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The implementation of adaptive filters with fixed-point arithmetic requires computation
quality evaluation. The accuracy may be determined by computing the global quantization
noise power at the system output. In this paper, a new model for evaluating analytically
the global noise power in LMS-based algorithms is presented. Thus, the model is developed
for LMS and NLMS algorithms. The accuracy of our model is analyzed by simulations.
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1. Introduction

Adaptive filters are present in various fields of digital signal processing. They are used in channel or system identification
(echo cancellation), in noise reduction, in linear prediction and in equalization to compensate the communication channel
distortion. The adaptive filter aim is to estimate a sequence of samples from an observation sequence filtered by a system
in which coefficients vary. These coefficients converge toward the optimum coefficients which minimize the mean square
error (MSE) between the filtered observation signal and the desired sequence. The different algorithms existing for adaptive
filtering are mainly classified in two types corresponding to Least Square Algorithms and Gradient Algorithms. The Least
Square Algorithms outperforms the Gradient Algorithms in terms of convergence time and residual mean-square error.
Nevertheless, the Gradient Algorithms are the most used in embedded applications because their implementations are more
simple than for Least Square Algorithms.

To minimize the cost and the power consumption, digital signal processing applications are implemented in embedded
systems with fixed-point arithmetic. However, this simple arithmetic introduces an unavoidable quantization noise when a
signal is quantified. These different quantization noise sources are propagated through the system and lead to an output
quantization noise. In hardware fixed-point implementation, the goal is to minimize the operator word-length as long as the
output quantization noise power is lower than a maximal value. Thus, the analytical expression of the output noise power
is the key element in the process of data word-length optimization. In [1], this analytical expression has been integrated
in a configurable hardware component generator for LMS algorithm. The operator and memory word-lengths are optimized
under an accuracy constraint defined by the user. This analytical approach reduces significantly the noise power evaluation
time compared to the techniques based on fixed-point simulation which require very long evaluation time.

Some different models have been proposed to evaluate the output noise power for the LMS algorithm in [2] and [3]
and for NLMS algorithm in [4]. These models are presented only for convergent rounding because the quantization noise
bias associated with conventional rounding and truncation is not taken into account. The convergent rounding is the more
complex quantization mode in terms of hardware implementation and thus it is less often used. The truncation is the most
common mode used in embedded systems because its implementation requires no additional hardware. So, the aim of
this paper is to propose for the LMS-based algorithms an output noise power expression for all types of quantization laws
(truncation, convergent and conventional rounding). The model is presented for LMS, NLMS and Leaky-LMS algorithms.
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This paper is organized as follows. The basic properties of the LMS algorithm are first recalled in Section 2. Then, the
existing models are detailed and their limits discussed. In Section 3, the developed model is explained and the method is
clarified. Finally, in Section 4, our model quality is evaluated through different experimentations. This allows to underline
its quality and to compare its results with related works.

2. Fixed-point gradient-based algorithms

2.1. Gradient-based algorithms

The LMS adaptive algorithm addresses the problem of estimating a sequence of scalars yn from an N length vector
xn = [x(n), x(n −1), . . . , x(n − N +1)] [5]. The linear estimate of yn is wt

nxn where wn is an N-length vector which converges
to the optimal vector wopt in the mean-square error (MSE) sense. This optimal vector is equal to wopt = R−1 p where the
term R corresponds to the correlation matrix of the input signal and is equal to E[xnxt

n]. The vector p represents the
intercorrelation between the vector xn and the scalar yn and is equal to E[xn yn]. The vector wn is updated according to the
following equation

wn+1 = wn + μxnen (1)

where μ is a positive constant representing the adaptation step. The maximum value of μ to ensure stability is equal to
2/λmax with λmax the maximum eigenvalue of the autocorrelation matrix R [5]. Another input data representation model
has been developed in [6] to study the convergence behavior of the LMS algorithm. According to the value of μ, the
convergence will be faster or not. In [7], the coefficient probability density function is computed to show the convergence.
Moreover, the speed convergence has been studied in [8], for Gaussian input data.

