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Abstract

Adaptive treatment strategies more closely mimic the reality of a physician'srjpes
tion process where the physician prescribes a medication to his/her patiebhased on that
patient’s response to the medication, modifies the treatment. Two-stage raatiomite-
signs, more generally, sequential multiple assignment randomization trial RSMdesigns,
are useful to assess adaptive treatment strategies where the interesingparing the entire
sequence of treatments, including the patient’s intermediate response. paples we in-
troduce the notion of shared-path and separate-path adaptive treatragggies and propose
weighted log-rank statistics to compare overall survival distributions obiwoore two-stage,
shared-path adaptive treatment strategies. Large sample propertiesstdtibtics are derived
and the type | error rate and power of the tests are compared to statatéstics through

simulation.
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1 Introduction

Physicians rarely choose treatment for a patient randoraly tompeting treatments, but rather
they prescribe treatments based on their clinical expegiémtreating patients with similar char-
acteristics and those patients’ individual history of @s®e and adverse reactions to prior treat-
ments. Thus, physicians inherently practice personalzedicine, yet many clinical trials con-
tinue to compare two or more treatments at specific time paising randomized, independent
groups. These randomized controlled trial designs lackdyimamic aspect of assessing patients’
intermediate outcomes and possibly modifying therapiesder to elicit a desired response. Se-
guential multiple assignment randomized trials, SMARTu(phy, 2005) have been developed to
investigate a sequence of time-varying treatments sutgjeabdification based on the individual's
response, more alike treatment strategies that are adbptelysicians in practice. The SMART
design allows for the assessment and comparison of addpatment strategies (also known as
dynamic treatment regimes), which consist of a sequencedifidually tailored therapies dur-
ing the course of treatment. In a SMART design, a patientsrimediate outcome is measured
at specific time points whereupon the treatment or its dosagejusted accordingly. Biomedical
studies, especially clinical trials for chronic diseasashsas cancer, AIDS, depression, and sub-
stance abuse, are utilizing the SMART design to reach ceimis about personalized adaptive
treatment strategies.

To better illustrate the emerging paradigm of adaptivetitneat strategies, consider the fol-
lowing examples for treating moderate depression. Onetwéagirategy for moderate depression
treatment is, “First treat the patient with Sertraline fow8eks, if the patient does not respond
(Beck Depression Inventory, BDI, score over 12), treat theepatvith Sertraline as well as with
cognitive behavioral therapy (CBT); if the patient respor8BI(score of 12 or under), continue
Sertraline.” Similarly, other adaptive strategies coudddmnsidered where alternative treatment

options are prescribed at one or more stages. Another egashpin adaptive treatment strategy



is, “First treat the patient with Escitalopram for 8 weekghe patient does not respond, treat the
patient additionally with Bupropion; if the patient respsndontinue Escitalopram.” At the end,
one would be interested to compare not just Sertraline tadtspram, but rather, the entire se-
guence of Sertraline alone or Sertraline followed by CBT arcit&l®pram alone or Escitalopram
followed by the addition of Bupropion. Thus, strategies ¢siirgg of initial treatment, intermedi-
ate response and maintenance or second-line treatmerdrapaced to find an optimal course of
treatment for an individual.

Individualized medicine has been one of the major conctatrs of the medical community
in recent years and thus, the last decade has brought abargeis the application of SMART
designs for comparing adaptive strategies in clinical agltblvioral research (Stone et al., 1995,
2001; Stroup et al., 2003; Rush et al., 2004; Winter et al. 6200arlowe et al., 2007; Matthay
et al., 2009), although not all of these studies had compsisf adaptive strategies as their main
aim. As a consequence of the increased use of SMART desigtistisal literature experienced a
similar surge in the development of statistical methodsaftalyzing data arising from such trials
(Thall et al., 2000; Murphy, 2003, 2005; Dawson and Lavo@i0£2, Wahed and Tsiatis, 2004;
Wahed, 2010; Orellana et al., 2010). This article focusetsoe-to-event outcome data and hence
the review of literature will mainly emphasize statistioathods for survival analysis in SMART
designs.

Prior to the invention of the terms ‘adaptive treatmentietgges’ or ‘dynamic treatment regimes’
survival data from SMART designs had been analyzed sepafateeach stage ignoring past or
future treatment phases. Lunceford et al. (2002) first shdola@v to estimate point-wise sur-
vival probabilities or overall mean survival for adaptivedatment strategies arising from two-stage
SMART designs. Methods proposed therein basically usedimarmodels employing inverse-
probability-of-treatment-weighting for estimation. Thanalysis, while improving upon stage-
specific analysis, was not applicable for comparing ovesadVival curves under different treat-

ment strategies.



The first valid attempt in developing a test comparing overalival curves under two adaptive
treatment strategies was taken by Guo in his 2005 dissartatie provided an inverse-weighted
version of the log-rank test for comparing two separatépaaptive treatment strategies (strate-
gies that do not share the same treatment paths, see SectimkBnygina and Helterbrand (2007)
extended the idea of Lunceford et al. (2002) to the Cox progmat hazards model and proposed
a weighted version of the score equation and score test tpa@mnduction strategies for a fixed
second-stage treatment. Generalizing the proportionsdrda assumption and creating a more
robust statistic, Feng and Wahed (2008) utilized the ireqpr®bability-of-treatment-weighting
method developed in Guo (2005) to present a supremum welidbgerank statistic, but again
only to compare two separate-path adaptive strategies.

The goal of this article is to present methods for companvigghared-path adaptive treatment
strategies (strategies that share some of the same tragtatbs, see Section 2). In addition, we
would like to compare more than two adaptive treatmenteggias which may share the same treat-
ment paths using test statistics similar to k-sample lodctasts (Harrington and Fleming, 1982).
Naive approaches to comparing survival curves of two or nsbired-path adaptive treatment
strategies include: (i) ignoring the induction treatmewrtamparing second-line therapies condi-
tioning on patients who were eligible to receive secondeteeatments, or (ii) using the statistics
provided in Guo (2005), Lokhnygina and Helterbrand (20@r)n Feng and Wahed (2008), but
ignoring that these statistics were created for comparapgsate-path adaptive treatment strate-
gies, or (iii) forming groups where each group includes &ihe patients who follow each adaptive
treatment strategy and applying the standard unweighteddok test. The first option ignores the
two-stage design and answers a different question thamstirdended, the second option inflates
the variance of the stated statistics, and the third opttom$ groups which contain some of the
same patients violating the standard log-rank assumgtiatingtroups are statistically independent.

Comparison of shared-path adaptive treatment strategiesaienging since the correlation

between survival curves needs to be accounted for in thea&stin process. Accounting for this



correlation, for example, allows us to compare treatmeateggies that share the same initial treat-
ment. In this paper we first propose a weighted log-rankstiatio compare two shared-path
adaptive treatment strategies and then extend it to contpareverall survival distributions of

more than two shared-path adaptive treatment strategies.

