundamental principle

of inverse-probability-of-treatment-weighting (Robins et al., 1994).

To facilitate the derivation of the desired test statistic to compare shared-path adaptive treatment

strategies and its asymptotic properties, we introduce further notation. For quick reference, we
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included these in Table 1. The general at-risk process for all patients isYi(s) = I(Ui ≥ s), the

at-risk process for those with initial treatmentAj, j = 1, 2, is Yji(s) = I(Ui ≥ s,Xi = 2 − j),

the weighted at-risk process is̄Yjk(s) =
∑n

i=1 Wjki(s)Yji(s), the at-risk process for only those

who are non-responders toAj is Y NR
j (s) =

∑n
i=1 {1−Ri(s)}Yji(s), the overall at-risk process

for patients treated withAj is Yj.(s) =
∑n

i=1 Yji(s) and the overall at risk-process for all patients

is Y (s) =
∑n

i=1 Yi(s). Likewise, the general event process for any patienti is Ni(s) = I(Ui ≤

s, δi = 1), the event process for those with first-line treatmentAj, j = 1, 2, is Nji(s) = I(Ui ≤

s, δi = 1, Xi = 2 − j), the weighted event process is̄Njk(s) =
∑n

i=1 Wjki(s)Nji(s), the event

process for only those who are non-responders toAj is NNR
j (s) =

∑n
i=1 {1−Ri(s)}Nji(s), the

overall event process for patients treated withAj is Nj.(s) =
∑n

i=1 Nji(s), and the overall event

process for all patients isN(s) =
∑n

i=1 Ni(s). Based on these weighted processes, the inverse-

probability-of-randomization weighted-log-rank statistic for testingH0: Λ11(t) = Λ12(t) is defined

as

ZW
n (t) =

∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{

dN̄11(s)

Ȳ11(s)
−

dN̄12(s)

Ȳ12(s)

}

. (2)

The rationale behind this formulation of the test statisticis given in Feng and Wahed (2008).

In short, the quantitydN̄1k(s)/Ȳ1k(s) is an unbiased estimator of the instantaneous event rate at

time s, dΛ1k(s). Therefore, it serves the same purpose ofdN1k(s)/Y1k(s) in the standard un-

weighted log-rank test defined in equation (1). Under the null hypothesisΛ11(t) = Λ12(t), since

the term{Ȳ11(s)Ȳ12(s)}/{Ȳ11(s) + Ȳ12(s)} is predictable (with respect to the filtrationF(t) =

σ{Ri(s), ZiRi(s), I(Ci ≤ s), Nji(s), i = 1, . . . , n; j = 1, 2; 0 ≤ s ≤ t}), the weighted log-rank

statistic in equation (2) has expectation zero (see Section3.2).

While the weighted log-rank statistic looks almost identical to that of the standard unweighted

log-rank statistic, note that the termsdN̄11(s)/Ȳ11(s) anddN̄12(s)/Ȳ12(s) are correlated unlike

the unweighted versions from the predetermined strategiesin the standard log-rank statistic. The
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variance calculation will change substantially in order toaccount for this correlation between these

two terms. The variance calculation presented in the next section addresses the second and remain-

ing inadequacy of the standard log-rank and supremum log-rank tests. We will use a standardized

version of the statistic from equation (2) to test the null hypothesisH0: Λ11(t) = Λ12(t).

3.2 Asymptotic properties

First we note thatn−1/2ZW
n (t) in equation (2) can be expressed as a sum of two terms using the

definition of martingale increments. Explicitly,n−1/2ZW
n (t) = Gn(t) +Rn(t), where

Gn(t) = n−1/2

∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{

dM̄11(s)

Ȳ11(s)
−

dM̄12(s)

Ȳ12(s)

}

(3)

andRn(t) = n−1/2
∫ t

0
Ȳ11(s)Ȳ12(s)

Ȳ11(s)+Ȳ12(s)
{dΛ11(s)− dΛ12(s)}, sinceM̄jk(t) = N̄jk(t)−

∫ t

0
Ȳjk(s)dΛjk(s).

Feng and Wahed (2008, p. 699) have showen thatdM̄jk(t) =
∑n

i=1 Wjki(t)dMjki(t) and it is

easy to show thatE{dM̄jk(t)|F(t−)} = 0, whereMjki(t) is the ith patient specific martingale,

corresponding toMjk(t) = Njk(t) −
∫ t

0
Yjk(s)dΛjk(s), the usual martingale process for strategy

AjBk, had there been no second randomization and each patient followed a pre-specified (perhaps

randomized) treatment strategy. Under the null hypothesis, Λ11(t) = Λ12(t), son−1/2ZWLR
n (t) =

Gn(t) in equation (3). Since martingale increments have mean zero, E{ZW
n (t)} = 0. Thus,ZW

n (t)

has mean zero under the null hypothesis of no difference in hazards between two strategies.