The filter output ŷn corresponding to the estimation of yn and the error en between the reference signal yn and the
estimated signal ŷn are defined as follows

ŷn = wt
nxn (2)

en = yn − ŷn (3)

To prevent overflow, a new LMS-based algorithm corresponding to the Leaky-LMS has been proposed [9]. In this algo-
rithm, the coefficient update expression is presented in Eq. (4). The leakage factor φ is included in the interval [0,1].

wn+1 = φwn + μxnen (4)

To assure algorithm convergence, the Normalized LMS (NLMS) has been proposed. In this case, the input signal vector xn

is normalized by the input data power xt
nxn . This normalization ensures that the adaptation step is included in the interval

[0,2]. Thus, the coefficient update expression becomes

wn+1 = wn + μ
xn

xt
nxn

en (5)

More generally, for these three LMS-based algorithms, the coefficient update expression can written as follows

wn+1 = φwn + μxn f (xn)en (6)

where the normalization function f (xn) is equal to 1 for the LMS and the Leaky-LMS algorithms and to 1
xt

nxn
for the NLMS

algorithm. In the case of the LMS or NLMS algorithm, φ is equal to 1.

2.2. Fixed-point gradient-based algorithms

The fixed-point gradient-based algorithms are described in this part (Fig. 1). Let x′
n be the input signal after quantization

and y′
n the quantified desired signal.

x′
n = xn + αn

y′
n = yn + βn (7)

The two terms αn and βn are quantization noises. The noise αn is an N-size vector whereas βn is a scalar. They have
means mα and mβ and variance σ 2

α and σ 2
β .

The filter coefficient vector is written as

w ′
n = wn + ρn (8)

where ρn is the error vector of length N due to the quantization effects. This noise cannot be considered as the noise due
to the quantization of a signal. So the statistical characteristics of white noise cannot be applied to ρn . The error in finite
precision is given by
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Fig. 1. Gradient-based algorithms.

e′
n = y′

n − ŷ′
n (9)

ŷ′
n = w ′t

n x′
n + ηn (10)

with ηn the global noise in the inner product w ′t
n x′

n and will be developed in the next part.
The updated coefficients expression becomes

w ′
n+1 = w ′

n + μe′
nx′

n + γn (11)

where γn is the noise associated with the term μe′
nx′

n and depends on the way the filter is computed. If the Leaky-LMS is
under consideration, the coefficient update equation becomes

w ′
n+1 = φ′w ′

n + μe′
nx′

n + γn + ψn (12)

where φ′ is the fixed-point value of φ. If φ is a sum of power of two then φ′ = φ. More generally, the bias term �φ is
introduced and is defined as the difference between the fixed-point and real value of the leakage factor φ.

�φ = φ′ − φ (13)

Moreover, ψn is the noise generated by the multiplication of φ′ and w ′
n . In the case of the NLMS algorithm, this equation

leads to

w ′
n+1 = w ′

n + μe′
n

x′
n

x′t
n x′

n
+ γn (14)

To prevent from a division in fixed-point arithmetic, the term x′t
n x′

n is approximated by a power of two which greatly
simplifies the implementation. Thus, the division is equivalent to a shift of some bits. This method does not introduce a
new noise. More generally, the fixed-point coefficient update expression can be written as

w ′
n+1 = φ′w ′

n + μx′
n f

(
x′

n

)
e′

n + γn + ψn (15)

The term ψn is equal to zero for algorithms other than Leaky-LMS.

2.3. Existing fixed-point LMS models

In this section, the different available models which analyse the fixed-point LMS algorithm are explained. To have a
correct behavior, the fixed-point LMS algorithm must assure no overflow as presented in [9]. The LMS operation is made-up
of two phases corresponding first to the convergence and then to the steady-state. The modification of the convergence pro-
cess due to fixed-point arithmetic has been studied in [10] and [11]. The fixed-point arithmetic leads to a slight slowdown.
A condition on dynamic to prevent slowdown is proposed in [11]. The LMS output is only exploited at the steady-state
when the coefficients have converged towards the optimum coefficients. Thus, the fixed-point effects which decrease the
LMS output accuracy are analyzed only at the steady-state after convergence.

