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Parallel finite element method utilizing the mode splitting
and sigma coordinate for shallow water flows

K. Kashiyama, Y. Ohba, T. Takagi, M. Behr, T. Tezduyar

Abstract Parallel finite element method for the analysis of
quasi-three dimensional shallow water flow is presented.
The mode splitting technique and the sigma coordinate
(generalized coordinate) are employed to use parallel
computers effectively. Parallel implementation of the un-
structured grid-based formulation is carried out on the
Hitachi parallel-super computer SR2201. The tidal flow of
Tokyo Bay is simulated for a numerical example. The
speed-up ratio and the efficiency of the parallelization are
investigated. The present method is shown to be a useful
and powerful tool for the large scale computation of
shallow water flows.

1

Introduction

The shallow water flow analysis is usefully applied to the
flows in oceans, lakes and rivers. A number of numerical
methods for the shallow water flow based on the two di-
mensional model have been presented in the past. The

K. Kashiyama, Y. Ohba

Department of Civil Engineering, Chuo University,
1-13-27 Kasuga,

Bunkyo-ku, Tokyo 112-8551, Japan

T. Takagi

Coastal Engineering Department, INA Corporation,
1-44-10 Sekiguchi,

Bunkyo-ku, Tokyo 112-8668, Japan

M. Behr

Army HPCRC, University of Minnesota,
1100 Washington Avenue South,
Minneapolis, MN 55415, USA

T. Tezduyar

Mechanical Engineering and Material Science,
Army HPC Research Center, Rice University,
MS 321, 6100 Main Street,

Houston, TX 77005, USA

Correspondence to: K. Kashiyama

This research was supported by the grant-in-aid for encourage-
ment of young scientist of the Ministry of Education, Science,
Sports and Culture, No. 09750562. Partial support for this was also
provided by the Army High Performance Computing Research
Center under the auspices of the Department of the Army, Army
Research Laboratory cooperative agreement number DAAH04-
95-2-0003 and contract number DAAH04-95-C-0008. The content
does not necessarily reflect the position or the policy of the
Government, and no official endorsement should be inferred.

present authors have been presented a parallel finite ele-
ment method to solve the large scale computations of
shallow water flows, such as the storm surges and tidal
flows, using the fine mesh which represents the geography
accurately (Kashiyama et al. (1995, 1997), Tezduyar et al.
(1996)). However, in order to compute the sediment
transport, the dispersion of contaminants, the exchange of
sea water and so on accurately, it is necessary to evaluate
the vertical velocity profile. Several quasi-three dimen-
sional models have been also presented and these models
are roughly classified into two approaches; the level model
(Kawahara and Kobayashi (1983), Robert and Ouellet
(1987)) and the sigma coordinate model (Sheng and Lick
(1978), Sheng and Butler (1982), Takagi and Kawahara
(1996)). In the level model, as the depth of each layer is
assumed to be constant, the total number of layers is not to
be constant over the whole domain due to the variation of
water depth. From this, it is pointed out that the numerical
accuracy in the bottom layer is worse. On the other hand,
in the sigma coordinate model which introduce the gen-
eralized coordinate to the vertical direction, the total
number of layer is to be constant over the whole domain.
This approach can avoid the above mentioned disadvan-
tage of the level model. Furthermore, it can be expected
that this method is effective for the parallel computation,
since the load balance can be easily equalized in each
processor.

This paper presents a parallel finite element modeling
utilizing the mode-splitting and sigma coordinate for the
quasi-three dimensional shallow water analysis. The three
dimensional flow field is divided into two fields; the
horizontal flow field and the vertical flow field. The
quasi-three dimensional flow analysis can be achieved by
solving both field mutually. The finite element method is
employed for the horizontal flow field and the finite
difference method is employed for the vertical distribu-
tion of flow field. Parallel implementation of the un-
structured-grid-based formulations are carried out on the
Hitachi parallel-super computer SR2201. The effect of
parallelization on the efficiency of the computations are
examined.

2

Governing equations

The shallow water equations can be obtained from the
conservation of momentum and mass, assuming a
hydrostatic pressure distribution:

i + wjuij+ gl — (Nyiiz) , — (Nhui,j)J‘ =0 (1)



Fig. 1. Sigma coordinate
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where u; is the horizontal velocity, { is the water elevation,
h is the water depth, g is the gravity acceleration, Ny is the
vertical eddy viscosity coefficient and N, is the horizontal
eddy viscosity coefficient.