To derive the variance ofn−1/2ZW
n (t), we further expandGn(t). UsingdM̄jk(t) =

∑n
i=1 Wjki(t)dMjki(t),Gn(t) can be expressed as a difference of two martingale processes,Gn(t) =

G11
n (t) − G12

n (t) = n−1/2
{

∑n
i=1

∫ t
0

Ȳ12(s)W11i(s)
Ȳ11(s)+Ȳ12(s)

dM11i(s)−
∑n

i=1

∫ t
0

Ȳ11(s)W12i(s)
Ȳ11(s)+Ȳ12(s)

dM12i(s)
}

. By the

martingale central limit theorem (Fleming and Harrington,1991, Ch. 5),G1k
n (t) converges to a

Gaussian process with mean zero. Therefore,Gn(t) converges to a Gaussian process with mean

zero and variance equal tovar{G11
n (t)} + var{G12

n (t)} − 2cov{G11
n (t), G12

n (t)}. The variances

of G11
n (t) andG12

n (t) can be calculated the same way as the variance for the weighted log-rank
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statistic in Feng and Wahed (2008). More explicitly,var{G1k
n (t)} is the limit of

n−1
∑n

i=1

∫ t

0

Ȳ 2
1(3−k)

(s)W 2
1ki(s)

{Ȳ11(s)+Ȳ12(s)}2
Y1i(s)dΛ1k(s), k = 1, 2.

To find the covariance between two martingale processes,cov{G11
n (t), G12

n (t)}, we use the

formula from Fleming and Harrington (1991, p. 70). Explicitly, if H1 andH2 are locally-bounded,

predictable processes andM1 andM2 are local martingales then the covariance between
∫

H1dM1

and
∫

H2dM2 is
∫

H1H2cov(dM1, dM2). Then, the asymptotic variance ofGn(t) can be expressed

as the limiting value of

n−1

2
∑

k=1

n
∑

i=1

∫ t

0

Ȳ 2
1(3−k)(s)W

2
1ki(s)

{Ȳ11(s) + Ȳ12(s)}2
Y1i(s)dΛ1k(s)

− 2n−1

∫ t

0

Ȳ11(s)Ȳ12(s)

{Ȳ11(s) + Ȳ12(s)}2

n
∑

i=1

W11i(s)W12i(s)cov{dM11i(s), dM12i(s)}.

(4)

First, note thatW11i(s)W12i(s) = φ−2{1 − Ri(s)}. Subsequently, under the null hypothesis,

H0 : Λ11(t) = Λ12(t) = Λ0(t), the term inside the summation in the second line of equation(4)

can be shown to be equal to
∑n

i=1 1/φ
2{1−Ri(s)}{Y1i(s)dΛ0(s)} = φ−2Y NR

1 (s)dΛ0(s). Thus, a

consistent variance estimator ofn−1/2ZW
n (t) is given by

σ̂2(t) = n−1

∫ t

0

Ȳ 2
12(s)

∑n
i=1 W

2
11i(s)Y1i(s) + Ȳ 2

11(s)
∑n

i=1 W
2
12i(s)Y1i(s)

{Ȳ11(s) + Ȳ12(s)}2

{

dN1.(s)

Y1.(s)

}

− 2n−1

∫ t

0

Ȳ11(s)Ȳ12(s)
{

Ȳ11(s) + Ȳ12(s)
}2

{

φ−2Y NR
1 (s)

dN1.(s)

Y1.(s)

}

.

(5)

The notation used in the above equation or elsewhere in this article can be reviewed in Table 1.

The corresponding standardized weighted log-rank test statistic is given byTW
n (L), where

TW
n (L) = n−1/2ZW

n (L)/σ̂(L), (6)

andL, as noted before, is less than the maximum follow-up time. The levelα weighted log-rank

test rejects the equality of two shared-path adaptive treatment strategies’ cumulative hazards when
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|TW
n (L)| ≥ Z1−α/2 whereZ1−α/2 is the(1− α/2)th quantile of a standard normal distribution.

4 LOG-RANK TESTS FOR MULTIPLE DEPENDENT ADAPTIVE TREAT-

MENT STRATEGIES

In the setting described above, we would now like to extend the comparison to all four adaptive

strategies,AjBk, j, k = 1, 2, and test the overall null hypothesis of no treatment effect. The null

hypothesis that all hazards are equal is stated asH0 : Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t) = Λ0(t)

against the alternative hypothesis,H1: at least one cumulative hazard differs.

To derive the multivariate weighted log-rank statistic, wefirst notice thatH0 can be cast as a

vectorized differences of cumulative hazards such thatH0 : ζ(t) = 0 whereζ(t) = {Λ11(t) −

Λ12(t), Λ11(t) − Λ21(t), Λ11(t) − Λ22(t)}
T . Following Section 3, an unbiased estimator ofζ(t)

is given by ζ̂(t) = {dN̄11(t)

Ȳ11(t)
− dN̄12(t)

Ȳ12(t)
, dN̄11(t)

Ȳ11(t)
− dN̄21(t)

Ȳ21(t)
, dN̄11(t)

Ȳ11(t)
− dN̄22(t)

Ȳ22(t)
}T . The corresponding

weighted log-rank statistic for testingH0 is the vector of the weighted martingale differences,

Z
MW
n (t) = {Z11.12

n (t), Z11.21
n (t), Z11.22

n (t)}T where

Zjk.j′k′

n (t) =

∫ t

0

Ȳjk(s)Ȳj′k′(s)

Ȳjk(s) + Ȳj′k′(s)

{

dN̄jk(s)

Ȳjk(s)
−

dN̄j′k′(s)

Ȳj′k′(s)

}

. (7)

Under the null hypothesis, the statisticZMW
n (t) has expectation zero. SinceZMW

n (t) is a

linear combination of weightedZW−statistics defined in equation (2), by the multivariate cen-

tral limit theorem for martingales (Fleming and Harrington, 1991),n−1/2
Z

MW
n (t) follows a mean

zero Gaussian process with asymptotic variance covariancematrix,Σ(t), that can be estimated by

Σ̂(t) = {sij(t)}
3x3, where the elements of̂Σ(t) are defined as follows.

