
Performance of Querying Temporal Attributes in Object-Relational Databases

Carsten Kleiner, Udo W. Lipeck
University of Hannover

Institute for Information Systems
30159 Hannover, Germany

{ck | ul}@informatik.uni-hannover.de

Abstract

In this paper we evaluate a model for temporal data
utilizing the benefits of object-relational database sys-
tems (ORDBS). In particular we show how attribute time-
stamping can be efficiently implemented in state-of-the-
art ORDBS. The attribute timestamping concept is based
on introducing user-specific types for temporal versions of
datatypes. Moreover on the physical level we make use of
user-defined index structures; in particular adapted spa-
tial indexes based on generalized search trees are applied.
These index structures greatly improve performance of im-
portant operators on both valid and bitemporal datatypes
and show the effectiveness of this approach.

Keywords: ORDBS, temporal datatypes, attribute time-
stamping, physical design, user-defined index structures

1. Introduction and Related Work

Many recent complex applications involve time-varying
information. Dependency on time is in most cases not
a feature of a real-world object alone but also of its at-
tributes. Temporal data is treated differently from spatial
data; whereas the spatial position or extent of an object is
usually perceived as a regular attribute of an object, time
is more fundamental. All information (i. e. all attributes,
standard as well as spatial) may be subject to change over
time. Time seems to be the governing dimension behind all
information.

In the spirit of object-oriented modeling using time
on the attribute level as opposed to the class level
should be preferred. This facilitates one-to-one model-
ing of real-world objects. It essentially means using
attribute-timestamping as opposed to the widely used tuple-
timestamping. We even propose to go one step further in
modeling and suggest that combinations of attribute val-
ues and time should be seen as basic value units; thus
we say that the datatypes to be used in temporal appli-

cations should be temporal versions of basic datatypes,
e. g. vt_integer. The reason for using ’datatype-time-
stamping’ is the more adequate modeling capability.

Due to space constraints we only give a brief overview
of the new concepts; details can be found in [6] as well
as [4]. The theoretical foundation of the conceptual model
for attribute-timestamping is derived from the bitemporal
conceptual data model ([3]). ORDBS were introduced and
described in detail in [8]. Temporal extensions of OR-
DBS based on tuple timestamping have been presented re-
cently by [1] and [12]. In contrast to those, our approach is
rather based on attribute timestamping; such models were
e. g. described in [9], but not considered in recent years
since they are difficult to implement efficiently in purely re-
lational database systems1. The connection of user-defined
datatypes, attribute-timestamping and ORDBS has to the
best of our knowledge never been researched before. Gener-
alized search trees (GiST) which we will use as foundation
were introduced in [2] as extensible indexing structures for
databases. The idea of using spatial index structures for in-
dexing pure temporal data has been used in several papers
and is described in [7]. In this work we extend that idea to
the newly defined temporal datatypes and embed it into an
extensible indexing framework.

2. Physical Design

The physical model is developed by defining temporal
versions of datatypes (conceptual and logical model are ex-
plained in [6]).

2.1. Operators

For temporal datatypes as combinations of temporal and
standard datatypes (e. g. vt_integer for valid time de-
pendent integer values or bt_integer for bitemporal in-
teger values), queries can be differentiated by which dimen-

1or internally modeled by tuple timestamping

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357573302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


sions the desired results are restricted to, and whether they
query for a range in a dimension or a point. For these
query types we can use the notational conventions of [10],
e. g. ’range//point/range’ means querying for a range in the
standard attribute domain, a certain point in valid time and
a range in transaction time. In addition, our experiments
showed that the size of the range in a range query is an im-
portant measure. Therefore experiments on range queries
were performed with several different selectivities.

The sample results for temporal queries in section 3 are
presented with the objective of finding the optimal index
structure for all possible query types. This is important,
since in most cases only one index can be built on a single
column, and it should provide for good query performance
of all temporal, thematic and combined operators.