Different studies have been done about the fixed-point steady-state analysis of the LMS algorithm. In [3], the expression
of the mean square error (MSE) in fixed-point implementation is determined. In that case, the MSE is the second order
moment of the difference between the desired signal in infinite precision and the quantified computed output. Thus the
MSE is given by the sum of the mean square error in infinite precision and of the noise power which is composed of three
terms.

• The error αn due to input data quantization filtered by the coefficients wn leading to output noise αt
n wn .

• The input sequence xn filtered by the deviation ρn of the filter coefficients from their exact values in infinite precision
conducting to noise ρt

nxn .
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• The noise ηn inside the filter due to fixed-point arithmetic operations.

The second moment expression of these three terms has been determined. The two first terms are expressed as in the
case of linear systems. The last term is more complex. A recurrence is determined on the deviation of the coefficients.

ρn+1 = ρn + μenαn − μxnxt
nρn − μxn wt

nαn + μ(βn − ηn)xn + γn (16)

Denoting σ 2 the quantization noise variance, ξmin the minimum MSE, the obtained fixed-point MSE ξ ′ expression is
given by

ξ ′ = ξmin + μξmin Tr(R)

2 − μTr(R)
+

(
N−1∑
i=0

w2
opti

+ 1

2
μξminN

)
σ 2

α

+ Nσ 2
γ + μ2(σ 2

α

∑N−1
i=0 w2

opti
+ σ 2

β + σ 2
η ) + Nμ2σ 2

αξmin

2μ − μ2 Tr(R)
+ σ 2

η (17)

But, few hypotheses are made to reduce the expression complexity. The final result is complex and includes term of
second order in μ2.

Moreover, a condition to ensure a correct coefficients convergence is shown in [10]. The study published in [12] uses
the same developments but is looking at misadjustment comportment. A study based on [3] has been adapted to the NLMS
algorithm in [4]. The fixed-point MSE is determined and a condition to insure convergence is shown.

The model detailed in [2] deals with the MSE like the one before but the method is different. This model also determines
the MSE in the case of fixed-point implementation. Only two noises are considered. They correspond to the noise inside
the filter due to arithmetic operations and the noise in the multiplication between the input signal and the error μxn(yn −
wt

nxn). The deviation θn between the coefficients and their optimum value in the transform domain is introduced θn =
M[wopt − wn], where M is the matrix defined by R = M DM−1 and D a diagonal matrix. A recurrence is deduced such as

θn+1 = θn − μMxne′
n + γn (18)

Then, this recurrence is injected in the equation of the MSE. So, the MSE is determined in the case of finite precision.

ξ ′ = 1

1 − μ
2 Tr(R)

(
ξmin + Nσ 2

γ

2μ
+ σ 2

η

)
(19)

This expression leads to the same result as in [3] if the input noise is not considered.

In [13], a model based on quantized energy relation is proposed. With this relation, the fixed-point MSE of different
adaptive filters is computed. A result is shown for the LMS algorithm. Nevertheless, this approach is only proposed for
white input signal.

These different approaches consider that the noise generated during a cast operation1 are centered. This assumption is
only valid for convergent rounding. These models are not accurate for the other quantization modes.

3. General noise power expression

The global noise power expression is detailed in this part. The model is proposed for all quantization laws. Thus, quanti-
zation noise statistics are first introduced for the different quantization laws. Then, the output noise expression is presented
and its power expression is computed and is applicable to LMS-based algorithms. To determine output noise power expres-
sion, different hypotheses will be made.

Hypotheses.

• Quantization noises are independent from signal terms and other noises. This comes from quantization noise model.
• Coefficient deviation ρn is supposed uncorrelated with input data xn . This hypothesis has been verified by experimen-

tations and is deduced from recursive relation about ρn presented in this part.
• Error en is supposed to have zero-mean and to be uncorrelated with other signal terms. This last hypothesis is generally

applied in adaptive filtering domain and has been verified by experimentations.