The estimated variances ofZMW
n (t) are given below, where the induction-treatment-specific

processes,N1.(s) andY1.(s) used in equation (5), have been substituted with the overallprocesses,

N(s) andY (s), to reflect that under the null, all strategies have equal hazards. Explicitly,
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s11(t) =n−1

∫ t

0

Ȳ 2
12(s)

∑n
i=0W

2
11i(s)Y1i(s) + Ȳ 2

11(s)
∑n

i=0W
2
12i(s)Y1i(s)

{Ȳ11(s) + Ȳ12(s)}2

{

dN(s)

Y (s)

}

− 2n−1

∫ t

0

Ȳ11(s)Ȳ12(s)

{Ȳ11(s) + Ȳ12(s)}2

{

φ−2Y NR
1 (s)

dN(s)

Y (s)

}

. (8)

s22(t) =n−1

∫ t

0

Ȳ 2
21(s)

∑n
i=0W

2
11i(s)Y1i(s) + Ȳ 2

11(s)
∑n

i=0W
2
21i(s)Y2i(s)

{Ȳ11(s) + Ȳ21(s)}2

{

dN(s)

Y (s)

}

(9)

s33(t) =n−1

∫ t

0

Ȳ 2
22(s)

∑n
i=0W

2
11i(s)Y1i(s) + Ȳ 2

11(s)
∑n

i=0W
2
22i(s)Y2i(s)

{Ȳ11(s) + Ȳ22(s)}2

{

dN(s)

Y (s)

}

. (10)

Note that the last two formulas above do not contain a covariance term sincedN̄jk(s)/Ȳjk(s) and

dN̄j′k′(s)/Ȳj′k′(s), j 6= j′, are conditionally independent givenF(s−).
To obtain an expression for the estimated covariance terms in Σ̂(t), we first give the expressions

for the covariances in the supplementary material. Following those expressions wheredΛ̂0(s) =

dN(s)/Y (s), natural estimates of the covariances are given by

s12(t) = n−1

∫

t

0
Ȳ21(s)[{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}]

−1

{

Ȳ12(s)
n
∑

i=1

W 2
11i(s)Y1i(s)− φ−2Ȳ11(s)Y

NR
1 (s)

}

dΛ̂0(s), (11)

s13(t) = n−1

∫

t

0
[Ȳ22(s){Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ22(s)}]

−1

{

Ȳ12(s)
n
∑

i=1

W 2
11i(s)Y1i(s)− φ−2Ȳ11(s)Y

NR
1 (s)

}

dΛ̂0(s), (12)

s23(t) = n−1

∫

t

0
[{Ȳ11(s) + Ȳ21(s)}{Ȳ11(s) + Ȳ22(s)}]

−1

{

Ȳ21(s)Ȳ22(s)
n
∑

i=1

W 2
11i(s)Y1i(s) + (1− φ)−2Ȳ 2

11(s)Y
NR
2 (s)

}

dΛ̂0(s).

(13)

The vector of weighted log-rank statistics,n−1/2
Z

MW
n (t), presented in Section 4, converges in dis-

tribution under the null hypothesis to a trivariate normal distribution with mean zero and variance

covariance matrixΣ(t), whereΣ(t) is estimated bŷΣ(t) = {sij(t)}
3x3. Using the unbiased and

consistent estimators ofΣ(t), by multivariate Slutsky’s theorem, we haven−1
Z

MW
n (t)T Σ̂−1(t)ZMW

n (t)

converges in distribution under the null hypothesis to a chi-square distribution with three degrees

of freedom.

The weighted log-rank test statistic comparing overall survival distributions for adaptive treat-
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ment strategiesAjBk, j, k = 1, 2, is then expressed in the form

TMW
n (L) = n−1

Z
MW
n (L)T Σ̂−1(L)ZMW

n (L), (14)

whereL is some time less than the maximum follow-up time. The levelα weighted log-rank test

rejects the overall equality of adaptive treatment strategies’ cumulative hazards whenTMW
n (L) ≥

χ2
α; 3 whereχ2

α; 3 is the(1−α)th quantile of a chi-square distribution with three degrees offreedom.

5 SIMULATION RESULTS

5.1 Data generation

To evaluate the performance of the weighted log-rank statistics for comparing two or more (shared-

path or separate-path) adaptive treatment strategies, we conducted a series of Monte Carlo simu-

lations. We were interested in assessing the type I error rate under the null hypothesis of no

difference in overall survival and in assessing the power ofthe weighted log-rank statistics under

various alternative scenarios. In our simulation study, totest the equality of two shared-path adap-

tive treatment strategies, we have compared the proposed weighted log-rank statistic,TW
n (L) from

equation (6) referred to as WLR, to a similar weighted log-rankstatistic that treats the two groups

independently such that the variance ignores the covariance term, hence referred to as the inde-

pendent weighted log-rank test (IWLR), and to the standard unweighted log-rank (SLR) statistic

applied to two groups of patients who followed each strategy. The groups for the standard un-

weighted log-rank statistic were formed by combining thosewho did not respond toAj to those

who responded toAj and received treatmentBk. For example, the group representing adaptive

treatment strategyA1B1 consists of all the non-responders toA1 and all those who responded to

A1 and were subsequently assigned to receiveB1 and the group representing adaptive treatment

strategyA1B2 consists of all the non-responders toA1 and all those who responded toA1 and were
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subsequently assigned to receiveB2. While testing four shared-path adaptive treatment strategies,

we have compared the proposed weighted log-rank statistic (WLR), TMW
n (L) from equation (14),

to the standard unweighted log-rank statistic (SLR).