The following transformation form which is referred as
the sigma coordinate is defined to introduce the general-
ized coordinate to the vertical direction (see Fig. 1).
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where D is the total water depth. Introducing Eq. (3) into

Egs. (1) and (2), the governing equations can be expressed
as follows.
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where w is the vertical velocity.
The velocity u; can be assumed to be the sum of the
depth averaged velocity and the variations around the
averaged velocity as:

ui(xi,z,t) = Ui(xi, £) + ti(xi, 2, )

(8)

where U; is the depth averaged velocity and u} is the
variations around the averaged velocity. Integrating the
Egs. (4) and (5) over the depth and the wave phase using
the above assumption (8), the following equations can be
derived.
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where 15; and 1p; denote the surface shear stress and the
bottom shear stress respectively, which can be expressed
as:

T = C p, Wil W]
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where C* is the surface friction coefficient, W is the wind
velocity, ug ) is the velocity at the bottom, C is the Chezy’s
coefficient, p, and p,, are the density of air and water,
respectively. As the contribution of the fourth term of Eq.
(9) is negligible small comparing with other terms, the
term is ignored in the discretization.
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Mode splitting method
A splitting algorithm for the external and internal modes is
employed to study the three dimensional phenomena and
to reduce the large amount of computational work. The
governing equations for the external mode have been de-
rived as Egs. (9) and (10). The governing equations for the
internal mode can be defined as the residual equation
between Egs. (4) and (9) as:
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The stability condition of an external mode in the nu-
merical computation is governed by the CLF condition.
The internal mode allows a much longer time increment
since it is related to the internal wave propagation. The
computation are performed in two time steps, a short time
increment is applied to the external mode described by the
vertically integrated equations and much longer time in-
crement is applied to the internal mode. In this paper, the
computation of internal mode is performed at every 4
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Fig. 2. Flow chart
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steps of the external mode. Figure 2 shows the flow chart
for the computation.

Expanding the velocity u}(x;,0,t) in terms of the
depth-dependent function fi(o) and the coefficients
Ayi(x;,t) varying with horizontal position and through
time, gives

u(x;,z, t) =

ZAkz xi, )fi(0) (14)

where M is the total number of modes. Introducing
Eq. (14) into (13) and integrating it the over the depth,
finally, the following equation can be derived as:
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where / is the eigenvalue, ff; and f, are the parameters
related to the boundary conditions at the surface and the
bottom, ax and ¢, are the constants. The details of the
derivation of Eq. (15) are described in the references
(Sheng and Lick (1978), Sheng and Butler (1982), Takagi
and Kawahara (1996)). The last term of Eq. (15) is ignored
in the discretization.

4

Numerical discretization

For the discretization of the governing Egs. (9) and (10)
for the external mode, the standard Galerkin method is
used. The weak form of the governing equations can then
be written as:
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where U* and {* denote the weighting functions and ¢;
represents the boundary term. Using the three-node linear
triangular element for the spatial discretization, the fol-
lowing finite element equations can be obtained:
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The bottom stress term is linearized and the water depth is
interpolated using linear function.

For the discretization in time, the three-step explicit
time-integration scheme is employed. The selective
lumping technique is used for the numerical stabilization.
The stability limit of this method is 1.5 times larger than
that of the conventional two step scheme (Kawahara and
Kashiyama (1984)). The details of this method is given in
the reference (Kashiyama et al. (1995, 1997)). Applying
this scheme to the finite element equations, the discretized
equations in time can be obtained.

On the other hand, for the discretization of the gov-
erning Eq. (15) for the internal mode, the central differ-
ence scheme is employed as:
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Introducing the computed coefficients A} into Eq. (14),
the velocity of the internal mode can be obtained.

5

Parallel implementation

A parallel implementation using the MPI suitable for un-
structured grids has been designed for use on the Hitachi
parallel-super computer SR2201 of the University of To-
kyo. Figure 3 shows the configuration of a SR2201 system.
The SR2201 system consists of 1024 RISC processors with
the three dimensional crossbar network and the direct
memory access. Each processor possesses the memory of
64-256 MByte. Using 1024 processors, the peak compu-
tational speed reaches 307 GFLOPS. To minimize the
amount of interprocessor communication, the automatic

Z-switch

Y-switch j

t—— X-switch

Fig. 3. SR2201 system
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Fig. 4. Parallel implementation

mesh decomposer presented by Farhat (1988) is employed
for the two dimensional plane mesh. For each subdomain,
the processor associated with that subdomain carries out
computations independently. No interprocessor commu-
nication is needed to compute the velocity of the internal
mode because the fluctuated velocity can be locally de-
termined on the vertical line at the nodal point of the
horizontal finite element mesh.