1 Reduction of the number of bits.
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Table 1
Quantization noise first and second order moment for the three quantization modes.

Quantization
mode

Truncation Conventional
rounding

Convergent
rounding

Mean q
2 (1 − 2−k)

q
2 (2−k) 0

Variance q2

12 (1 − 2−2k)
q2

12 (1 − 2−2k)
q2

12 (1 + 2−2k+1)

3.1. Quantization noise model

A data quantization can be modelized by the sum of the data and a uniformly distributed white noise [14,15]. This white
noise (or quantization noise) is uncorrelated with the signal and other noise sources. According to the type of quantization,
the noise distribution will differ. Three quantization modes can be considered. It corresponds to truncation, conventional
rounding and convergent rounding. In truncation mode the different bits are directly eliminated. The resulting number is
always smaller or equal to the number before quantization and thus the quantization noise is always positive. Consequently,
the quantization noise mean is not equal to zero. To reduce the bias due to truncation, the rounding quantization mode can
be used. In conventional rounding, the data are rounded to the nearest value representable in the reduced-precision format.
For numbers located at the midpoint between two consecutive representable values, the data are rounded-up always to the
higher output value. This technique leads to a bias for the quantization noise. To eliminate the quantization noise bias, the
convergent rounding can be used. In this case, the numbers located at the midpoint between two consecutive representable
values are equiprobably rounded to the higher or lower output value.

Let n be the number of bits for the fractional part after the quantization process and k the number of bit eliminated dur-
ing the quantization. The quantization step q after the quantization is equal q = 2−n . By following the technique presented
in [16] for truncation, the quantization noise mean and variance are presented in Table 1 for the three quantization modes.

3.2. Output noise expression

The global noise by represents the noise at the filter output and corresponds to the difference between the fixed-point
estimate filter output ŷ′

n and the real estimate filter output ŷn .

by = ŷ′
n − ŷn (20)

Introducing Eqs. (10) and (2) in Eq. (20), the global noise byn expression becomes

by = w ′t
n x′

n + ηn − wt
nxn (21)

Using Eqs. (7) and (8) a new expression is obtained where the cross term including the product of noise terms is neglected.
Indeed, the expression (22) is obtained

by = wt
nαn + ρt

nxn + ηn (22)

The interest is in the noise power. The global noise power is given by the two order moment of expression (22)

E
[
b2

y

] = E
[(

αt
n wn

)2] + E
[(

ρt
nxn

)2] + E
[
η2

n

] + 2E
[
αt

n wnρ
t
nxn

] + 2E
[
αt

n wnηn
] + 2E

[
ρt

nxnηn
]

(23)

The cross terms can be neglected with respects to other terms, leading to the next expression

E
[
b2

y

] = E
[(

αt
n wn

)2] + E
[(

ρt
nxn

)2] + E
[
η2

n

]
(24)

The global noise power is divided into 3 terms which will be developed in the next sections.

3.2.1. Expression of the term E[(αt
n wn)2]

The term E[(αt
n wn)2] is associated to the noise due to the propagation of the input data quantization noise αn . This

quantization noise vector is not correlated with the coefficient vector wn . Thus, the term E[(αt
n wn)2] is equal to

E
[(

αt
n wn

)2] = Tr
(

E
[
αnα

t
n

]
E
[

wn wt
n

])
(25)

Given that αn is a white-noise vector, the term E[αnα
t
n] can be written as follows

E
[
αnα

t
n

] = σ 2
α IN + m2

α1N (26)

where IN is the N-size identity matrix and 1N the N-size matrix filled with 1. So, Eq. (27) can be simplified by

E
[(

αt
n wn

)2] = σ 2
α Tr

(
E
[

wn wt
n

]) + m2
α Tr

(
E
[

wn wt
n

]
1N

)
(27)

At the steady-state, wn can be approximated by the optimal coefficients wopt. In this case, the term E[(αt
n wn)2] can be

simplified as follows
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Fig. 2. Filter implementation.