We outline the data generation process here and provide specific parameters for each simulation

in Sections 5.2 and 5.3. The initial treatment indicator,Xi, was generated from a Bernoulli distri-

bution withφ = pr(Xi = 1) = 0.5 so that there were about an equal number of patients initially

treated withA1 andA2. We tookRi, the response indicator, to be Bernoulli withpr(Ri = 1) = πR,

πR ∈ (0.4, 0.6), so that there were 40% or 60% of patients who responded to theinitial treatment.

WhenRi = 0, a survival timeTNR
ji , j = 1, 2, was generated from an exponential distribution with

meanµNR
j . WhenRi = 1, the treatmentB1 indicator,Zi, was generated from a Bernoulli(0.5)

distribution. Also whenRi = 1, time to response,TR
ji , j = 1, 2, was generated from an ex-

ponential distribution with meanθRj and time from response to an event,TRE
jki , j, k = 1, 2, was

generated from an exponential distribution with meanθRE
jk . The total survival time for those

who responded toAj and were randomized toBk is thus,T ∗
jki = TR

ji + TRE
jki , for j, k = 1, 2.

The variables of interest here are the time-to-events,Tjki, whereTjki = (1 − Ri)T
NR
ji + RiT

∗
jki,

j, k = 1, 2. These variables reflect the overall survival time under strategyAjBk, (j, k = 1, 2).

The observed survival time for theith individual in the absence of censoring is defined asTi =

Xi[Ri{ZiT
∗
11i+(1−Z)T ∗

12i}+(1−Ri)T
NR
1i ]+(1−Xi)[Ri{ZiT

∗
21i+(1−Zi)T

∗
22i}+(1−Ri)T

NR
2i ].

Additionally, a right censored time,Ci, was generated from a uniform distribution from zero tov,

such that 30% or 50% of the population were censored. The finalobserved time was then defined

asUi = min(Ti, Ci) with corresponding complete case indicator,δi = I(Ti ≤ Ci).

For each generated dataset we conducted weighted log-tank tests described in Sections 3.2 and

4 to test the hypothesesH0,1 : Λ11(t) = Λ12(t) = Λ0(t) andH0,2 : Λ11(t) = Λ12(t) = Λ21(t) =

Λ22(t) = Λ0(t), respectively. We report the estimated type I error (proportion of samples for which

the hypothesis was falsely rejected) for all tests in Tables2 and 3 whenH0,1 andH0,2 were true,

and the estimated power (proportion of samples for which thehypothesis was correctly rejected)
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for all tests in Tables 4 and 5.

5.2 Simulation from the null distribution

To investigate the performance of the weighted log-rank statistics underH0,1 : Λ11(t) = Λ12(t)

andH0,2 : Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t), we generated 5000 datasets with the following

parameters:µNR
1 = µNR

2 = θR1 = θR2 = 1 andθRE
11 = θRE

12 = θRE
21 = θRE

22 = 5. With a 40%

response rate, the censoring paramterv was set to 8.4 and 3.5 and with a 60% response rate,v was

set to 12 and 5.6 to produce about 30% and 50% censoring, respectively.

Table 2 presents the estimated type I error rates (proportion of samples for which the hypothesis

was falsely rejected) for testing the null hypothesisH0,1. For a sample size of 200, a response rate

of 40% and censoring of 30%, the type I error for the WLR test wasvery close to the nominal

level of 0.05. The IWLR statistic does not subtract the covariance term between the shared-path

strategies and therefore rejects the null hypothesis less often leading to a more conservative test

with an approximate error rate of 0.01. The SLR test, which combines and equally weights all

patients who follow a strategy regardless of their responsestatus, also yielded very conservative

type I error rates with an estimate, in this case, of 0.01. Preserving the response rate at 40%, but

increasing censoring led to a decreased type I error rate, such that the WLR test had an estimated

type I error rate of 0.04, the IWLR test and the SLR test had estimated error rates less than 0.001.

Under this null distribution, increasing censoring decreased the percentage of observed responders.

In this particular case for a sample size of 200, the true distribution specified 40% responders, but

with 30% censoring the percentage of observed responders decreased to about 35%, while for 50%

censoring, the percentage of observed responders dropped to about 29%. As the percentage of

observed responders decreases, the statistic relies more on the information from non-responders.

Since non-responders are consistent with both strategies they are weighted equally and thus the

WLR test will behave more like the SLR test rejecting the null more often, however, since the WLR

correctly accounts for the covariance between the groups, it is not as conservative as the IWLR or
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SLR tests. In general, increasing censoring slightly decreased the estimated type I error rate for

all tests, but the WLR test maintained the type I error rate of 0.05 in all scenarios. Preserving

censoring at 30% or at 50% and increasing the response rate from 40% to 60% led to about the

same estimated type I error rates for the WLR test and slightlyhigher rates for the IWLR test and

the SLR test, but these two tests remained overly conservative.

Table 3 presents the estimated type I error rates for testingthe null hypothesisH0,2 using the

WLR and SLR tests. The type I error rates for both statistics were similar across all combinations.

