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Let 𝑇 > 1 be an integer, and letT = {1, 2, . . . , 𝑇}. We discuss the spectrum of discrete linear second-order eigenvalue problems
Δ
2
𝑢 (𝑡 − 1) + 𝜆𝑚 (𝑡) 𝑢 (𝑡) = 0, 𝑡 ∈ T , 𝑢 (0) = 𝑢 (𝑇 + 1) = 0, where 𝜆 ̸= 0 is a parameter, 𝑚 : T → R changes sign and 𝑚(𝑡) ̸= 0

on T . At last, as an application of this spectrum result, we show the existence of sign-changing solutions of discrete nonlinear
second-order problems by using bifurcate technique.

1. Introduction

Let 𝑇 > 1 be an integer, T = {1, 2, . . . , 𝑇}. Let us consider
the spectrum of the discrete second-order linear eigenvalue
problem

Δ
2
𝑢 (𝑡 − 1) + 𝜆𝑚 (𝑡) 𝑢 (𝑡) = 0, 𝑡 ∈ T , (1)

𝑢 (0) = 𝑢 (𝑇 + 1) = 0, (2)

where 𝜆 ̸= 0 is a parameter, and 𝑚 changes sign on T ; that is,
𝑚 satisfies the following.

(H0) There exists a proper subset T
+
⊂ T , such that

𝑚(𝑡) > 0, 𝑡 ∈ T
+
; 𝑚 (𝑡) < 0, 𝑡 ∈ T \ T

+
. (3)

Let 𝑛 be the number of elements in T
+
.Then 𝑛 ∈ {1, . . . , 𝑇−1}.

In [1], Ince studied the second-order linear eigenvalue
problem

𝑢
󸀠󸀠
(𝑡) + 𝜇𝑔 (𝑡) 𝑢 (𝑡) = 0, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 0,

(4)

where 𝑔 : [0, 1] → R is continuous and changes sign. He
obtained the following result.

Theorem A. Problem (4) has an infinite sequence of simple
eigenvalues

−∞ ←󳨀 ⋅ ⋅ ⋅ < 𝜇
𝑘,−
< ⋅ ⋅ ⋅ < 𝜇

2,−
< 𝜇
1,−
< 0 < 𝜇

1,+

< ⋅ ⋅ ⋅ < 𝜇
𝑘,+
< ⋅ ⋅ ⋅ 󳨀→ +∞

(5)

and the eigenfunction corresponding to 𝜇
𝑘,±

has exactly 𝑘 − 1
simple zeros in (0, 1).

This result has been extended to one-dimensional
𝑝-Laplacian operator by Anane et al. [2] and to the high-
dimensional case by Hess and Kato [3], Bongsoo and Brown
[4], and Afrouzi and Brown [5]. Meanwhile, these spectrum
results have been used to deal with several nonlinear prob-
lems; see, for example, [4–7] and the references therein.

For the discrete case, Atkinson [8] studied the discrete
linear eigenvalue problems

𝑐 (𝑡) 𝑦 (𝑡 + 1)

= (𝜆𝑎 (𝑡) + 𝑏 (𝑡)) 𝑦 (𝑡) − 𝑐 (𝑡 − 1) 𝑦 (𝑡 − 1) , 𝑡 ∈ T ,
(6)

𝑦
0
= 0, 𝑦 (𝑇 + 1) + 𝑙𝑦 (𝑇) = 0 (7)

and obtained that (6) and (7) have exactly 𝑇 real eigenvalues,
which can be ordered as 𝜆

1
< 𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑇
. Here 𝑎(𝑡) > 0,

𝑐(𝑡) > 0, and 𝑙 is some fixed real number.
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In 1995, Jirari [9] studied (6) with the more general
boundary conditions

𝑦 (0) + ℎ𝑦 (1) = 0, 𝑦 (𝑇 + 1) + 𝑙𝑦 (𝑇) = 0, (8)

where ℎ, 𝑙 ∈ R. He got that (6) and (8) have𝑇 real eigenvalues,
which can be ordered as 𝜆

1
< 𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑇
.