2 Setup

2.1 Definitions

Consider a two-stage SMART design in which patients are fnistlomized to receive treatment
A, level A, or A,, and those who respond to the initial treatménteceive maintenance treatment
B, randomly allocated to level®, or B, (see Figure 1). For simplicity, we will use response
to indicate ‘response to the previous treatment and corieeie following treatment’. We are
interested in the outcomes of patients who follow the vartoeiatment strategies; By, j, k = 1,2,
where the strategyl, B;, is defined as follows.

Definition 1. Adaptive Treatment Strategy A, By,: ‘Treat with A; followed by B;, if the patient is
eligible and consents to subsequent second-line therapy’.

Furthermore, we classify strategies into shared-path epdrate-path as follows:

Definition 2. Shared-Path Adaptive Treatment Strategies. Two two-stage adaptive treatment
strategies are shared-path if individual streated with one strategy share a common path of treatment
with individual s treated with the other strategy.

For example, consider strategidsB; and A; B,. StrategyA, B; dictates that a patient be
treated with4; and then byB; only if the patient responds té;. Similarly, strategy4, B, dictates
that a patient be treated with; and then byB, only if the patient responds td;. Thus, a
patient who is treated under strategyB; but did not respond toi; will receive exactly the
same sequence of treatment as a patient who is treated urateggA; B, but did not respond.

Therefore, strategied, B; and A, B, are shared-path adaptive treatment strategies. Simitady



pair (A; By, A2 Bs) are shared-path.

Strategies that do not share a common path of treatment avileferred to as separate-path
treatment strategies. As an example, stratedig8, and A, B, are separate-path adaptive treat-
ment strategies since patients treated witlB; can not receive a treatment sequence received by
patients treated withl, B;. Similarly, pairs(A; By, Ay Bs), (A1 Bs, A2 By), and(A; By, A2 Bs) are

also separate-path.

2.2 Counterfactuals

Counterfactual (or potential) outcomes (Rubin, 1974; Hallat®86) are often used to construct
estimands of interest from a population. In reality, evergividual follows one specific treat-
ment strategy, therefore for each individual, we obserig one outcome for the specific treat-
ment strategy he/she followed. In theory, however, indigid in the population could follow any
treatment strategyl, B, and one can envision one outcome for each possible stradegath
individual, hence every individual has his/her own set ochgmary outcomes for every possible
treatment strategy. This entire set of possible outcomearfandividual is referred to as his/her
counterfactual outcomes. These outcomes will help usiigehie variables whose distributions
are compared across treatment strategies.

In order to define patients’ counterfactual outcomes, wiickhis setting are the potential
survival times, we introduce the following notation. Fotipat:, let R;; = 1 if the ith patient
responded to the initial treatment; and R;; = 0 if the 7th patient did not respond to initial
treatmentd;. Let 7,/" be the survival time for patientif he/she received but did not respond
to therapyA,. Further, Ietij}Ei denote the the survival time for patienif he/she received and
responded to treatmertt;. For treatment strategyt, By, a particular patient may respond g
or fail to respond taA4; while receiving at most one treatment at stage one or stage $ince
every patient only follows one path within a treatment siggt we cannot observe;;, TjZZ.VR, and

Zﬁi, for all j,k = 1,2, for each patient. Consequently, these variables are th&tedactuals or
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potential random variables. For patiéribllowing strategyA; By, the potential survival timef;,
can be expressed in terms of his/her counterfactual ousas®;; = (1 — Rﬂ)TjXR + RjiTﬁ;i.
We will use these potential survival times to construct aglvegd log-rank statistic to compare
two or more separate-path or shared-path adaptive treastrategies. First we will focus on
comparing two shared-path adaptive treatment stratedieB; and A; B, or, equivalently, the
distributions of7T}; andT},, and then generalize our statistic to compare more than teopg

with a specific extension to compare all four strategies3;, A1 B2, A B, and Ay Bs.

2.3 Observed data & assumptions

The observed data for a two-stage design described in Figwan be represented as a set of
random vector§ X;, R;, R,T%, R; Z;,U;, 6;}, fori = 1,...,n, whereX; = 2 — j if the ith patient

is randomized to induction treatmeaf (j = 1, 2), R; is the observed response indicator such that
R, = 1 if the ith patient is a responder td; and R; = 0 otherwise,Z; = 2 — k if patienti is
assigned to treatmeiit, (k = 1,2), the event time i$/; = min(7;, C;), whereC; is the potential
censoring time and; is the survival time for patient ands; = I(T; < C;). If T} denotes the
time to response for patientwho has responded to initial treatment, then the obsengubrse

R; can be expressed d&& = X;Ry,I(C; > TF) + (1 — X;)Ry,I(C; > TF), whereRj; is the
counterfactual response defined in Section 2.2.

First we make the stable unit treatment value assumptioam@istency (Rubin, 1974) to relate
the uncensored survival tin1é to the counterfactual outcomes. Explicitly, this assumpis given
asT = Y, X;{(1 — Rj)TY® + Ry Z,TH, + Ryi(1 — Z;)TE;}. Thus, an individual's survival
time is not related to others’ treatment allocation. Othregfiently made assumptions such as
‘no unmeasured confounders’ and positivity (all treatmstrdategies have positive probability of
being observed) follow from random assignment of treatsiei@ince most clinical trials have
limited follow-up, the survival time here is restricted tmée L, whereL is some value less than

the maximum follow-up time for all patients in the sample.
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3 Log-rank statistic for comparing two dependent strategies

3.1 The statistic

The standard unweighted log-rank test statistic is welvkmowell documented and commonly
used to compare survival curves for independent groupswolly a specified strategy. If there
were no second randomization and each patient was set twfalither A; B, or A, B,, data
from patients receivingl; B; would be considered independent of the data from patientsve
ing A; B,. To compare the two independent groups of patients follgwiredetermined strategies
A1 By andA; B, (to test the null hypothesis of no difference between theswwival distributions)
based on the observed ddtd;,; = min(Tixi, C;), 0k = (T < Cy),k=1,2; i=1,...,n},

we would use the standard unweighted log-rank test statisti

Z.() :/t Y11(s)Y1a(s) {dNn(S) B dNu(S)}, (1)

o Y11(s) + Yia(s) | Yui(s) Yia(s)

where Nyyi(s) = I(Ugi < 8,0k = 1), Yigi(s) = I(Uigi > s), Nu(s) = > Nigi(s), and
Yie(s) = Y0, Yigi(s) for k = 1,2. Under the null hypothesis; /27, (t) is asymptotically
normally distributed with mean zero and a variance that cacdnsistently estimated from the
observed event times. For details of the properties of twedstrd unweighted log-rank statistic,
we refer the readers to Fleming and Harrington (1991).