For a response rate of 40% and censoring of 30%, the WLR test maintained type I error for sample

sizes greater than 100. Specifically, for a sample size of 200, the WLR test for 40% responders

and 30% censoring produced an estimated type I error rate of 0.05 while the SLR test produced an

estimated error rate of 0.04. We note that the SLR test was notas conservative when comparing

four adaptive treatment strategies as when comparing only two. When censoring was increased to

50%, the WLR test and the SLR test produced estimated type I error rates of 0.04. Increasing the

response rate to 60% produced acceptable type I error rates for all sample sizes of 50 and greater,

but with similar results of about equal estimated type I error rates for all sample sizes and censoring

combinations for both the WLR and the SLR tests.

5.3 Simulation from alternative distributions

Since the type I error rates were upheld, we explored a variety of scenarios performing 5000 iter-

ations to test the power (proportion of samples for which thehypothesis was correctly rejected) of

the weighted log-rank tests. Data were generated from populations under the alternative hypothe-

ses, where four true survival distributions, designated asscenarios (a)-(d), were plotted in Figure 2

when 60% of the population respond toAj, j = 1, 2. Scenario (a) represents a typical alterna-

tive distribution of survival curves where all four curves differ (µNR
1 = θR1 = 1, µNR

2 = 1.25,

θR2 = 0.5, θRE
11 = 2, θRE

12 = 3.33, θRE
21 = 1.11, θRE

22 = 0.67). Scenario (b) represents four survival

curves where the shared-path strategies have vastly different survival (µNR
1 = θR1 = θRE

11 = 1,
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µNR
2 = 1.11, θR2 = 1.67, θRE

12 = 5, θRE
21 = 3.33, θRE

22 = 0.25). Scenario (c) respresents sur-

vival curves where one strategy,A2B1, dominates the other strategies (µNR
1 = µNR

2 = 0.33,

θR1 = θR2 = 2, θRE
11 = 1, θRE

12 = 0.14, θRE
21 = 3.33, θRE

22 = 0.5). Finally, scenario (d) represents in-

tersecting survival curves violating the proportional hazards assumption under which the log-rank

statistic is optimal (µNR
1 = 0.14, µNR

2 = θRE
11 = θRE

22 = 1, θR1 = 2.5, θR2 = 0.2, θRE
12 = 0.1,

θRE
21 = 0.33). The censoring parameterv was set to 5 for scenarios (a) and (b), 4 for scenario (c)

and 4.7 for scenario (d) so that censoring ranged from 22-44%.

Table 4 presents the results for testing the null hypothesisH0,1 versus the alternative hypoth-

esis that the cumulative hazards for the two shared-path adaptive treatment strategies differ. The

WLR test had much greater power to correctly reject the null hypothesis than the IWLR test and

especially when compared to the SLR test. In all cases, increasing the response rate from 40%

to 60% increased the power of all tests, but the WLR test alwaysmaintained the greatest power.

In particular, note the large difference in power in scenario (c) where the curves begin together,

but subsequently deviate. The WLR test maintained very largepower in this situation, while the

IWLR test and the SLR test failed to pick up the difference in the survival curves in almost all of

the iterations.

Table 5 presents the power for comparing the survival distributions of the four adaptive treat-

ment strategies. The WLR was compared to the SLR test. Again, in all cases, increasing the

response rate from 40% to 60% increased the power of both statistics. In almost all of the sce-

narios tested, the WLR test had greater power to correctly reject the null hypothesis. Specifically,

in scenario (b), we see that for a 40% response rate and about 35% censoring, the WLR test

had a high power at 0.996 unlike the SLR test which had power of0.296, even though the sur-

vival distributions ofA1B1 andA2B2 were very similar and so were the survival distributions

of A1B2 andA2B1. In one of the scenarios (not presented here) with parameters µNR
1 = 0.1,

µNR
2 = θR2 = θRE

11 = θRE
22 = 1, θR1 = 2.5, θRE

12 = 0.5, andθRE
21 = 0.33, the WLR test had less

power than the SLR test for 40% and 45% responders. This may bedue to a relatively higher
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percentage of responders being censored compared to non-responders. For this and similar scenar-

ios, as the percentage of responders increased above 50%, the WLR test almost always performed

better than the SLR test with higher power. Power of the WLR test also increased and dominated

that of the SLR test for increasing percentage of censoring.

In conclusion, the proposed weighted log-rank statistic maintained type I error in sample sizes

as small as 50 with more than 30% patients censored. It also exhibited greater power when com-

paring two or more shared-path adaptive treatment strategies in most situations, including cases

where the proportional hazards assumption was violated.

6 Data Analysis

We applied the weighted log-rank test statistic to compare overall survival of the adaptive treatment

strategies from the Children’s Cancer Group high-risk neuroblastoma study reported by Matthay

et al. (2009). This two-stage randomized trial began in 1991and ended in 1996 with 539 eligible

children ages 1-18 years with newly diagnosed high-risk neuroblastoma (the most common ex-

tracranial solid tumor of childhood). All of the patients were initially treated with chemotherapy

and 379 patients without progressive disease participatedin the first-stage randomization. Patients

were assigned to chemotherapy (n=190) or to ABMT, a combination of myeloablative chemother-

apy, total-body irradiation, and transplantation of autologous bone marrow purged of cancer cells

(n=189). Patients without disease progression (and who consented to further treatment) partici-

pated in the second-stage randomization. Of the 203 patients who were eligible for the second-

stage randomization, 102 were assigned to receive treatment of 13-cis-retinoic acid (cis-RA) and

the other 101 patients were assigned not to receive any further treatment.