However, these two results do not give any information of
the eigenfunctions of the linear eigenvalue problems (6) and
(7) or (6) and (8).

In 1991, Kelley and Peterson [24] investigated the line
eigenvalue problems

Δ [𝑝 (𝑡 − 1) Δ𝑦 (𝑡 − 1)] + 𝑞 (𝑡) 𝑦 (𝑡) + 𝜆𝑚 (𝑡) 𝑦 (𝑡) = 0,

𝑡 ∈ T ,

𝑦 (0) = 𝑦 (𝑇 + 1) = 0,

(9)

where𝑝(𝑡) > 0on {0, 1, . . . , 𝑇}, 𝑞(𝑡) is defined and real valued
on T and𝑚(𝑡) > 0 on T . They proved the following.

Theorem B. Problem (9) has exactly 𝑇 real and simple
eigenvalues 𝜆

𝑘
, 𝑘 ∈ T , which satisfies

𝜆
1
< 𝜆
2
< ⋅ ⋅ ⋅ < 𝜆

𝑇 (10)

and the eigenfunction corresponding to 𝜆
𝑘
has exactly 𝑘 − 1

simple generalized zeros.

Furthermore, when 𝑚(𝑡) ≡ 1, Agarwal et al. [10] gen-
eralized the results of Theorem B to the dynamic equations
on time scales with Sturm-Liouville boundary condition.
Moreover, under the assumption that the weight functions
are not changing sign, several important results on linear
Hamiltonian difference systems have also been established by
Shi and Chen [11], Bohner [12], and the references therein.

However, there are few results on the spectrum of discrete
second-order linear eigenvalue problems when𝑚(𝑡) changes
its sign on T . In 2008, Shi and Yan [13] discussed the spectral
theory of left definite difference operators when 𝑚(𝑡) may
change its sign. However, they provided no information
about the sign of the eigenvalues and no information about
the corresponding eigenfunctions. Recently, Ma et al. [14]
obtained that (1) and (2) have twoprincipal eigenvalues𝜆

1,−
<

0 < 𝜆
1,+

and they studied some corresponding discrete
nonlinear problems.

It is the purpose of this paper to establish the discrete
analogue of Theorem A for the discrete problems (1) and (2).
More precisely, we will prove the following.

Theorem 1. Let 𝑛 be the number of elements in T
+
. Let (H0)

hold and let ] ∈ {+, −}. Then

(a) if 1 ≤ 𝑛 ≤ 𝑇−1, then (1) and (2) have𝑇 real and simple
eigenvalues, which can be ordered as follows:

𝜆
𝑇−𝑛,−

< 𝜆
𝑇−𝑛−1,−

< ⋅ ⋅ ⋅ < 𝜆
1,−
< 0 < 𝜆

1,+

< 𝜆
2,+
< ⋅ ⋅ ⋅ < 𝜆

𝑛,+
;

(11)

(b) every eigenfunction 𝜓
𝑘,] corresponding to the eigen-

value 𝜆
𝑘,] has exactly 𝑘 − 1 simple generalized zeros.

The rest of the paper is arranged as follows. In Section 2,
some preliminaries will be given including Lagrange-type
identities. In Section 3, we develop a new method to count
the number of negative and positive eigenvalues of (1) and (2),
which enable us to prove Theorem 1. Finally in Section 4, we
apply our spectrum theory and the Rabinowitz’s bifurcation
theorem to consider the existence of sign-changing solutions
of discrete nonlinear problems

Δ
2
𝑢 (𝑡 − 1) + 𝑟𝑚 (𝑡) 𝑓 (𝑢 (𝑡)) = 0, 𝑡 ∈ T , (12)

𝑢 (0) = 𝑢 (𝑇 + 1) = 0, (13)

where 𝑟 ̸= 0 is a real parameter, 𝑚 : T → R changes its sign,
𝑚(𝑡) ̸= 0 on T , and 𝑓 : R → R is continuous.