The standard unweighted log-rank statistic is inadequmetegever, to test survival curves in a
two-stage randomized design. First, the standard unwexddbg-rank statistic does not account for
the second randomization in a two-stage SMART design. Ih si@sign,U/;; is not observed for
patient; who responded ta!,, but is randomized to maintenance treatmBpntand likewise U;,;
is not observed for patiemtwho responded tal,, but is randomized to maintenance treatment

Second, since non-responders4p are consistent with both adaptive treatment strategig3,

andA; B,, the non-responders ¥, are common to both groups. Hence, the two groups of patients



following adaptive treatment strategids B, and A, B, are not statistically independent.

The first inadequacy of the standard unweighted log-rartisstahas been addressed by Guo
in his unpublished 2005 PhD thesis from North Carolina Statevétsity (Guo, 2005), where a
weighted version of the log-rank statistic was proposecctmant for the second randomization.
This statistic weights the at-risk and event processesrditgpto the response status and ran-
domization probability for each individual. This weightied-rank statistic and the corresponding
supremum version (Feng and Wahed, 2008), however, are pplicable to testing separate-path
strategies (e.g.A;B; vs. A3 B;). Since the second inadequacy of the standard unweighged lo
rank statistic remains even with the weighted log-rankistat we will address it in this article.
Specifically, we propose a weighted log-rank statistic &b tiee hypothesigl, : Ay (t) = Aa(?)
accounting for the fact that patients followiny B; includes a group of patients who also follow
A1 Bs.

We present the notation for time-dependent weights whicddeapted from Guo and Tsiatis
(2005). Explicitly, letW;y;(s) = X;{1 — Ri(s) + W}/gb be the weight assigned to tlith
patient at times for the purpose of estimating quantities related to thetegsaA; B;, where
R;(s) = 1 if the ith patient responded td; by time s, 0, otherwise,r is the known proba-
bility of a patient being assigned to maintenance therBpyand ¢ is the probability of being
assigned tod;. Similarly, Wisi(s) = X,{1 — Ri(s) + Z&U=Z01 /4 for estimating quantities
related to the strategyt; B,. Note that if a patient randomized #, has not responded by time
s, Wiii(s) = Wiai(s) = 1/¢, confirming that the non-responders are consistent with bate-
gies; if the patient has responded and is randomizeB;tby time s, Wiy;(s) = 1/(¢7) and
Wisi(s) = 0; if the patient has responded and is randomizeltby time s, however}V;1;(s) = 0
andWiy;(s) = 1/{¢(1 — m)}. This construction of weights is based on the fundamentatiple
of inverse-probability-of-treatment-weighting (Robinsaé, 1994).

To facilitate the derivation of the desired test statisiicempare shared-path adaptive treatment

strategies and its asymptotic properties, we introducthéamotation. For quick reference, we



included these in Table 1. The general at-risk process fqragients isY;(s) = I(U; > s), the
at-risk process for those with initial treatmedy, j = 1,2, isYj;(s) = I(U; > s, X; = 2 — j),
the weighted at-risk process ¥§x(s) = Y., Wiri(s)Y;i(s), the at-risk process for only those
who are non-responders t; is Y (s) = >°" | {1 — Ry(s)}Y}i(s), the overall at-risk process
for patients treated withl; is Y; (s) = >_7_, Y};(s) and the overall at risk-process for all patients
isY(s) = > Yi(s). Likewise, the general event process for any patiéatV;(s) = I(U; <
s,0; = 1), the event process for those with first-line treatmént; = 1,2, is N;;(s) = I(U; <
s,0; = 1,X; = 2 — j), the weighted event processi§;(s) = S Wiki(s)Nji(s), the event
process for only those who are non-responderdtis NY"(s) = >°" | {1 — R(s)} Nji(s), the
overall event process for patients treated withis N; (s) = > | Nj;(s), and the overall event
process for all patients & (s) = > ", N;(s). Based on these weighted processes, the inverse-
probability-of-randomization weighted-log-rank stétior testingHy: Aq1(t) = A12(t) is defined

as

2V (1) = /t Vi1(s)Yia(s) {dNu(S) _ dNi(s) } @)
" o Yi1(s) +Yiza(s) | Yu(s)  Yia(s)

The rationale behind this formulation of the test statigigiven in Feng and Wahed (2008).
In short, the quantityl Ny, (s)/Y1x(s) is an unbiased estimator of the instantaneous event rate at
time s, dAy(s). Therefore, it serves the same purposeidf,(s)/Yix(s) in the standard un-
weighted log-rank test defined in equation (1). Under thémypothesisA;;(t) = Ai2(t), since
the term{Y;,(s)Y12(s)}/{Y11(s) + Yi2(s)} is predictable (with respect to the filtratioRi(t) =
o{Ri(s), Z;Ri(s),I(C; < s),Nji(s),i=1,....,n; 7 =1,2; 0 <s < t}), the weighted log-rank
statistic in equation (2) has expectation zero (see Se8t)n

While the weighted log-rank statistic looks almost iderttoghat of the standard unweighted
log-rank statistic, note that the termsv,, (s)/Y1:1(s) anddNy»(s)/Y12(s) are correlated unlike

the unweighted versions from the predetermined strategite standard log-rank statistic. The



variance calculation will change substantially in ordea¢count for this correlation between these
two terms. The variance calculation presented in the netioseaddresses the second and remain-
ing inadequacy of the standard log-rank and supremum loktests. We will use a standardized

version of the statistic from equation (2) to test the nupdihesisHy: A1 (t) = Aio(t).

3.2 Asymptotic properties

First we note that~/2Z% (¢) in equation (2) can be expressed as a sum of two terms using the

definition of martingale increments. Explicitly, /22" (t) = G,.(t) + R, (t), where

o [ Yuls)Yia(s) {dMn(S)_dMlz(S)}
Golt) = 7 [ PRI\ Tl T ©
andR,,(t) =n~'/2 [ nyg)fgf {dA11(s) — dAya(s)}, sinceMjy (t) )= J Yir(s)dAji(s).

Feng and Wahed (2008, p. 699) have showendfé, (t) = >_7 iji(t)deki(t) and itis
easy to show thaE{d]V[j (t)]]—“(t,)} = 0, whereM,;;(t) is theith patient specific martingale,
corresponding ta\/;,(t) = fo k(s)dA i (s), the usual martingale process for strategy
A, By, had there been no second randomization and each patilentdol a pre-specified (perhaps
randomized) treatment strategy. Under the null hypothdsigt) = A(t), son ' /2ZVEE (1) =
G, (t) in equation (3). Since martingale increments have mean #2818V (¢)} = 0. Thus,Z"V (¢)
has mean zero under the null hypothesis of no differencezarda between two strategies.