To clarify the treatment strategies, refer to Figure 1 and let A1 represent chemotherapy,A2

represent ABMT,B1 represent cis-RA andB2 represent no further treatment. Therefore, we are

interested in comparing the following four treatment strategies: (i) CC: Treat with chemotherapy
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followed by cis-RA if there is no disease progression; (ii) CN:Treat with chemotherapy and if

there is no disease progression, do not continue treatment;(iii) AC: Treat with ABMT followed

by cis-RA if there is no disease progression; (iv) AN: Treat with ABMT and if there is no disease

progression, do not continue treatment. Notice that there are 85 patients who do not respond to

the first-stage treatment of chemotherapy and are thereforeconsistent with shared-path adaptive

treatment strategies CC and CN and 91 patients who do not respond to first-stage treatment of

ABMT and are therefore consistent with shared-path adaptivetreatment strategies AC and AN. The

goal was to compare survival distributions under these fouradaptive treatment strategies. Survival

distributions in Figure 3 were created using the weighted risk set estimator for the survival function

from Guo and Tsiatis (2005).

In the main findings of the study, separate analyses for the first- and second-stage treatments

were reported, ignoring the induction or maintenance treatments while conditioning on patients

who were eligible to receive second-stage treatments. Initially, for three-year event-free survival,

Matthay et al. (1999) reported the superiority of ABMT over chemotherapy alone and the superi-

ority of cis-RA with no further therapy after chemotherapy over transplantation. In 2009, Matthay

et al. reported that ABMT significantly improved the five year event-free and overall survival com-

pared to non-myeloablative chemotherapy, and cis-RA or transplantation improved overall survival

compared to no further therapy. Analyzing this data by considering second-stage randomization

and using adaptive treatment strategies, however, demonstrated no significant improvements in

overall survival.

To test if there was a significant difference in the hazards oftreatment strategies which share

the same initial treatment of chemotherapy (shared-path treatment strategies CC to CA), the WLR

statistic was0.12 with p = 0.90. For comparing treatment strategies which share the same initial

treatment of ABMT (shared-path treatment strategies AC to AN) the WLR statistic was−1.16 with

p = 0.25, showing that the two strategies that start on ABMT are not significantly different. To

test if there was a difference in overall survival across thefour strategies (CC, CN, AC, AN), the
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weighted log-rank statistic from equation (14) was computed. There was no significant difference

in the overall survival of the four adaptive treatment strategies as the WLR test produced a chi-

square statistic of2.04 with p = 0.56.

Note that from Figure 3, the overall survival curves of the four adaptive treatment strategies

look similar to that from simulation under alternative scenario (d). In this dataset of 379 patients,

54% of patients respond to the initial treatment and about 31% of patients are censored. In this

setting, the WLR test does have more power to reject the null hypothesis of equal hazards when it

is false.

7 Discussion

Adaptive treatment strategies have become more prevalent in clinical research, especially in the

treatment of chronic diseases, where management of the disease is more important than a cure.

Two-stage randomization designs (or more generally SMART designs) are, therefore, commonly

being used in clinical trials to compare adaptive treatmentstrategies with two decision points.

Since many clinical trials focus on a time-to-event endpoint, the development of statistical methods

for survival analysis in two-stage randomized designs is essential. While others have developed

statistics to estimate point-wise survival or compare overall survival distributions of separate-path

adaptive treatment strategies, methods for comparing the overall survival distributions of adaptive

treatment strategies that share common paths are not available in the literature. These shared-path

adaptive treatment strategies share a common path of treatment such that there is a common group

of patients who are consistent with more than one adaptive treatment strategy in the data collected

through SMART designs. To address this, we have proposed a weighted log-rank statistic which

takes into account both the two-stage randomized design andthe statistical dependence among

groups of patients who follow each strategy. We have provided the asymptotic properties of these

tests and we have shown that the proposed weighted log-rank statistic comparing two or more
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adaptive treatment strategies generally maintains type I error rates and has greater power than

naive methods of analysis in most cases. Future research in this area includes the extension of

the weighted log-rank statistic to compare survival distributions of patients who follow adaptive

treatment strategies in general (multi-stage) SMART designs.

Supplementary Material

Derivation of the variance-covariance matrix of the weighted log-rank statis-

tic comparing four adaptive treatment strategies

We have presented the estimated variance-covariance matrix of n−1/2
Z

MW
n (t) in Section 4. Here

we give the expressions for the asymptotic covariances, that led to the estimated covariances in

equations 4.13-4.15. We derive the covariance specificallyfor σ12(t) = cov{Z11.12
n (t), Z11.21

n (t)}

corresponding to the estimated covariances12(t); the derivations ofσ13(t) andσ23(t) follow simi-

larly. To begin, we define the covariance under the null hypothesis,σ12(t) = cov{Z11.12
n (t), Z11.21

n (t)}

= cov

[
∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{

dN̄11(s)

Ȳ11(s)
−

dN̄12(s)

Ȳ12(s)

}

,

∫ t

0

Ȳ11(s)Ȳ21(s)

Ȳ11(s) + Ȳ21(s)

{

dN̄11(s)

Ȳ11(s)
−

dN̄21(s)

Ȳ21(s)

}]

= cov

[
∫ t

0

Ȳ11(s)Ȳ12(s)

Ȳ11(s) + Ȳ12(s)

{

dM̄11(s)

Ȳ11(s)
−

dM̄12(s)

Ȳ12(s)

}

,

∫ t

0

Ȳ11(s)Ȳ21(s)

Ȳ11(s) + Ȳ21(s)

{

dM̄11(s)

Ȳ11(s)
−

dM̄21(s)

Ȳ21(s)

}]

.