Remark 2. There is also much literature dealing with differ-
ence equations similar to (12) subject to various boundary
value conditions. We refer to [15–22] and the references
therein. However, the weight𝑚(𝑡) > 0 in these papers.

2. Preliminaries

Recall that T = {1, . . . , 𝑇}. Let T̂ = {0, 1, . . . , 𝑇, 𝑇 + 1}, 𝑋 =

{𝑢 : T̂ → R | 𝑢(0) = 𝑢(𝑇 + 1) = 0}. Then 𝑋 is a Banach
space under the norm ‖𝑢‖

𝑋
= max

𝑡∈T̂ |𝑢(𝑡)|. Let 𝑌 = {𝑢 | 𝑢 :

T → R}. Then 𝑌 is a Banach space under the norm ‖𝑢‖
𝑌
=

max
𝑡∈T |𝑢(𝑡)|.

Definition 3 (see [22]). Suppose that a function𝑦 : T̂ → R. If
𝑦(𝑡) = 0, then 𝑡 is a zero of𝑦. If𝑦(𝑡) = 0 and𝑦(𝑡−1)𝑦(𝑡+1) < 0
for some 𝑡 ∈ {2, . . . , 𝑇 − 1}, then 𝑡 is a simple zero of 𝑦. If
𝑦(𝑡)𝑦(𝑡 + 1) < 0 for some 𝑡 ∈ {1, . . . , 𝑇− 1}, then 𝑦 has a node
at the point

𝑠 =
𝑡𝑦 (𝑡 + 1) − (𝑡 + 1) 𝑦 (𝑡)

𝑦 (𝑡 + 1) − 𝑦 (𝑡)
∈ (𝑡, 𝑡 + 1) . (14)

The nodes and simple zeros of 𝑦 are called the simple
generalized zeros of 𝑦.

To find the eigenvalue of (1) and (2), we rewrite (1) as
follows:

𝑢 (𝑡 + 1) = (2 − 𝜆𝑚 (𝑡)) 𝑢 (𝑡) − 𝑢 (𝑡 − 1) , 𝑡 ∈ T . (15)

From (15), it can be seen that if 𝜆 is an eigenvalue of (1) and
(2), then 𝑢(1) ̸= 0. Without loss of generality, we suppose that

𝑢 (1) = 1. (16)

Further, from (15), (2), and (16), for each 𝑡 ∈ T , 𝑢(𝑡) is
precisely a polynomial of degree 𝑡 − 1 of 𝜆, we denote it by
𝑢(𝑡, 𝜆).

Lemma 4 (Lagrange-type identities). For 𝑡 ∈ T ,

(𝜆 − 𝜇)

𝑡

∑

𝑠=1

𝑚(𝑠) 𝑢 (𝑠, 𝜆) 𝑢 (𝑠, 𝜇)

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑡 + 1, 𝜇) 𝑢 (𝑡 + 1, 𝜆)

𝑢 (𝑡, 𝜇) 𝑢 (𝑡, 𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(17)
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Proof. We write (15) for the two arguments in full, giving

𝑢 (𝑡 + 1, 𝜆) = (2 − 𝜆𝑚 (𝑡)) 𝑢 (𝑡, 𝜆) − 𝑢 (𝑡 − 1, 𝜆) ,

𝑢 (𝑡 + 1, 𝜇) = (2 − 𝜇𝑚 (𝑡)) 𝑢 (𝑡, 𝜇) − 𝑢 (𝑡 − 1, 𝜇) .