To derive the variance of /22 (¢), we further expand,, (t). UsingdM;,,(t) =
Yoy Wiki(t)dM;ii(t), G, (t) can be expressed as a difference of two martingale procesges=
GiL(t) = GIR() = n V2 {0, Jy PR anii(s) — S, gy dMisi(s) | By the
martingale central limit theorem (Fleming and Harringt@891, Ch. 5),G*(¢) converges to a
Gaussian process with mean zero. Therefafgt) converges to a Gaussian process with mean

zero and variance equal tar{G.' (¢)} + var{G}(t)} — 2cov{G}}(t), G}2(t)}. The variances

of Gl1(t) andG}*(t) can be calculated the same way as the variance for the wdigsgerank
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statistic in Feng and Wahed (2008). More explicitlyy { G} (t)} is the limit of
Sy R () du(s), b = 1,2
To find the covariance between two martingale processeqG}'(t), GI*(t)}, we use the
formula from Fleming and Harrington (1991, p. 70). Expligitf H; and H, are locally-bounded,
predictable processes andéi and ), are local martingales then the covariance betwﬁzéhdMl
and [ Hyd M, is [ Hy Hycov(dM,,dMs). Then, the asymptotic variance@f,(¢) can be expressed

as the limiting value of

- (-1 (S)Wii(s)
;;/ {Y11(s) +Y12 )}2YM( s)dAk(s) @

0 {Yfl/élg —3—};1/212 Zan YWiai(s)cov{dMi1;(s), dMia;i(s)}.

—op~t

First, note thatiV,;;(s)Wiai(s) = ¢ 2{1 — R;(s)}. Subsequently, under the null hypothesis,
Hy @ A (t) = Aa(t) = Ao(t), the term inside the summation in the second line of equgtdn
can be shown to be equal¥3;" , 1/¢*{1 — Ri(s) }{Y1:(s)dAo(s)} = ¢ 2YNE(s)dAo(s). Thus, a

consistent variance estimatorof'/2Z% (¢) is given by

52(4) = 1 "Yih(s) > it Wii(s)Yai(s) + Y (s) > i Wihi(8)Yii(s) [ dNw(s)

R T ) ) S0y 5
Y11(5)Yi2(s) 2y NR( dNy (s)

o {Vi1(s) + Yia(s)}? {¢ 1) Y1.(s) }

The notation used in the above equation or elsewhere in thitdeacan be reviewed in Table 1.

The corresponding standardized weighted log-rank tessstitads given by (L), where

T, (L) =n""?2,/(L)/6(L), (6)

and L, as noted before, is less than the maximum follow-up timee [€kiela weighted log-rank

test rejects the equality of two shared-path adaptivertreat strategies’ cumulative hazards when
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\TYV (L)| > Z1_a/2 WhereZ,_, s is the(1 — a/2)™ quantile of a standard normal distribution.

4 LOG-RANKTESTS FOR MULTIPLE DEPENDENT ADAPTIVE TREAT-
MENT STRATEGIES

In the setting described above, we would now like to exterdctbmparison to all four adaptive
strategiesA; By, j, k = 1,2, and test the overall null hypothesis of no treatment efféte null
hypothesis that all hazards are equal is statell@sA ;1 (t) = A12(t) = Aa1(t) = Aga(t) = Ao(t)
against the alternative hypothests,: at least one cumulative hazard differs.

To derive the multivariate weighted log-rank statistic, fivet notice thatH, can be cast as a
vectorized differences of cumulative hazards such fiiat ((¢) = 0 where((t) = {A1(t) —
Aa(t), Ar(t) — Ao (t), Aii(t) — Age(t)}”. Following Section 3, an unbiased estimator ¢f)

dNu(t) _ dNia(t) dN1i(t) dNoy(t) dNy1(t) dNoao (t

is given by((t) = { : Mult) _ df ult) _ }T The corresponding

Yii(t Yi2(t) 7 Y11(t) Yo1(t) 7 Y11(t) Yoot

weighted log-rank statistic for testing, is the vector of the weighted martingale differences,

ZU (1) = {Z192(1), 21 (1), Z1(1)}" where

ik [ Yi(8)Yu(s) [dNj(s)  dNjp(s)
2w = [y Vols) + Ve m{y<> %Mﬂ} (")

Under the null hypothesis, the statis@#/' (¢) has expectation zero. Sin&/"W (t) is a
linear combination of weighted"” —statistics defined in equation (2), by the multivariate cen-
tral limit theorem for martingales (Fleming and Harringtd891),n~'/2Z»W (¢) follows a mean
zero Gaussian process with asymptotic variance covariaatex, (), that can be estimated by
3(t) = {s;;(t)}3*3, where the elements &t () are defined as follows.

The estimated variances @f/" (¢) are given below, where the induction-treatment-specific
processesy; (s) andY;.(s) used in equation (5), have been substituted with the overadiesses,

N(s) andY (s), to reflect that under the null, all strategies have equadtuzz Explicitly,
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S

(t) =n"" /t Yi(s) 2o W121i(5)}/1i(5) + }7121(5) > ico Wiy (s)Yii(s) {dN(S) }
. {V11(s) + Yr2(s) )2 Y (s)

0
—2on! "t Yu(s)a(s) oy NR( 4V (5)
o [ R O ) ®

-l ! Y221(3) > ico Wfli(s)yli(s) + Y121(3) >ico WQQM(S)Y%(S) dN (s)
salt) =7 Warls) + Y ()2 SEIEC
—n1 ! Y222(5) Z?:o W121i(5)Y1i(5) + Y121(5) Z?:o W222i(S)Y2i(S) dN (s)
salt) = | () + V(o) (Y} e

Note that the last two formulas above do not contain a coveeiderm since/N,.(s)/Y;x(s) and

dNji(s)/ Y (s), j # ', are conditionally independent givef(s_).
To obtain an expression for the estimated covariance termgi, we first give the expressions
for the covariances in the supplementary material. Foligwhose expressions Whedéo(s) =
N(s)/Y (s), natural estimates of the covariances are given by

s12(t) = /Y21(S [{¥11(s) + Via(s) H{Y11(s) + Yar (s)}] ™ 1{le ZWIIZ $)Y1i(s) — ¢~ 2Yn(S)Yf\’R(S)}d/A\o(S), 11

=1

813(15)=”_1/0 [V22(5){Y11(5) + Yi2(s)H{V11(s) + Ya2(s)} {Ym ZWm Wii(s) — ™ 2Yll(S)YfVR(S)}d/A\O(S), 12)

n

823(75):n_l/Ot[{Yn(S)+3721(8)}{3711(8)+3722(8)}]_ {Y21(S Y22(s) ZWHZ Yii(s) + (1 — ¢) 2 Y{i(5)Y: NR(S)}dAo(S)-

(13)

The vector of weighted log-rank statisties,'/2Z"W (t), presented in Section 4, converges in dis-
tribution under the null hypothesis to a trivariate normiatribution with mean zero and variance
covariance matrix(t), whereX(t) is estimated by (¢) = {s;;(¢)}***. Using the unbiased and
consistent estimators &f(¢), by multivariate Slutsky’s theorem, we have! ZMW (1)T2-1(£) ZMW (¢)
converges in distribution under the null hypothesis to astjuare distribution with three degrees
of freedom.