(15)

Distributing the terms and further simplifying equation (15) using martingale properties,

σ12(t)

=cov

{
∫ t

0

Ȳ12(s)

Ȳ11(s) + Ȳ12(s)
dM̄11(s)−

∫ t

0

Ȳ11(s)

Ȳ11(s) + Ȳ12(s)
dM̄12(s),

∫ t

0

Ȳ21(s)

Ȳ11(s) + Ȳ21(s)
dM̄11(s)−

∫ t

0

Ȳ11(s)

Ȳ11(s) + Ȳ21(s)
dM̄21(s)

}

=cov

{
∫ t

0

Ȳ12(s)

Ȳ11(s) + Ȳ12(s)
dM̄11(s),

∫ t

0

Ȳ21(s)

Ȳ11(s) + Ȳ21(s)
dM̄11(s)

}
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− cov

{
∫ t

0

Ȳ12(s)

Ȳ11(s) + Ȳ12(s)
dM̄11(s),

∫ t

0

Ȳ11(s)

Ȳ11(s) + Ȳ21(s)
dM̄21(s)

}

− cov

{
∫ t

0

Ȳ11(s)

Ȳ11(s) + Ȳ12(s)
dM̄12(s),

∫ t

0

Ȳ21(s)

Ȳ11(s) + Ȳ21(s)
dM̄11(s)

}

+ cov

{
∫ t

0

Ȳ11(s)

Ȳ11(s) + Ȳ12(s)
dM̄12(s),

∫ t

0

Ȳ11(s)

Ȳ11(s) + Ȳ21(s)
dM̄21(s)

}

=E

∫ t

0

Ȳ12(s)Ȳ21(s)

{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}
cov{dM̄11(s), dM̄11(s) | F(s−)}

− E

∫ t

0

Ȳ11(s)Ȳ21(s)

{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}
cov{dM̄12(s), dM̄11(s) | F(s−)}. (16)

In the intermediate steps to reach equation (16), we have used the fact thatcov{dM̄11(s), dM̄21(s)} =

cov{dM̄12(s), dM̄21(s)} = 0, due to the separate-path nature of the pairs of strategies(A1B1, A2B1)

and(A1B2, A2B1). By expanding the weighted martingales usingdM̄jk(t) =
∑n

i=1 Wjki(t)dMjki(t),

the covariances of interest can be expressed as expectations of integrals with respect to

cov{dM11i(s), dM11i(s)|F(s−)} = Y11i(s)dΛ0(s) andcov{dM12i(s), dM11i(s)|F(s−)} = {1 −

Ri(s)}Y1i(s)dΛ0(s). Using derivations similar to the one used to derive the covariance between

the increments of the martingales for strategiesA1B1 andA1B2 (Section 3.2, we findσ12(t)

=E

[

∫ t

0

Ȳ12(s)Ȳ21(s)

{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}

n
∑

i=1

W 2
11i(s)Y1i(s)dΛ0

−

∫ t

0

Ȳ11(s)Ȳ21(s)

{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}
φ−2

n
∑

i=1

{1−R1i(s)}Y1i(s)dΛ0(s)

]

=E

[

∫ t

0

Ȳ21(s)

{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ21(s)}

{

Ȳ12(s)
n

∑

i=1

W 2
11i(s)Y1i(s)− φ−2Ȳ11(s)Y

NR
1 (s)

}

dΛ0(s)

]

Similarly,

σ13(t) = E

[

∫

t

0

Ȳ22(s)

{Ȳ11(s) + Ȳ12(s)}{Ȳ11(s) + Ȳ22(s)}

{

Ȳ12(s)
n
∑

i=1

W 2
11i(s)Y1i(s)− φ−2Ȳ11(s)Y

NR
1 (s)

}

dΛ0(s)

]

(17)

σ23(t) = E

[

∫

t

0

1

{Ȳ11(s) + Ȳ21(s)}{Ȳ11(s) + Ȳ22(s)}

{

Ȳ21(s)Ȳ22(s)
n
∑

i=1

W 2
11i(s)Y1i(s) + (1− φ)−2Ȳ 2

11(s)Y
NR
2 (s)

}

dΛ0(s)

]

.

(18)
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By substitutingdΛ0(s) with its estimatedΛ̂0(s) = dN(s)/Y (s), we have the consistent estimators

s12, s13, s23 given in Section 4.
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Figure 1: An example of a two-stage SMART design where only responders receive maintenance
therapy
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Table 1: At-risk and Event Process Notation

Term Definition Description
At-risk Process

Yi(s) I(Ui ≥ s) Yi(s)=1 when individuali is at-risk at times
regardless of what treatment he/she receives,
0 otherwise

Yji(s) I(Uji ≥ s,Xi = 2− j) Yji(s)=1 when individuali is initially treated
with Aj and is at-risk at times, 0 otherwise

Yjki(s) I(Ujki ≥ s,Xi = 2− j, Zi = 2− k) Yji(s)=1 when individuali following treat-
ment strategyAjBk is at-risk at times, 0 oth-
erwise

Ȳjk(s)
∑n

i=1 Wjki(s)Yji(s) The weighted number of individuals at-risk at
time s following treatment strategyAjBk

Y NR
j (s)

∑n
i=1 {1−Ri(s)}Yji(s) The number of individuals who have yet to

respond to treatmentAj and are at-risk at time
s

Yj.(s)
∑n

i=1 Yji(s) The number of individuals with initial treat-
mentAj and are at-risk at times