2.2. Indexing

By using the extensibility features of ORDBS like
Oracle9i as described in [4] together with the generalized
search tree approach ([2]) one can add appropriate index
structures. We use attribute timestamping here and imple-
ment the index in an extensible framework (GiST). A simi-
lar approach for tuple timestamping without using the GiST
framework has been described for Informix in [1]. Similarly
no extensible framework was used for other temporal in-
dex structures such as RI-Tree, GR-Tree and 4R-Tree. Also
these indexes only use the temporal information but not
the thematic information. Thus only temporal queries will
be efficiently supported. Thematic and combined queries
will perform poorly (cf. spatial indexes on temporal queries
evaluated in section 3, such as 2D R∗-Tree on valid time
intervals).

Since temporal datatypes combine values from differ-
ent domains or dimensions into a single item to be in-
dexed, the use of index structures from spatial databases
seems straightforward. One can view the standard value
(such as salary) as one dimension and the valid (as well
as the transaction) time information as another dimension2.
Thus in the case where the standard datum is from a one-
dimensional domain (such as integer) we obtain two-
or three-dimensional domains for temporal datatypes which
may be indexed by spatial indexes. E. g. the temporal inte-
ger value (3000,[10,30)) is treated like the two-dimensional
interval [(3000,10),(3000,30)]. Since the standard datum
may not remain one-dimensional (e. g. spatio-temporal
data) it is not recommended to use the 2D (or at best 3D)
spatial indexes shipped with current ORDBS, but rather to
use user-defined extensible indexes which may be adapted
to as many dimensions as required.

2Special properties of the valid and transaction time dimension such as
now or UC should be simple to add due to the extensibility features of the
index structures used.

3. Performance Evaluation

3.1. Efficiency for Valid Time Data

For the temporal datatype vt_integer performance
tests with different index structures and query types were
conducted on synthetically generated data as well as on data
generated using the SPYTIME-benchmark. Comprehensive
results can be found in [6], figure 1 shows sample results on
range//range queries of different selectivities.

0

2

4

6

8

10

12

14

0 5 10 15 20

re
sp

on
se

 ti
m

e

selectivity in %

Without Index
Built-in B-tree (salary)

User-defined B-tree (salary)
Built-in B-tree (start validtime)

User-defined R*-tree (valid time)
User-defined 2D R*-tree

User-defined 2D RSS-tree

Figure 1. Index Performance on vt_integer

Using no index at all or simply a B∗-tree on salary
(built-in or user-defined) led to inacceptable results as ex-
pected. The creation of a B∗-tree on start point of the valid
time interval showed acceptable performance but requires
a complex recoding of queries to be able to use the index.
Also this approach would not be scalable to more complex
datatypes.

The 2D RSS-Tree3 outperforms all other indexes for all
selectivities, since it provides good clustering and subdi-
vision of space in each dimension, not just in one as sev-
eral others. The distance based clustering leads to outper-
forming the 2D R∗-Tree. A little bit surprising is the good
performance of the R∗-Tree on valid time intervals which
almost outperforms its 2D counterpart. This is due to the
low execution times for the operator on the integer compo-
nent and would not scale well for more complex datatypes.
The idea of using two-dimensional indexes significantly im-
proves query performance, especially for the 2D RSS-Tree
by factors of between 2 and 6.

For range//point queries we obtained a similar picture
but this time the R∗-Tree on valid time was slightly faster
than 2D RSS-Tree and 2D R∗-Tree, since it can opti-
mally exploit the query point information in valid time.
Point//range queries showed exactly reversed results with

3A combination of R∗- and SS-Tree, see [5, 11] for details.



the 2D RSS-Tree being faster by a much bigger difference.
Thus the 2D-RSS-Tree should be used, since it provides a
good performance over all possible query types.

3.2. Efficiency for Bitemporal Data

The bitemporal datatype bt_integer can be inter-
preted as multidimensional data in the form of rectangles
in three-dimensional space. Figure 2 summarizes perfor-
mance of the different indexing options exemplarily for
range//range/range queries.