(18)

Multiplying, respectively, by 𝑢(𝑡, 𝜇), 𝑢(𝑡, 𝜆) and subtracting,
we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑡 + 1, 𝜆) 𝑢 (𝑡 + 1, 𝜇)

𝑢 (𝑡, 𝜆) 𝑢 (𝑡, 𝜇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= (𝜇 − 𝜆)𝑚 (𝑡) 𝑢 (𝑡, 𝜆) 𝑢 (𝑡, 𝜇)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑡, 𝜆) 𝑢 (𝑡, 𝜇)

𝑢 (𝑡 − 1, 𝜆) 𝑢 (𝑡 − 1, 𝜇)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(19)

and putting 𝑡 = 1 and recalling that 𝑢(0, 𝜆) = 𝑢(0, 𝜇) = 0, we
derive (17) with 𝑡 = 1. Induction over 𝑡 then yields (17) from
(19) in the general case.

Corollary 5. For 𝑡 ∈ T ,

𝑡

∑

𝑠=1

𝑚(𝑠) (𝑢 (𝑠, 𝜆))
2
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑡 + 1, 𝜆) 𝑢
󸀠
(𝑡 + 1, 𝜆)

𝑢 (𝑡, 𝜆) 𝑢
󸀠
(𝑡, 𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (20)

Proof. Dividing (17) by 𝜇 − 𝜆 and making 𝜇 → 𝜆 for fixed 𝜆,
then we get the desired result.

Corollary 6. For 𝑡 ∈ T , and complex 𝜆,

𝑡

∑

𝑠=1

𝑚(𝑠) |𝑢 (𝑠, 𝜆)|
2

= (2𝑖𝐼𝑚𝜆)
−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑡 + 1, 𝜆) 𝑢 (𝑡 + 1, 𝜆)

𝑢 (𝑡, 𝜆) 𝑢 (𝑡, 𝜆)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(21)

Proof. Set 𝜇 = 𝜆 in (17). Then (21) is obtained.

3. Spectrum of (1) and (2)
Lemma 7. For 𝑡 ∈ T , if (𝜆, 𝑢) is a solution of

Δ
2
𝑢 (𝑠 − 1) + 𝜆𝑚 (𝑠) 𝑢 (𝑠) = 0, 𝑠 ∈ {1, 2, . . . , 𝑡} , (22)

satisfying 𝑢(0) = 0, 𝑢(𝑡)𝑢(𝑡 + 1) ≤ 0, and 𝑢 ̸≡ 0 on T , then

𝑡

∑

𝑠=1

𝑚(𝑠) (𝑢 (𝑠))
2
̸= 0. (23)

Moreover, if 𝜆 > 0, then ∑𝑡
𝑠=1
𝑚(𝑠)(𝑢(𝑠))

2
> 0. If 𝜆 < 0, then

∑
𝑡

𝑠=1
𝑚(𝑠)(𝑢(𝑠))

2
< 0.

Proof. It is easy to see that 𝜆 ̸= 0. Now, multiplying (22) by
𝑢(𝑠), then we get that

𝜆

𝑡

∑

𝑠=1

𝑚(𝑠) (𝑢 (𝑠))
2

=

𝑡

∑

𝑠=1

− Δ
2
𝑢 (𝑠 − 1) 𝑢 (𝑠)

=

𝑡

∑

𝑠=1

Δ𝑢 (𝑠 − 1) 𝑢 (𝑠) −

𝑡

∑

𝑠=1

Δ𝑢 (𝑠) 𝑢 (𝑠)

=

𝑡−1

∑

𝑠=0

Δ𝑢 (𝑠) 𝑢 (𝑠 + 1) −

𝑡

∑

𝑠=1

Δ𝑢 (𝑠) 𝑢 (𝑠)

=

𝑡−1

∑

𝑠=1

Δ𝑢 (𝑠) 𝑢 (𝑠 + 1)

−

𝑡−1

∑

𝑠=1

Δ𝑢 (𝑠) 𝑢 (𝑠) + 𝑢 (1) Δ𝑢 (0) − 𝑢 (𝑡) Δ𝑢 (𝑡)

=

𝑡−1

∑

𝑠=1

(Δ𝑢 (𝑠))
2
+ (𝑢 (1))

2
+ (𝑢 (𝑡))

2
− 𝑢 (𝑡) 𝑢 (𝑡 + 1) ,

(24)

which implies the desired result.