The weighted log-rank test statistic comparing overal/sat distributions for adaptive treat-
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ment strategiesl; By, j,k = 1,2, is then expressed in the form
TMW(L) = n 'ZMWV(D)TS~Y(L)ZMV (L), (14)

whereL is some time less than the maximum follow-up time. The leveleighted log-rank test
rejects the overall equality of adaptive treatment stiaggumulative hazards wher*"V (L) >

X2 s wherex?, 5 is the(1—a)" quantile of a chi-square distribution with three degreesagfdom.

5 SIMULATION RESULTS

5.1 Data generation

To evaluate the performance of the weighted log-rank sizgifor comparing two or more (shared-
path or separate-path) adaptive treatment strategiespmaucted a series of Monte Carlo simu-
lations. We were interested in assessing the type | erreruater the null hypothesis of no
difference in overall survival and in assessing the poweahefweighted log-rank statistics under
various alternative scenarios. In our simulation studyesd the equality of two shared-path adap-
tive treatment strategies, we have compared the proposigtited log-rank statistic]'V (L) from
equation (6) referred to as WLR, to a similar weighted log-rstaitistic that treats the two groups
independently such that the variance ignores the covaritaren, hence referred to as the inde-
pendent weighted log-rank test (IWLR), and to the standardeugivted log-rank (SLR) statistic
applied to two groups of patients who followed each stratéfjye groups for the standard un-
weighted log-rank statistic were formed by combining thad® did not respond tel; to those
who responded tol; and received treatmet,. For example, the group representing adaptive
treatment strategyl; B; consists of all the non-responders4e and all those who responded to
A; and were subsequently assigned to recéiyeand the group representing adaptive treatment

strategyA; B> consists of all the non-responders4pand all those who respondedAg and were
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subsequently assigned to receide While testing four shared-path adaptive treatment stiedeg
we have compared the proposed weighted log-rank statistidR), 7" (L) from equation (14),
to the standard unweighted log-rank statistic (SLR).

We outline the data generation process here and providdisgarameters for each simulation
in Sections 5.2 and 5.3. The initial treatment indicafos, was generated from a Bernoulli distri-
bution with¢ = pr(X; = 1) = 0.5 so that there were about an equal number of patients igitiall
treated withA; andA,. We tookR;, the response indicator, to be Bernoulli with R; = 1) = g,
mr € (0.4,0.6), so that there were 40% or 60% of patients who responded foitfad treatment.
WhenR; = 0, a survival timeTj]iVR,j = 1,2, was generated from an exponential distribution with
meanu) . WhenR; = 1, the treatmenB, indicator, Z;, was generated from a Bernoulli(0.5)
distribution. Also whenR; = 1, time to responseﬂﬁ, j = 1,2, was generated from an ex-
ponential distribution with meaﬁf and time from response to an eveti”, j k = 1,2, was
generated from an exponential distribution with m@éﬁ. The total survival time for those
who responded tol; and were randomized By, is thus, T, = T/ + T/i¥, for j,k = 1,2.
The variables of interest here are the time-to-evefits, whereT;,; = (1 — Ri)Tj@VR + RiT,
J.k = 1,2. These variables reflect the overall survival time undeategy A; By, (j,k = 1,2).
The observed survival time for théh individual in the absence of censoring is defined’as-
XiRAZ T+ (1= Z) T} + (1= R) T+ (1= X0) [RA ZiT5,, + (1= Z) Ty} + (1= R) T3 ).
Additionally, a right censored timé&;;, was generated from a uniform distribution from zeroto
such that 30% or 50% of the population were censored. Thedlmsdrved time was then defined
asU; = min(T;, C;) with corresponding complete case indicator= 1(7; < ;).

For each generated dataset we conducted weighted logestskdescribed in Sections 3.2 and
4 to test the hypothesd®,; : Ai1(t) = Aa(t) = Ag(t) andHyo : Ay (t) = Aia(t) = Agi(t) =
Ags(t) = Ay(t), respectively. We report the estimated type | error (propoiof samples for which
the hypothesis was falsely rejected) for all tests in TaBlesd 3 wherH,, ; and H, » were true,

and the estimated power (proportion of samples for whichhifothesis was correctly rejected)
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for all tests in Tables 4 and 5.

5.2 Simulation from the null distribution

To investigate the performance of the weighted log-rantisstes underH, ; : Ay (t) = Apa(t)
and Hoo : A1(t) = A1a(t) = Aai(t) = Ax(t), we generated 5000 datasets with the following
parametersy'® = iR = 9F = % = 1 and@fiF = 0fF = ofiF = 9IiF = 5. With a 40%
response rate, the censoring paramtems set to 8.4 and 3.5 and with a 60% response rat@as
setto 12 and 5.6 to produce about 30% and 50% censoring ctesbhe

Table 2 presents the estimated type | error rates (proposfisamples for which the hypothesis
was falsely rejected) for testing the null hypothe&is,. For a sample size of 200, a response rate
of 40% and censoring of 30%, the type | error for the WLR test wery close to the nominal
level of 0.05. The IWLR statistic does not subtract the carase term between the shared-path
strategies and therefore rejects the null hypothesis li#sa teading to a more conservative test
with an approximate error rate of 0.01. The SLR test, whicmlgimes and equally weights all
patients who follow a strategy regardless of their respatstls, also yielded very conservative
type | error rates with an estimate, in this case, of 0.01sétxeng the response rate at 40%, but
increasing censoring led to a decreased type | error ratl, that the WLR test had an estimated
type | error rate of 0.04, the IWLR test and the SLR test hadrnegéd error rates less than 0.001.
Under this null distribution, increasing censoring desezhthe percentage of observed responders.
In this particular case for a sample size of 200, the trueidigion specified 40% responders, but
with 30% censoring the percentage of observed respondersatzd to about 35%, while for 50%
censoring, the percentage of observed responders droppdzbtit 29%. As the percentage of
observed responders decreases, the statistic relies mahe ainformation from non-responders.
Since non-responders are consistent with both stratelgggsare weighted equally and thus the
WLR test will behave more like the SLR test rejecting the nudrenoften, however, since the WLR

correctly accounts for the covariance between the grotifssnot as conservative as the IWLR or
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SLR tests. In general, increasing censoring slightly desad the estimated type | error rate for
all tests, but the WLR test maintained the type | error rate.0650n all scenarios. Preserving
censoring at 30% or at 50% and increasing the response oate4®% to 60% led to about the
same estimated type | error rates for the WLR test and sligiglger rates for the IWLR test and
the SLR test, but these two tests remained overly conseevati
Table 3 presents the estimated type | error rates for tegtimgull hypothesigi, , using the