Tr
(

E
[

wn wt
n

]) =
N−1∑
i=0

w2
opti

(28)

Tr
(

E
[

wn wt
n

]
1N

) =
(

N−1∑
i=0

wopti

)2

(29)

The term E[(αt
n wn)2] can be deduced such as

E
[(

αt
n wn

)2] = σ 2
α

N−1∑
i=0

w2
opti

+ m2
α

(
N−1∑
i=0

wopti

)2

(30)

The expression (30) shows that this term corresponds to the noise αn filtering with a Linear Time Invariant (LTI) FIR
where coefficients are equal to wopt.

3.2.2. Expression of the term E[η2
n ]

The second term E[η2
n] depends on the specific implementation chosen for the computation of the filter output (Fig. 2).

As all terms un and vn are independent, the power of ηn is given by the next expression

E
[
η2

n

] = σ 2
u +

N−1∑
i=0

σ 2
v(i) +

(
mu +

N−1∑
i=0

mv(i)

)2

(31)

The noise un are defined by the difference between output bits number bout and adders bits number badd whereas noises
vn depends on the difference between adders bits number badd and the sum of input data bits number bin and coefficients
bits number bcoef.

3.2.3. Expression of the term E[(ρt
nxn)2]

The last term E[(ρt
nxn)2] is more complex since ρn is not a quantization noise. Subtracting Eqs. (15) and (6), it leads to

w ′
n+1 − wn+1 = φ

(
w ′

n − wn
) + μe′

nx′
n f

(
x′

n

) − enxn f (xn) + �φwn + γn + ψn (32)

For recall, the finite-precision error is given in Eq. (9). With Eqs. (7) and (10), it leads to

e′
n = y′

n − ŷ′
n = yn + βn − w ′t

n x′
n − ηn

= yn − wt
nxn︸ ︷︷ ︸

en

−ρt
nxn − wt

nαn + βn − ηn (33)

With Eqs. (8), (7) and (33), and neglecting the second order noise terms, Eq. (32) becomes

ρn+1 = φρn + μen f (xn)αn − μxnxt
n f (xn)ρn − μxn f (xn)wt

nαn

+ μ(βn − ηn)xn f (xn) + μenxn f (αn) + �φwn + γn + ψn (34)

or else

ρn+1 = Fnρn + bn (35)

where

Fn = φ IN − μxnxt
n f (xn) (36)

and
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bn = μen f (xn)αn − μxn f (xn)wt
nαn + μ(βn − ηn)xn f (xn) + μenxn f (αn) + �φwn + γn + ψn (37)

The term f (αn) is equal to zero in the case of the LMS algorithm. If the NLMS algorithm is under consideration, this
term represents the input noise αn propagation through the normalization term. The noise propagation through the division
operator is given in [17] and leads to

f (αn) = − xt
nαn + αt

nxn

(xt
nxn)2

(38)

A recursion with the term ρn has been found. This recursion is the same as in [3] and [12]. Introducing the matrix
Pn = E[ρnρ

t
n], Eq. (39) can be obtained

Pn+1 = E
[
bnbt

n

] + E
[

Fnρnbt
n

] + E
[
bnρ

t
n Fn

] + E
[

Fnρnρ
t
n Fn

]
(39)

This expression is composed by four terms which are developed in the next paragraphs.

Computation of the term E[bnbt
n] of E[(ρt

nxn)2]. The term E[bnbt
n] is developed in this section. It represents the autocorrelation

matrix of bn and can be computed using Eq. (37) and neglecting the cross terms because of their weak power. Moreover,
quantization noise model lets us deduce the non-correlation between the noise terms and the other terms. The error en is
supposed uncorrelated with other signal terms. This hypothesis has been verified by experimentations. So, the term E[bnbt

n]
can be developed as follows

E
[
bnbt

n

] = μ2 E
[
e2

n f (xn)
2αnα

t
n

] + μ2 E
[
xn f (xn)

2 wt
nαnα

t
n wnxt

n

] + �φ2 E
[

wn wt
n

]
+ E

[
γnγ

t
n

] + E
[
ψnψ

t
n

] + μ2 E
[
x2

n f (xn)
2(β2

n + η2
n

)
xt

n

] + μ2 E
[
e2

nxn f (αn)
2xt

n

]
= μ2ξ E

[
f (xn)