Now, we prove some oscillatory properties.

Lemma 8. For 𝑡 ∈ {1, 2, . . . , 𝑇 + 1}, the polynomial 𝑢(𝑡, 𝜆) has
precisely 𝑡 − 1 real and simple zeros.

Proof. This proof is divided into two steps.
Step 1 (each zero of 𝑢(𝑡, 𝜆) is real). Suppose on the contrary
that𝑢(𝑡, 𝜆)has a complex zero𝜆

0
; then𝑢(𝑡, 𝜆

0
) = 𝑢(𝑡, 𝜆

0
) = 0.

Furthermore,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑡, 𝜆
0
) 𝑢 (𝑡, 𝜆

0
)

𝑢 (𝑡 − 1, 𝜆
0
) 𝑢 (𝑡 − 1, 𝜆

0
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (25)

On the other hand, if 𝜆
0
is a zero of 𝑢(𝑡, 𝜆), then 𝜆

0
is an

eigenvalue of the linear eigenvalue problem

Δ
2
𝑢 (𝑠 − 1) + 𝜆𝑚 (𝑠) 𝑢 (𝑠) = 0, 𝑠 ∈ {1, 2, . . . , 𝑡 − 1} ,

𝑢 (0) = 𝑢 (𝑡) = 0.

(26)

Now, by Lemma 7 and Corollary 6, we get that the above
determinant does not equal zero, which is a contradiction.
Hence, the zeros of 𝑢(𝑡, 𝜆) are all real for 𝑡 ∈ T .
Step 2 (all of the zeros of 𝑢(𝑡, 𝜆) are simple). Suppose on the
contrary that 𝑢(𝑡, 𝜆) has a multiple zeros 𝜆

∗
, necessarily real.

Then 𝑢(𝑡, 𝜆
∗
) = 0 and 𝑢󸀠(𝑡, 𝜆

∗
) = 0. Moreover,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢
󸀠
(𝑡, 𝜆
∗
) 𝑢 (𝑡, 𝜆

∗
)

𝑢
󸀠
(𝑡 − 1, 𝜆

∗
) 𝑢 (𝑡 − 1, 𝜆

∗
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0. (27)

However, by Lemma 7 and Corollary 5, we get that the above
determinant does not equal zero, a contradiction.
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Lemma 9 (see [14]). Let 𝑛 ∈ {1, . . . , 𝑇 − 1}. Then (1) and
(2) have two principal eigenvalues 𝜆

1,+
> 0 > 𝜆

1,−
and the

corresponding eigenfunctions do not change their sign.

From Lemma 8, it follows that the spectra of (1) and (2)
consist of𝑇 real eigenvalues. Furthermore, by Lemma 9, there
exists 𝑝 ∈ {1, . . . , 𝑇 − 1} such that such 𝑇 real eigenvalues can
be ordered as follows:

𝜆
𝑇−𝑝,−

< 𝜆
𝑇−𝑝−1,−

< ⋅ ⋅ ⋅ < 𝜆
1,−
< 0 < 𝜆

1,+
< ⋅ ⋅ ⋅ < 𝜆

𝑝,+
.

(28)

Define 𝐿 : 𝑋 → 𝑌 by

𝐿𝑢 (𝑡) = −Δ
2
𝑢 (𝑡 − 1) , 𝑢 ∈ 𝑋. (29)

Then we get the following.

Lemma 10. Let ] ∈ {+, −}. Then dim ker(𝐿 − 𝜆
𝑘,]𝑚𝐼) = 1,

where 𝐼 denotes the identity operator.