WLR and SLR tests. The type | error rates for both statisticewenilar across all combinations.
For a response rate of 40% and censoring of 30%, the WLR testaimaed type | error for sample
sizes greater than 100. Specifically, for a sample size of @@0WLR test for 40% responders
and 30% censoring produced an estimated type | error rat®bf/thile the SLR test produced an
estimated error rate of 0.04. We note that the SLR test waasobnservative when comparing
four adaptive treatment strategies as when comparing amy\tVhen censoring was increased to
50%, the WLR test and the SLR test produced estimated typer extes of 0.04. Increasing the
response rate to 60% produced acceptable type | error @tadl ample sizes of 50 and greater,
but with similar results of about equal estimated type lerates for all sample sizes and censoring

combinations for both the WLR and the SLR tests.

5.3 Simulation from alternative distributions

Since the type | error rates were upheld, we explored a yapiegcenarios performing 5000 iter-
ations to test the power (proportion of samples for whichhtyygothesis was correctly rejected) of
the weighted log-rank tests. Data were generated from ptipak under the alternative hypothe-
ses, where four true survival distributions, designatestasarios (a)-(d), were plotted in Figure 2
when 60% of the population respond 49, ; = 1,2. Scenario (a) represents a typical alterna-
tive distribution of survival curves where all four curveiffet (uV? = 08 = 1, pl¥ = 1.25,

0t = 0.5, ORF = 2, 9IiF = 3.33, OLF = 1.11, O%F = 0.67). Scenario (b) represents four survival

curves where the shared-path strategies have vastlydiffsurvival (M7 = 0F = 9RF = 1,
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ph® = 1.11, 68 = 1.67, 0RF = 5, 08&F = 3.33, F = 0.25). Scenario (c) respresents sur-
vival curves where one strategyl, B;, dominates the other strategigs)(* = pi'* = 0.33,

of = 0ff =2, 0RF =1, 0RF = 0.14, 08F = 3.33, 0LF = 0.5). Finally, scenario (d) represents in-
tersecting survival curves violating the proportional dnas assumption under which the log-rank
statistic is optimal V% = 0.14, pd'f = RE = 9iF = 1, 0% = 2.5, 0 = 0.2, 6%F = 0.1,

ORE = 0.33). The censoring parametemwas set to 5 for scenarios (a) and (b), 4 for scenario (c)
and 4.7 for scenario (d) so that censoring ranged from 22-:44%

Table 4 presents the results for testing the null hypothHgisversus the alternative hypoth-
esis that the cumulative hazards for the two shared-patptisddreatment strategies differ. The
WLR test had much greater power to correctly reject the nypldtlyesis than the IWLR test and
especially when compared to the SLR test. In all cases, asorg the response rate from 40%
to 60% increased the power of all tests, but the WLR test alwagisitained the greatest power.
In particular, note the large difference in power in scaméc) where the curves begin together,
but subsequently deviate. The WLR test maintained very lpoyeer in this situation, while the
IWLR test and the SLR test failed to pick up the difference ia srvival curves in almost all of
the iterations.

Table 5 presents the power for comparing the survival thstions of the four adaptive treat-
ment strategies. The WLR was compared to the SLR test. Agaiall icases, increasing the
response rate from 40% to 60% increased the power of botlstetat In almost all of the sce-
narios tested, the WLR test had greater power to correctitrée null hypothesis. Specifically,
in scenario (b), we see that for a 40% response rate and abétitc@nsoring, the WLR test
had a high power at 0.996 unlike the SLR test which had pow&.286, even though the sur-
vival distributions of A; B; and A, B, were very similar and so were the survival distributions
of A, B, and A;B;. In one of the scenarios (not presented here) with parameféf = 0.1,
ph = 0 = 9RF = 9RF = 1, 0% = 2.5, O%F = 0.5, anddf¥ = 0.33, the WLR test had less

power than the SLR test for 40% and 45% responders. This maluédo a relatively higher
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percentage of responders being censored compared to sjpooRaers. For this and similar scenar-
ios, as the percentage of responders increased above W] 1R test almost always performed
better than the SLR test with higher power. Power of the WLRdk® increased and dominated
that of the SLR test for increasing percentage of censoring.

In conclusion, the proposed weighted log-rank statistiotaaed type | error in sample sizes
as small as 50 with more than 30% patients censored. It alsbitsd greater power when com-
paring two or more shared-path adaptive treatment steagimost situations, including cases

where the proportional hazards assumption was violated.

6 Data Analysis

We applied the weighted log-rank test statistic to compaeeall survival of the adaptive treatment
strategies from the Children’s Cancer Group high-risk nelasibma study reported by Matthay
et al. (2009). This two-stage randomized trial began in 1884 ended in 1996 with 539 eligible
children ages 1-18 years with newly diagnosed high-riskal@dastoma (the most common ex-
tracranial solid tumor of childhood). All of the patients nganitially treated with chemotherapy
and 379 patients without progressive disease participatiée first-stage randomization. Patients
were assigned to chemotherapy (n=190) or to ABMT, a comlanaif myeloablative chemother-
apy, total-body irradiation, and transplantation of ang@us bone marrow purged of cancer cells
(n=189). Patients without disease progression (and wheesdad to further treatment) partici-
pated in the second-stage randomization. Of the 203 patwend were eligible for the second-
stage randomization, 102 were assigned to receive treatwhéB-cis-retinoic acid (cis-RA) and
the other 101 patients were assigned not to receive anyefurrgsatment.

To clarify the treatment strategies, refer to Figure 1 anddlerepresent chemotherapy,
represent ABMT,B; represent cis-RA and, represent no further treatment. Therefore, we are

interested in comparing the following four treatment stgags: (i) CC: Treat with chemotherapy

19



followed by cis-RA if there is no disease progression; (ii) (¥eat with chemotherapy and if

there is no disease progression, do not continue treatrignAC: Treat with ABMT followed

by cis-RA if there is no disease progression; (iv) AN: TreatABMT and if there is no disease

progression, do not continue treatment. Notice that thexe88 patients who do not respond to
the first-stage treatment of chemotherapy and are theretorsistent with shared-path adaptive
treatment strategies CC and CN and 91 patients who do not r@gpdirst-stage treatment of

ABMT and are therefore consistent with shared-path adapatment strategies AC and AN. The
goal was to compare survival distributions under these dolaiptive treatment strategies. Survival
distributions in Figure 3 were created using the weightskiset estimator for the survival function

from Guo and Tsiatis (2005).