0

2

4

6

8

10

12

14

0 5 10 15 20

re
sp

on
se

 ti
m

e

selectivity in %

Without Index
User-defined B-tree (salary)

User-defined 2D R*-tree (bitemporal)
User-defined 2D R*-tree (valid time)

User-defined 3D R*-tree
User-defined 3D RSS-tree

Figure 2. Index Performance on bt_integer

Options that already performed poorly on datatype
vt_integer, such as no index, built-in or user-defined
B∗-tree on salary, again performed poorly and are not con-
sidered any further. The three-dimensional indexes out-
perform all other indexes significantly by factors between
2 and 6 where results for 3D R∗-Tree and 3D RSS-Tree
were almost the same this time. Among the better indexes
are user-defined 2D R∗-Trees (either on valid time intervals
or on bitemporal rectangles). If point//range/range queries
are also considered the pure temporal indexes perform ex-
tremely bad since they do not support the strongest restric-
tion on salary. In this case the B∗-Tree index on salary is the
most efficient index as expected, but the three-dimensional
indexes also perform pretty good.

To support all kinds of operators on bt_integer the
only choice can be the 3D indexes; differences among R∗-
Tree and RSS-Tree are not significant. Coupled with the
results for vt_integer the RSS-tree should be preferred.

Similarly to vt_integer the index entries are not ap-
proximations of real objects but rather the objects them-
selves. Thus query results can be directly taken from the
index-based filter step and no refinement is necessary. This
greatly improves index performance since the call overhead
associated with exact operators is absent. Thus no user-
defined selectivity estimation is required since an index-
based execution is always faster than a full table scan.

4. Future Work

Our work focused on the physical implementation of
temporal information. In order to use it for a complete
temporal database it needs to be embedded into a tempo-
ral query language and user-friendly environment.

The experiments with spatial indexes need to be ex-
tended to different temporal datatypes. In particular the
case of complex base types, leading to higher dimensional
temporal types would be interesting. Results for spatio-
temporal data (valid time only) will be reported in [4] but
more work is required. Also, details about user-defined se-
lectivity estimation will have to be investigated. Choosing
the appropriate execution plan will become more important
with more complex datatypes. Finally the special charac-
teristics of now and UC (until changed) in valid and trans-
action time, respectively, have to be taken into account in
more detail in future work.

References

[1] R. Bliujute, S. Saltenis, G. Slivinskas, and C. S. Jensen. De-
veloping a datablade for new index. In Proceedings of 15th

International Conference on Data Engineering (ICDE’99)
[2] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized

search trees for database systems. In Proceedings of the 21th

International Conference on Very Large Data Bases 1995
[3] C. Jensen, M. Soo, and R. Snodgrass. Unifying temporal

data models via a conceptual model. Information Systems,
19(7):513–547, 1994.

[4] C. Kleiner. Modeling Spatial, Temporal and Spatio-
Temporal Data in Object-Relational Database Systems. PhD
thesis, Universität Hannover, 2002. in preparation.

[5] C. Kleiner and U. W. Lipeck. Efficient index structures for
spatio-temporal objects. In Proceedings of 11th Interna-
tional Workshop DEXA 2000

[6] C. Kleiner and U. W. Lipeck. Natural and efficient modeling
of temporal information with object-relational databases.
Technical Report 01-2002, Universität Hannover, Apr. 2002.

[7] Y. Manolopoulos, Y. Theodoridis, V. J. Tsotras. Advanced
Database Indexing. Kluwer Academic Publishers, 2000.

[8] M. Stonebraker and P. Brown. Object-Relational DBMSs
– Tracking the Next Great Wave (Second Edition). Morgan
Kaufmann Publishers, 2nd edition, 1999.

[9] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and
R. Snodgrass, editors. Temporal Databases: Theory, De-
sign, and Implementation. Benjamin/Cummings, 1993.

[10] V. J. Tsotras, C. S. Jensen, and R. T. Snodgrass. An exten-
sible notation for spatiotemporal index queries. SIGMOD
Record, 27(1):47–53, Mar. 1998.

[11] S. Wang, J. M. Hellerstein, and I. Lipkind. Near-neighbor
query performance in search trees. Technical Report CSD-
98-1012, University of California, Berkeley, Sept. 1998.

[12] J. Yang, H. C. Ying, and J. Widom. Tip: A temporal ex-
tension to informix. In Proceedings of the ACM SIGMOD
International Conference on Management of Data 2000