Proof. Suppose that 𝜑
𝑘,] ∈ 𝑋 and 𝜙

𝑘,] ∈ 𝑋 are two eigenfunc-
tions corresponding to 𝜆

𝑘,]. Then 𝜑
𝑘,](0) = 𝜙

𝑘,](0) = 0 and
there exists a constant 𝑐 ∈ R such that 𝜑

𝑘,](1) = 𝑐𝜙𝑘,](1) ̸= 0.
Now, by the recurrence relation (15), we get that 𝜑

𝑘,](𝑡) =

𝑐𝜙
𝑘,](𝑡) for 𝑡 ∈ T̂ .

By Lemmas 8–10, all of the eigenvalues of (1) and (2) are
real and simple. Now, for fixed𝜆, let us investigate the number
of sign-changing times of the following sequence,

𝑢 (1, 𝜆) , 𝑢 (2, 𝜆) , . . . , 𝑢 (𝑇, 𝜆) . (30)

So far, 𝑢(𝑡, 𝜆) has only been defined for integral values of
𝑡, 𝑡 = 0, 1, . . . , 𝑇 + 1. We extend it to a continuous function
𝑢(𝑥, 𝜆), 0 ≤ 𝑥 ≤ 𝑇 + 1, specifically, for 𝑡 ≤ 𝑥 ≤ 𝑡 + 1,
𝑢(𝑥, 𝜆) = (𝑢(𝑡 + 1, 𝜆) − 𝑢(𝑡, 𝜆))(𝑥 − 𝑡) + 𝑢(𝑡, 𝜆) to be a linear
function of 𝑥.

Lemma 11. For fixed real 𝜆, the zeros of 𝑢(𝑥, 𝜆), 0 ≤ 𝑥 ≤ 𝑇+1
are simple.

Proof. Suppose that 𝑥󸀠 is a zero of 𝑢(𝑥, 𝜆). Now, the proof can
be divided into two cases.
Case 1. If 𝑥

0
∈ T , then by virtue of (15), we get that 𝑢(𝑥

0
+

1, 𝜆)𝑢(𝑥
0
− 1, 𝜆) < 0.

Case 2. If 𝑥
0
∈ (𝑡, 𝑡 + 1) for some 𝑡 ∈ T . Then (𝜕/𝜕𝑥)𝑢(𝑥, 𝜆)

exists at𝑥 = 𝑥
0
and is not zero by the definition of𝑢(𝑥, 𝜆).

Using the same method used in [1, Page 102], we may
prove the following.

Lemma 12. Let 𝑥(𝜆) be the zeros of 𝑢(𝑡 + 1, 𝜆). Then 𝑥(𝜆) is a
continuous function of 𝜆.

Lemma 13. For 𝜆 > 0, the zeros, 𝑥(𝜆), of 𝑢(𝑥, 𝜆), 𝑥 ∈ (0, 𝑇+1]
is a decreasing function of 𝜆. For 𝜆 < 0, 𝑥(𝜆) is an increasing
function of 𝜆 for 𝑥 ∈ (0, 𝑇 + 1].

Proof. Let the zero 𝑥(𝜆) occur in (𝑡, 𝑡 + 1]. Since 𝑢(𝑥, 𝜆) is
linear in (𝑡, 𝑡 + 1], the location of this zero is given by

𝑥 (𝜆) = 𝑡 +
𝑢 (𝑡, 𝜆)

𝑢 (𝑡, 𝜆) − 𝑢 (𝑡 + 1, 𝜆)
; (31)

conversely, 𝑥(𝜆) as given by this equation will actually be a
zero of 𝑢(𝑥, 𝜆) if 𝑢(𝑡, 𝜆) ̸= 𝑢(𝑡 + 1, 𝜆) and if 𝑥(𝜆) so the given
falls in the interval (𝑡, 𝑡 + 1]. If we differentiate the right of
(31), with respect to 𝜆, the result is found to be

𝑥
󸀠
(𝜆) =

(𝜕/𝜕𝜆) 𝑢 (𝑡 + 1, 𝜆) 𝑢 (𝑡, 𝜆) − 𝑢 (𝑡 + 1) (𝜕/𝜕𝜆) 𝑢 (𝑡, 𝜆)

(𝑢 (𝑡, 𝜆) − 𝑢 (𝑡 + 1, 𝜆))
2

,

(32)

and this does not equal zero by Lemma 7 and Corollary 5.
Furthermore, for 𝜆 > 0, 𝑥󸀠(𝜆) < 0 and for 𝜆 < 0, 𝑥󸀠(𝜆) > 0.
This combines with the continuity of 𝑥(𝜆), and we get the
desired result.