In the main findings of the study, separate analyses for the &nd second-stage treatments
were reported, ignoring the induction or maintenance itneats while conditioning on patients
who were eligible to receive second-stage treatmentdsallyjtfor three-year event-free survival,
Matthay et al. (1999) reported the superiority of ABMT oveentotherapy alone and the superi-
ority of cis-RA with no further therapy after chemotherapygptransplantation. In 2009, Matthay
et al. reported that ABMT significantly improved the five yeegt-free and overall survival com-
pared to non-myeloablative chemotherapy, and cis-RA osplamtation improved overall survival
compared to no further therapy. Analyzing this data by ateréng second-stage randomization
and using adaptive treatment strategies, however, dematedtno significant improvements in
overall survival.

To test if there was a significant difference in the hazardsezftment strategies which share
the same initial treatment of chemotherapy (shared-pa#trirent strategies CC to CA), the WLR
statistic wag).12 with p = 0.90. For comparing treatment strategies which share the saitrad in
treatment of ABMT (shared-path treatment strategies AC tQ thl WLR statistic was-1.16 with
p = 0.25, showing that the two strategies that start on ABMT are natia@antly different. To

test if there was a difference in overall survival acrossfthe strategies (CC, CN, AC, AN), the
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weighted log-rank statistic from equation (14) was comguiénere was no significant difference
in the overall survival of the four adaptive treatment sigies as the WLR test produced a chi-
square statistic af.04 with p = 0.56.

Note that from Figure 3, the overall survival curves of tharfadaptive treatment strategies
look similar to that from simulation under alternative saga (d). In this dataset of 379 patients,
54% of patients respond to the initial treatment and abo®t 81 patients are censored. In this
setting, the WLR test does have more power to reject the npbbtimesis of equal hazards when it

is false.

7 Discussion

Adaptive treatment strategies have become more prevaieasiinical research, especially in the
treatment of chronic diseases, where management of thas#ise more important than a cure.
Two-stage randomization designs (or more generally SMABSighs) are, therefore, commonly
being used in clinical trials to compare adaptive treatnstrategies with two decision points.

Since many clinical trials focus on a time-to-event endpdive development of statistical methods
for survival analysis in two-stage randomized designs seef$al. While others have developed
statistics to estimate point-wise survival or compare alVsurvival distributions of separate-path
adaptive treatment strategies, methods for comparingwéth survival distributions of adaptive

treatment strategies that share common paths are notlaeditethe literature. These shared-path
adaptive treatment strategies share a common path of gaasuch that there is a common group
of patients who are consistent with more than one adaptatrtrent strategy in the data collected
through SMART designs. To address this, we have proposedghted log-rank statistic which

takes into account both the two-stage randomized desigrthendtatistical dependence among
groups of patients who follow each strategy. We have pral/itie asymptotic properties of these

tests and we have shown that the proposed weighted log-tatiktis comparing two or more
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adaptive treatment strategies generally maintains typeor eates and has greater power than
naive methods of analysis in most cases. Future researtiisimrea includes the extension of
the weighted log-rank statistic to compare survival disttions of patients who follow adaptive

treatment strategies in general (multi-stage) SMART desig

Supplementary Material

Derivation of the variance-covariance matrix of the weighted log-rank stais-
tic comparing four adaptive treatment strategies

We have presented the estimated variance-covariancexmétei-'/2ZM"W (t) in Section 4. Here
we give the expressions for the asymptotic covariances,l¢dao the estimated covariances in
equations 4.13-4.15. We derive the covariance specifitadly (1) = cov{Z1%(t), Z11-21 (1)}
corresponding to the estimated covariarggt); the derivations of5(t) andoos(t) follow simi-

larly. To begin, we define the covariance under the null hlyesis 715 (t) = cov{ Z}112(t), Z11-21(¢)}

= cov { t _}711(5)1_/1_2(8) {d{vll(s) _ d{Vm(s)} b Yi(s)Ys dN11 (s d{v21(5) H
o Y11(s) + Yia(s) | Yu(s) Yia(s) J7Jo Yii(s) +Y Y11(s) Ya1(s)

= cov [ t ,YH(S>Y1,2(8) {dMH(S) _ dMl?(S)} ! Yll ) 1 { Ml s) d{\zﬂ(s) }}
o Y11(s) + Y12(s) | Y11(s) Yia(s) ' Jo Yu(s +Y 11(s) Yo1(s) '

(15)

Distributing the terms and further simplifying equatiobLising martingale properties,

0'12

Y, Y, _
=cov { / 12 dM11 / “ dMlg(s),
Y11 + Y12 1/11 + 1/12

¢
Y21(s) / Yi1(s - }
—dM dM s
/o Y11(8) + Ya1(s) n Yi1(s —I—Y21 21(8)

Y Y- _
=cov {/ 12 _) dMH / 21 dMu(s)}
Yi1(s) + Yia(s Yii(s) + Y21
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¢

Y12 / Yi1(s }
— cov dM dM

{/ )+ Y12 n Yi1(s) + Y21 21(

Y Y

— cov {/ 11 dM1 / 21 dMn }
)+ Y12 Yii(s) + Y21
F

¢
Yn( ) / Yi1(s
+ cov / fdM dM
{ o Y11(s) 4+ Yia(s) 12( Yi1(s +YQl 21(

! Yia(s)Ya1(s)

o {Y11(s) + Yia(s) H{Y11(s) + Yai(s)}
! V11(5)Ya1(s)

o {Y11(s) + Yia(s) }{Y11(s) + Yau(s)}

—F cov{dM1(s),dM1(s) | F(s—)}

- F cov{dM(s),dMy1(s) | F(s_)}. (16)

In the intermediate steps to reach equation (16), we hawkthedact thatov{dM;,(s), dM(s)} =
cov{dM5(s),dMa(s)} = 0, due to the separate-path nature of the pairs of stratedigs,, 4, B;)
and(A; Ba, A; By ). By expanding the weighted martingales usiidd; (t) = >, Wixi(t)d M (t),
the covariances of interest can be expressed as expestatioriegrals with respect to
cov{dM1;(s), dMy1:(8)|F(s=)} = Yi1i(s)dAo(s) and cov{dMz;(s), dM1;(s)|F(s-)} = {1 —
R;(s)}Y1:(s)dAo(s). Using derivations similar to the one used to derive the Gamae between

the increments of the martingales for strategle®; and A, B, (Section 3.2, we find- ()

t x 7 7 n
Yi2(5)Ya21(s) 2
—F / _ _ = _ Wi, (s)Y(s)dA
T (0) F T () 7 T (o)} 2 Vi Yiils)dho
Yii(s)Yar(s)
2 ¢ 1 — Ru(s)}ai(s)dA
/{Yn T Via(s) V01 (5) + Va1 (5) Z{ (8 Ys(s)dho (5)
_p / S (O) e ZWm Ya(s) — 62T ()Y R(s) b dio(s)
o {Y11(s) + Yia(s) HY11(s) + Yai (s
Similarly,
o t Yaa(s) —Sn (DY () — 2T (s s s
o13(t) = E {/0 ORI OES 0] {m( )ZW%Z( )Yii(s) — & Vi1 ()Y )}dl\o() (1
t 1 o
o23(t) = FE {/0 T2 05) T Vo1 (5 H 1 (5) F Vaa () {Y 5)Yaa( S)Zan WYii(s) + (1 —¢) 2Y121(5)Y2NR(5)}dA0(5) .
(18)
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By substitutingdA(s) with its estimatelA,(s) = dN(s)/Y (s), we have the consistent estimators