Y (s)
∑n

i=1 Yi(s) The number of all individuals at risk at time
s regardless of what treatment they receive

Event Process
Ni(s) I(Ui ≤ s, δ = 1) Ni(s)=1 when individuali has an event at

or before times regardless of what treatment
he/she receives, 0 otherwise

Nji(s) I(Uji ≤ s, δi = 1, Xi = 2− j) Nji(s)=1 when individuali is initially treated
with Aj and has an event at or before times,
0 otherwise

Njki(s) I(Uji ≤ s, δi = 1, Xi = 2− j, Zi = 2− k) Njki(s)=1 when individuali following treat-
ment strategyAjBk has an event at or before
time s, 0 otherwise

N̄jk(s)
∑n

i=1 Wjki(s)Nji(s) The weighted number of events at or before
time s for individuals following treatment
strategyAjBk

NNR
j (s)

∑n
i=1 {1−Ri(s)}Nji(s) The number of individuals who are yet to re-

spond to treatmentAj and have an event at or
before times

Nj.(s)
∑n

i=1 Nji(s) The number of individuals with initial treat-
mentAj and have an event at or before time
s

N(s)
∑n

i=1 Ni(s) The number of all individuals with an event at
or before times regardless of what treatment
they receive
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Table 2: Type I Error Rate under Null HypothesesH0 : Λ11(t) = Λ12(t). Target type I error
rate isα = 0.05; WLR is the proposed weighted log-rank statistic in equation(6); IWLR is the
independent weighted log-rank statistic; SLR is the standard unweighted log-rank statistic.

30% censoring 50% censoring
Response Rate n WLR IWLR SLR WLR IWLR SLR

40 50 0.056 0.005 0.004 0.033 0.001 0.001
100 0.053 0.008 0.008 0.033<0.001 <0.001
200 0.047 0.007 0.009 0.037 0.001<0.001
300 0.041 0.005 0.008 0.033 0.001<0.001
400 0.044 0.009 0.008 0.039<0.001 <0.001
500 0.038 0.008 0.006 0.033 0.001<0.001

60 50 0.053 0.015 0.014 0.047 0.008 0.006
100 0.048 0.022 0.015 0.045 0.009 0.005
200 0.042 0.017 0.014 0.041 0.010 0.005
300 0.047 0.020 0.015 0.040 0.011 0.007
400 0.039 0.014 0.011 0.035 0.009 0.005
500 0.042 0.017 0.014 0.036 0.009 0.005

Table 3: Type I Error Rate under the Null HypothesisH0 : Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t).
Target type I error rate isα = 0.05; WLR is the weighted log-rank statistic in equation (14); SLR
denotes the standard unweighted log-rank statistic.

30% censoring 50% censoring
Response Rate n WLR SLR WLR SLR

40 50 0.058 0.047 0.044 0.047
100 0.056 0.043 0.038 0.042
200 0.045 0.038 0.040 0.043
300 0.041 0.035 0.033 0.044
400 0.047 0.040 0.034 0.039
500 0.047 0.037 0.031 0.043

60 50 0.048 0.047 0.047 0.049
100 0.046 0.040 0.040 0.038
200 0.048 0.038 0.037 0.037
300 0.049 0.041 0.041 0.038
400 0.042 0.042 0.038 0.038
500 0.043 0.045 0.040 0.043
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Figure 2: Survival curves for treatment strategiesA1B1 (solid),A1B2 (dashes),A2B1 (dots),A2B2

(dot-dash), under different alternative hypotheses scenarios for 60% responders.
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Table 4: Power against Alternative Survival Curves underH0 : Λ11(t) = Λ12(t). See Figure 2 and
Section 5.3 for description of alternative survival curves(a)-(d); WLR is the proposed weighted
log-rank statistic in equation (6); IWLR is the independent weighted log-rank statistic; SLR is the
standard unweighted log-rank statistic.

Power
Scenario Response Rate Censoring Rate n WLR IWLR SLR

(a) 40 36 200 0.167 0.026 0.005
60 44 200 0.237 0.096 0.028

(b) 40 35 200 0.886 0.542 0.130
60 42 200 0.978 0.897 0.536

(c) 40 27 200 0.703 0.053 <0.001
60 36 200 0.801 0.285 0.004

(d) 40 23 200 0.651 0.029 <0.001
60 34 200 0.767 0.193 <0.001

Table 5: Power against Alternatives underH0 : Λ11(t) = Λ12(t) = Λ21(t) = Λ22(t). See Figure 2
and Section 5.3 for description of alternative survival curves (a)-(d); WLR is the weighted log-rank
statistic in equation (14); SLR denotes the standard unweighted log-rank statistic.

Power
Scenario Response Rate Censoring Rate n WLR SLR

(a) 40 31 200 0.503 0.162
60 35 200 0.921 0.657

(b) 40 35 200 0.997 0.296
60 42 200 1.000 0.796

(c) 40 29 200 0.921 0.084
60 40 200 0.989 0.174

(d) 40 22 200 0.654 0.434
60 27 200 0.964 0.366
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Figure 3: Weighted survival curves under four treatment strategies in the neuroblastoma study.
CC (solid): ‘Treat with chemotherapy followed by cis-RA if there is no disease progression’; CN
(dashes): ‘Treat with chemotherapy and if there is no disease progression, do not continue treat-
ment’; AC (dots): ‘Treat with ABMT followed by cis-RA if there is no disease progression’; AN
(dot-dash): ‘Treat with ABMT and if there is no disease progression, do not continue treatment’
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