Now, we can set up the oscillatory characterization of the
eigenvalues of (1) and (2).

Lemma 14. Let ] ∈ {+, −}. The sequence

{𝑢 (0, 𝜆) , 𝑢 (1, 𝜆) , 𝑢 (2, 𝜆) , . . . , 𝑢 (𝑇 + 1, 𝜆)} (33)

exhibits for 𝜆
1,−
≤ 𝜆 ≤ 𝜆

1,+
no changes of sign; for |𝜆

𝑘,]| < 𝜆 ≤

|𝜆
𝑘+1,]|, exactly 𝑘 changes sign; for 𝜆 > 𝜆𝑝,+, exactly 𝑝 changes

sign; for 𝜆 < 𝜆
𝑇−𝑝,−

, exactly 𝑇 − 𝑝 changes sign.

Proof. To prove the times of changes of sign of (33), it is
equivalent to find the number of zeros of 𝑢(𝑥, 𝜆), 𝑥 ∈ (1, 𝑇 +
1). We only deal with the case that ] = +; the case ] = − is
similar.

By Lemma 12, for 𝑘 = 1, 2, 3, . . . , 𝑝 − 1, there exist 𝑝 − 1
functions 𝑥

𝑘,+
(𝜆), which satisfy 𝑥

𝑘,+
(𝜆
𝑘,+
) = 𝑇 + 1 and are all

decreasing function of 𝜆; moreover, for fixed 𝜆, there are the
zeros of 𝑢(𝑥, 𝜆). Since 𝑢(0, 𝜆) = 0 and 𝑢(1, 𝜆) = 1, it follows
that 𝑥

𝑘,+
(𝜆) ∈ (1, 𝑇 + 1) for 𝜆 > 𝜆

𝑘,+
.

For 0 ≤ 𝜆 ≤ 𝜆
1,+
, by Lemma 8, we get that 𝑢(𝑥, 𝜆) does

not have a zero in (1, 𝑇 + 1).
Let 𝜆

⬦
∈ (𝜆

1,+
, 𝜆
2,+
] be arbitrary. Since 𝑥

1,+
(𝜆) is

continuous and decreasing, 𝑥
1,+
(𝜆)will intersect with 𝜆 = 𝜆

⬦

at (𝜆
⬦
, 𝑥
1,+
(𝜆
⬦
)). Moreover, 𝑥

1,+
(𝜆
1,+
) = 𝑇+1 and 𝜆

⬦
> 𝜆
1,+
,

which implies that 𝑥
1,+
(𝜆
⬦
) < 𝑇 + 1. Thus, for 𝜆 = 𝜆

2,+
, (33)

changes its sign exactly one time.
Now, we claim that for the same 𝜆, 𝑥

𝑘,+
(𝜆) and 𝑥

𝑘+1,+
(𝜆)

have no common zero for each 𝑘 ∈ {1, 2, . . . , 𝑝 − 1}.
Suppose the contrary, then there exists 𝜆∗ ∈ (𝜆

2,+
, 𝜆
𝑝,+
)

such that

𝜆
∗
= min {𝜆 | 𝑥

𝑘,+
(𝜆) = 𝑥

𝑘+1,+
(𝜆) , 𝑘 = 1, 2, . . . , 𝑝 − 2} .