S12, S13, S23 given in Section 4.
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Table 1: At-risk and Event Process Notation

Term Definition Description
At-risk Process

Yi(s) I(U; > s) Y;(s)=1 when individuak is at-risk at times
regardless of what treatment he/she receives,
0 otherwise

Yi(s) I(Uj; > 8, X; =2—) Y;:(s)=1 when individual is initially treated
with A; and is at-risk at time, O otherwise

Yiki(s) I(Uji > s, X, =2—34,Z;=2—k) Y;i(s)=1 when individuali following treat-
ment strategyd; By, is at-risk at times, O oth-
erwise

Yie(s) D0 Wini(s)Yii(s) The weighted number of individuals at-risk at
time s following treatment strategy ; By,

YNE(s) S {1 — Ri(s)}Y(s) The number of individuals who have yet to
respond to treatment; and are at-risk at time
S

Y (s) Yo Yiu(s) The number of individuals with initial treat-
mentA; and are at-risk at time

Y(s) Yo, Yi(s) The number of all individuals at risk at time

s regardless of what treatment they receive
Event Process
N;(s) I(U; <s,0=1) N;(s)=1 when individuali has an event at
or before times regardless of what treatment
he/she receives, 0 otherwise

Nji(s) I(U;; <s,6,=1,X;=2—7) Nji(s)=1 when individual is initially treated
with A; and has an event at or before time
0 otherwise

Njwi(s) 1(U;; <s,6,=1,X,=2—-74,Z;=2—k) N;,(s)=1 when individuak following treat-
ment strategyl, B, has an event at or before
time s, O otherwise

Ni(s)  >oiy Wiki(s)Nji(s) The weighted number of events at or before
time s for individuals following treatment
strategyA; By

NNE(s) S0 {1 — Ri(s)}Nyi(s) The number of individuals who are yet to re-

spond to treatmer; and have an event at or
before times

(s) >0, Nyls) The number of individuals with initial treat-

mentA; and have an event at or before time
S

N(s) > Ni(s) The number of all individuals with an event at
or before times regardless of what treatment
they receive
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Table 2: Type | Error Rate under Null HypothesHs : Aq;(t) = Aio(t). Target type | error
rate isae = 0.05; WLR is the proposed weighted log-rank statistic in equat®y IWLR is the
independent weighted log-rank statistic; SLR is the stechdaweighted log-rank statistic.

30% censoring 50% censoring
ResponseRate n WLR IWLR SLR WLR IWLR SLR
40 50 0.056 0.005 0.004 0.033 0.0010 0.001

100 0.053 0.008 0.008 0.033<0.001 <0.001
200 0.047 0.007 0.009 0.037 0.001<0.001
300 0.041 0.005 0.008 0.033 0.001<0.001
400 0.044 0.009 0.008 0.039<0.001 <0.001
500 0.038 0.008 0.006 0.033 0.001<0.001
60 50 0.053 0.015 0.014 0.047 0.008 0.006
100 0.048 0.022 0.015 0.045 0.009 0.005
200 0.042 0.017 0.014 0.041 0.010 0.005
300 0.047 0.020 0.015 0.040 0.011 0.007
400 0.039 0.014 0.011 0.085 0.009 0.005
500 0.042 0.017 0.014 0.036 0.009 0.005

Table 3: Type | Error Rate under the Null Hypothesis : A1;(t) = A2(t) = Agi(t) = Aga(t).
Target type | error rate is = 0.05; WLR is the weighted log-rank statistic in equation (14); SLR
denotes the standard unweighted log-rank statistic.
30% censoring 50% censoring
ResponseRate n WLR SLR WLR SLR
40 50 0.058 0.047 0.044 0.047
100 0.056 0.043 0.038 0.042
200 0.045 0.038 0.040 0.043
300 0.041 0.035 0.033 0.044
400 0.047 0.040 0.034 0.039
500 0.047 0.037 0.031 0.043
60 50 0.048 0.047 0.047 0.049
100 0.046 0.040 0.040 0.038
200 0.048 0.038 0.037 0.037
300 0.049 0.041 0.041 0.038
400 0.042 0.042 0.038 0.038
500 0.043 0.045 0.040 0.043
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Table 4: Power against Alternative Survival Curves unllgr Aq;(t) = Aj2(t). See Figure 2 and
Section 5.3 for description of alternative survival curgals(d); WLR is the proposed weighted
log-rank statistic in equation (6); IWLR is the independeeighted log-rank statistic; SLR is the
standard unweighted log-rank statistic.

Power
Scenario Response Rate CensoringRate n WLR IWLR SLR
(@) 40 36 200 0.167 0.026 0.005
60 44 200 0.237 0.096 0.028
(b) 40 35 200 0.886 0.542 0.130
60 42 200 0.978 0.897 0.536
(c) 40 27 200 0.703 0.053 <0.001
60 36 200 0.801 0.285 0.004
(d) 40 23 200 0.651 0.029 <0.001
60 34 200 0.767 0.193 <0.001

Table 5: Power against Alternatives undéy : A11(t) = Ai2(t) = Aai(t) = Ago(t). See Figure 2
and Section 5.3 for description of alternative survivamMasr(a)-(d); WLR is the weighted log-rank
statistic in equation (14); SLR denotes the standard urvedlog-rank statistic.

Power

Scenario Response Rate CensoringRate n WLR SLR
(@) 40 31 200 0.503 0.162
60 35 200 0.921 0.657

(b) 40 35 200 0.997 0.296
60 42 200 1.000 0.796

(©) 40 29 200 0.921 0.084
60 40 200 0.989 0.174

(d) 40 22 200 0.654 0.434
60 27 200 0.964 0.366
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Figure 3: Weighted survival curves under four treatmerdtsgies in the neuroblastoma study.
CC (solid): ‘Treat with chemotherapy followed by cis-RA if tieds no disease progression’; CN
(dashes): ‘Treat with chemotherapy and if there is no des@aggression, do not continue treat-
ment’; AC (dots): ‘Treat with ABMT followed by cis-RA if theresino disease progression’; AN

(dot-dash): ‘Treat with ABMT and if there is no disease pragren, do not continue treatment’
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