2](σ 2
α IN + m2

α1N
) + μ2 E

[
xn f (xn)

2 wt
n

(
σ 2

α IN + m2
α1N

)
wnxt

n

]
+ �φ2 E

[
wn wt

n

] + (
σ 2

γ + σ 2
ψ

)
IN + (

m2
γ + m2

ψ

)
1N

+ μ2 E
[
x2

n f (xn)
2xt

n

](
σ 2

η + σ 2
β + m2

η + m2
β

) + μ2ξ E
[
xn f (αn)

2xt
n

]
(40)

where ξ = E[e2
n] is the MSE.

Computation of the terms E[Fnρnbt
n] and E[bnρ

t
n F t

n] of E[(ρt
nxn)2]. As bn is the sum of noise terms, it is independent from

the other terms. Moreover, Fn and ρn are non-correlated. Indeed, from Eq. (35), it is clear that ρn depends on Fn−1 but
does not depend on Fn . This hypothesis has been verified by simulations. Thus, with these two hypotheses, the first term
E[Fnρnbt

n] can be simplified into

E
[

Fnρnbt
n

] = E[Fn]E[ρn]E
[
bt

n

]
(41)

The computation of Eq. (41) requires the knowledge of E[ρn]. Thus, with average of Eq. (35) used at the steady-state, the
term E[ρn] is equal to

E[ρn] = (
IN − E[Fn]

)−1
E[bn] (42)

The term E[bn] is deduced form Eq. (37) in which en has zero-mean in general and the coefficients mean is equal to
optimum coefficients

E[bn] = −μE
[
xn f (xn)wt

n

]
mα + μ(mβ − mη)E

[
xn f (xn)

] + mγ + mψ + �φwopt (43)

Finally, introducing Eq. (42) in Eq. (41), the next expression is obtained

E
[

Fnρnbt
n

] = E[Fn](IN − E[Fn]
)−1

E[bn]E
[
bt

n

]
(44)

Using that Fn = φ IN − μxnxt
n f (xn), it leads to

E
[

Fnρnbt
n

] = (
φ IN − μE

[
xnxt

n f (xn)
])(

(1 − φ)IN + μE
[
xnxt

n f (xn)
])−1

E[bn]E
[
bt

n

]
(45)

To determine E[xnxt
n f (xn)], the average principle described in [4] leads to

E
[
xnxt

n f (xn)
] = R E

[
f (xn)

]
(46)

With the same method, the term E[bnρ
t
n Fn] can be computed with the following expression

E
[
bnρ

t
n Fn

] = E[bn]E
[
bt

n

](
φ IN − μR E

[
f (xn)

])(
(1 − φ)IN + μR E

[
f (xn)

])−1
(47)



R. Rocher et al. / Digital Signal Processing 20 (2010) 640–652 647
Computation of the fourth term E[Fnρnρ
t
n Fn] of E[(ρt

nxn)2]. As Fn = φ IN − μxnxt
n f (xn), E[Fnρnρ

t
n Fn] can be expressed as

follows

E
[

Fnρnρ
t
n Fn

] = E
[(

φ IN − μR E
[

f (xn)
])

ρnρ
t
n

(
φ IN − μR E

[
f (xn)

])]
(48)

Nevertheless, ρn and xn are supposed uncorrelated since, form Eq. (35), ρn depends on xn−1 but not on xn . So, developing
Eq. (48), and using [18] and [19], it leads to

E
[

Fnρnρ
t
n Fn

] = φ2 Pn − 2μφR E
[

f (xn)
]

Pn + μ2 R E
[

f (xn)
2] tr(R Pn) (49)

The term in μ2 is smaller than the two other terms so μ2 R E[ f (xn)2] tr(R Pn) can be neglected. Thus, E[Fnρnρ
t
n Fn] can

be written as

E
[

Fnρnρ
t
n Fn

] = φ2 Pn − 2μφR E
[

f (xn)
]