The finite element equation for the external mode can
be expressed as

MX = F (23)

where M is the lumped mass matrix, X is the unknown
vector, F is the known vector. Figure 4 shows an example
mesh with the bold line denoting the boundary of a subdo-
main. The elements (1)-(4) belong to the domain 1 (pro-
cessor-1) and the elements (5) and (6) belong to the domain
2 (processor-2). The unknown values X are solved by:

X=F/M (24)

No interprocessor communication is needed to compute
the unknown values of the node which is located in the
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Fig. 5. Finite element idealization

subdomain interior such as node A. However, in case of
node B which is located on the boundary of subdomains,
the interprocessor communication is needed and the
procedure is described in the reference (Kashiyama et al.
(1997)). The data transfer is performed at every time step
(see Fig. 2). As the lumped mass matrix M remains con-
stant throughout the time step, the data transfer of that
matrix is required only once.

6

Numerical example

As a numerical example, simulation of the tidal flow in
Tokyo Bay is carried out. Figure 5 shows the finite element
discretization. The total number of elements and nodes for
external mode are 54 708 and 28 970, respectively. This
mesh is designed to keep the element Courant number
constant in the entire domain (Kashiyama and Okada
(1992), Kashiyama and Sakuraba (1994)). It can be seen
that an appropriate mesh accordance with the variation of
water depth is realized. The total number of nodal points to
the vertical direction is assumed to be 11. Therefore, the
total number of nodes is to be 318 670. For the boundary

Fig. 6. Mesh partitioning for 256 proces-
sors
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Fig. 7a,b. Computed current velocity at high tide at a surface layer and b bottom layer

condition, the non-slip boundary condition is applied to  assumed to be 3 second and 12 seconds, that is, the com-

the coast line and the water elevation is specified at the putation of internal mode is performed at every 4 steps of
open boundary. For the incident wave, the wave period is the external mode. Figure 6 shows the mesh partitioning for
assumed to be 12.42 hours and the wave amplitude is 256 processors. Figure 7 shows the computed current ve-

assumed to be 0.36 m. The computation is started from the locity at the high tide at the surface level (a) and the bottom
still water state. For the numerical condition, the following level (b). Figure 8 shows the computed residual velocity at
data are used; the Manning coefficients n = 0.04, the aver- the surface level (a) and the bottom level (b). From this, the
aged horizontal eddy viscosity Ny = 10 m?/s, the vertical ~ significant residual velocity can be seen at the surface level.
eddy viscosity coefficient N, = 0.001, ; = 0.0001, Figure 9 shows the comparison of tidal ellipse between

p, = 0.03, the total number of modes M = 30. The time  computed and observed results at the observation point.
increments for the external mode and internal mode are ~ From this figure, it can be seen that the results obtained by
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Fig. 8a,b. Computed residual current velocity at a surface layer and b bottom layer
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Fig. 9. Comparison of tidal ellipse between computed and ob-
served results

the present method are reasonable agreement with ob-
served data (Ministry of Transportation, 1983).

In order to check the performance of the parallelization,
two types of finite element meshes are employed for
external mode; mesh-L: 153 460 elements and 79 075
nodes, and mesh-S: 54 708 elements and 28 970 nodes. The
total number of nodal points to the vertical direction is
assumed to be 11. From this, the total number of nodes for
mesh-S and mesh-L are to be 318670 and 869 825 re-
spectively. Figures 10 and 11 show the relation between the
number of processors and speed-up ratio and the effi-
ciency of parallelization respectively. In these figures,
speed-up ratio and efficiency can be defined as:

. computational time using 1 P.E
speedup ratio =

computational time using NV P.E

(25)
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Table 1. Details of CPU time
PE 2D quasi-3D
pure CPU com. & wait  pure CPU com. & wait
1 74.25 0.00 681.239 0.00
(100.00%) (0.00%) (100.00%) (0.00%)
8 8.92 0.64 88.69 3.51
(93.31%) (6.69%) (96.19%) (3.81%)
64 1.12 0.26 11.30 0.67
(81.16%) (18.84%) (94.40%) (5.60%)
128 0.49 0.26 5.70 0.54
(65.33%) (34.67%) (91.35%)  (8.65%)
(second, par 20 steps)
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speedup ratio
N

where N denotes the total number of processors. From
these figures it can be seen that the performance is im-
proved in accordance with the increase of the degree of
freedom. Furthermore, the performance of the present
method is greater than that of the two dimensional model.
Table 1 shows the details of the CPU time for 20 time steps;
the pure computational time, the waiting time and the
communication time.

efficiency = (26)

7

Conclusions

The parallel finite element method utilizing the mode-
splitting and sigma coordinate has been presented for the
analysis of quasi-three dimensional motion of shallow
water flows. The method has been applied to the analysis
of tidal flow in Tokyo Bay. The computed results have
been compared with the observed data and the perfor-
mance of parallelization has been investigated. The per-
formance and efficiency were observed to improve linearly
in accordance with an increase in the number of degree of
freedom. From the results obtained in this paper, it can be
concluded that the method is useful for the large scale
computation of shallow water flows.
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