Pn (50)

Computation of E[(ρt
nxn)2]. Grouping Eqs. (50), (47), (45) and (40) in Eq. (40), the next expression is obtained

Pn+1 = φ2 Pn − 2μφR E
[

f (xn)
]

Pn + E
[
bnbt

n

] + E[bn]E
[
bt

n

](
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[
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])(
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E[bn]E

[
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n

]
(51)

At the steady-state, Pn+1 = Pn . So Eq. (51) becomes

Pn
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[

f (xn)
]) = E

[
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n

] + E[bn]E
[
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[
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])(
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[
f (xn)

])−1
E[bn]E

[
bt

n

]
(52)

Multiplying by the inverse of ((1 − φ2)IN + 2μφR E[ f (xn)]) and by R , it leads to

R Pn = R
((

1 − φ2)IN + 2μφR E
[

f (xn)
])−1(

E
[
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n
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[
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])(
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[
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(53)

Using the trace operator and its commutativity property, it leads to

Tr(R Pn) = Tr
(

R
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[

f (xn)
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[
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n
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(54)

Moreover, using non-correlation between ρn and xn , the next equation can be written

Tr(R Pn) = E
[(

ρt
nxn

)2]
(55)

Using the trace operator properties Tr(AB) = Tr(B A) for matrix A and B , the term E[(ρt
nxn)2] can be obtained from

Eq. (54)

E
[
ρt

nxn
]2 = Tr

(
R
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[
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E
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](
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[
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f (xn)
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(56)

This term corresponds to the input signal filtered by the deviation on the coefficients.

3.2.4. Global noise power
According to the previous analysis, the global noise power Pb can be written as

Pb = σ 2
α

N−1∑
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w2
opti

+ m2
α

(
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i=0

wopti

)2

+ m2
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](
φ IN − μR E

[
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])(
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[
f (xn)

])−1))
(57)

4. Simplified model for LMS, NLMS and Leaky-LMS

4.1. Case of the LMS algorithm

In the case of the LMS algorithm, some simplifications can be made: φ = 1, f (xn) = 1 and f (αn) = 0.
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Moreover, bn can be approximated by γn (γn is the noise associated with the term μe′
nx′

n). Indeed, bn is composed of
several terms in which γn is the most important since the other terms are products of weak power terms. So, the term
E[bnbt

n] is approximated by

E
[
bnbt

n

] = σ 2
γ IN + m2

γ 1N (58)

With these hypotheses, the global noise power becomes

Pb = σ 2
α

N−1∑
i=0

w2
opti

+ m2
α

(
N−1∑
i=0

wopti

)2

+ (
m2

η + σ 2
η
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γ

∑N
i=1

∑N
j=1 R−1

i j

μ2
+ N(σ 2

γ − m2
γ )

2μ
(59)

This model is presented for quantization by truncation and rounding. In the case of rounding, the means of ηn and γn

are not equal to zero since they represent the quantization of a discrete signal. From Eq. (57), mα is the only term to be
equal to zero in rounding quantization.

However, if the implementation is made in convergent rounding quantization, the means of ηn and γn are equal to zero
leading to

Pb = σ 2
α

N∑
i=1

w2
opti

+ σ 2
η + Nσ 2

γ

2μ
(60)

In that case, the expression is quite similar to the model in [3] and [2] but more tractable (no second order term in μ2).

4.2. The NLMS algorithm

For the NLMS algorithm, the simplificative hypotheses can be made:

φ = 1, f (xn) = 1

xt
nxn

and f (αn) = − xt
nαn + αt

nxn

(xt
nxn)2

The term E[ f (xn)] can be determined using [6]. Let τi be the correlation coefficient between x2(n) and x2(n − i) for
i ∈ [1 : N − 1] defined as

τi = E[x2(n − i)x2(n)] − E[x2]2

E[x4 − E2[x2]] (61)

Using the term τi and denoting rn = xt
nxn , E[ 1

rn
] is equal to
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(62)

with

χ =
(

ψ(N + 2
∑N−1

i=1 (N − i)τi) + 2
∑N−1

i=1 (N − i)(1 − τi)

N2

)

where ψ = E[x4]
E[x2]2 represents the kurtosis of the input signal.

Consequently, the global noise power can be written as

Pb = σ 2
α
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χ2μ2
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2μχ
(63)
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Fig. 3. Relative error for rounding quantization.

5. Accuracy estimation quality

In this section, experiments have been conducted to analyse the accuracy of our model for evaluating the fixed-point
noise power in LMS algorithms. The input signal chosen is an AR(1) process defined by

x(n + 1) = βx(n) + u(n) (64)

where u(n) is a white noise with zero mean, with variance σ 2
u and β ∈ [0,1[. So, the input signal can be very correlated

(β −→ 1) or not (β −→ 0). For these simulations, tests are made for quantization by truncation and rounding. The relative
error between the noise power obtained with simulations and the estimated noise power with our model is computed. For
these simulations, μ can vary from 0 to 0.6μmax. Indeed, the filter coefficients convergence is ensured if μ < μmax. But,
in reality, to be sure that the coefficients do not diverge, a limit of 0.6μmax is chosen. However, as μmax depends on the
length filter, μ is represented by μ

μmax
to be normalized. Moreover, the filter length N varies from 1 to 1024. The input

signal is fairly correlated (β = 0.5) for the two simulations.

5.1. Evaluation of the model accuracy

Fig. 3 shows the relative error between the real and the estimated noise power in rounding quantization. This relative
error is smaller than 25% which is a good result since it represents a difference of 1 dB between the output quantization
noise power estimated by simulation and the power given by our model. So, this new developed model leads to satisfying
results for the case of quantization by rounding.

Fig. 4 represents the relative error in the case of quantization by truncation. As in the rounding quantization case, our
model leads to an accurate estimation of the noise power. The relative error is smaller than 20%.

Fig. 5 shows relative error for an LMS algorithm for μ = μmax
2 . Results are presented for different input data correlations

and according to LMS size N . Input data can be uncorrelated (β = 0.05), fairly correlated (β = 0.5) or very correlated
(β = 0.95). In all cases, relative error is less than 30% which represents a difference less than 1 significative bit between
real noise power and the one estimated by our method.

Fig. 6 illustrates the relative error for the Leaky-LMS algorithm in the case of quantization by truncation. The filter length
varies from 1 to 64. The results are very good since the maximum relative error is about 10%.

5.2. Comparisons with the other models

Our model has been compared with the two others models presented before [3,2]. For this simulation, N varies from 1
to 128 and μ is fixed at μmax

2 . The results are presented in Fig. 7. This test is made in the case of quantization by rounding
for which the two other proposed models are presented.
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Fig. 4. Relative error for truncation quantization.

Fig. 5. Relative error for truncation quantization for LMS algorithm for μ = μmax
2 .

The model in [2] is the less accurate because it does not integrate the input noise. Our model has better results than the
model in [3]. Our simplifications are not prejudicial for the estimation quality. Moreover, the terms we have added in our
model let us have a better result. In some cases, the models [2] and [3] are not accurate because they do not integrate the

terms m2
η , m2

γ

∑N
i=1

∑N
k=1(R−1

ki )

μ2 and − Nm2
γ

2μ for a rounding quantization. In the case of quantization by truncation, theses two

models lead to a relative error equal to 100%. As a quantization by truncation is the most used law in embedded systems,
this result shows the interest of our model.
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Fig. 6. Relative error for truncation quantization for Leaky-LMS algorithm.

Fig. 7. Comparison between the three models.

6. Conclusion

In this paper, a new model for evaluating the noise power in a fixed-point implementation of the LMS-based algorithms
is presented. This approach has for main advantage to be more tractable than the models [3] and [2] and to be proposed
for all types of quantization. Moreover, this model is more general and can be applied to algorithms such as NLMS or
Leaky-LMS. Obtained relative error are less than 25% showing the accuracy of our model. This model lets us define an IPs
generator [1], in which a virtual component is optimized in an arithmetic point of view under accuracy constraint.
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