(34)

Let

𝑘
∗
= min {𝑘 | 𝑥

𝑘,+
(𝜆
∗
) = 𝑥
𝑘+1,+

(𝜆
∗
) , 𝑘 = 1, 2, . . . , 𝑝 − 2} .

(35)

Then, for 𝜆 ≤ 𝜆∗, 𝑥
𝑘
∗
,+
(𝜆) is the 𝑘∗th zero of 𝑢(𝑥, 𝜆).
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Case 1. If there exists 𝑡
0
∈ T such that 𝑥

𝑘
∗
+1,+

(𝜆
∗
) =

𝑥
𝑘
∗
,+
(𝜆
∗
) ∈ (𝑡

0
, 𝑡
0
+ 1), then by the definition of 𝑢(𝑥, 𝜆), we

obtain that the signs of 𝑢(𝑡
0
, 𝜆
∗
) and 𝑢(𝑡

0
+1, 𝜆
∗
) are opposite.

Without loss of generality, suppose that 𝑢(𝑡
0
, 𝜆
∗
) > 0 and

𝑢(𝑡
0
+ 1, 𝜆
∗
) < 0.

Now, consider the variation of 𝑥
𝑘
∗
+1,+

(𝜆) when 𝜆 varies.
Take 𝜀 > 0 sufficiently small, by the continuity of 𝑥

𝑘
∗
+1,+

(𝜆)

with respect to 𝜆, for 𝜆 ∈ (𝜆∗ − 𝜀, 𝜆∗), 𝑥
𝑘
∗
+1,+

(𝜆) ∈ (𝑡
0
, 𝑡
0
+1),

and also 𝑢(𝑡
0
, 𝜆) > 0, 𝑢(𝑡

0
+ 1, 𝜆) < 0 since 𝑢(𝑡, 𝜆) is a

continuous function of 𝜆. However, for 𝜆 ∈ (𝜆
∗
− 𝜀, 𝜆

∗
),

𝑥
𝑘
∗
+1,+

(𝜆) is the (𝑘∗ + 1)th zero of 𝑢(𝑥, 𝜆), which implies that
𝑢(𝑡
0
, 𝜆) < 0, 𝑢(𝑡

0
+ 1, 𝜆) > 0, a contradiction.

Case 2. If there exists 𝑡
0
∈ T such that 𝑥

𝑘
∗
+1,+

(𝜆
∗
) =

𝑥
𝑘
∗
,+
(𝜆
∗
) = 𝑡
0
, then we consider the sign of 𝑢(𝑡

0
− 1, 𝜆

∗
) and

𝑢(𝑡
0
+ 1, 𝜆

∗
), and we can get the similar contradiction as in

Case 1.

This claim implies that, for the same 𝜆, 𝑥
𝑘,+
(𝜆), 𝑘 =

1, 2, . . . , 𝑝 − 1 do not intersect with each other. Thus, for
𝜆
𝑘−1,+

< 𝜆
⬦
≤ 𝜆
𝑘,+
, there are 𝑘 − 1 functions: 𝑥

𝑗,+
, 𝑗 =

1, 2, . . . , 𝑘 − 1 which intersect with 𝜆 = 𝜆
⬦
in (1, 𝑇 + 1) at

𝑘 − 1 different points; that is, for 𝜆
𝑘−1,+

< 𝜆
⬦
≤ 𝜆
𝑘,+
, 𝑢(𝑥, 𝜆

⬦
)

has exactly 𝑘 − 1 zeros.
This completes the proof.

Lemma 15. Problems (1) and (2) have exactly 𝑛 positive
eigenvalues and exactly 𝑇 − 𝑛 negative eigenvalues.

Proof. First we show that 𝜓
𝑝,+

changes its sign exactly 𝑛 − 1
times.

Let us consider the following 𝑇 + 2 ordered polynomials:

𝑢 (0, 𝜆) = 0, 𝑢 (1, 𝜆) = 1,

𝑢 (2, 𝜆) = (−1)
1
𝑚(1) 𝜆 + 𝑄

1
(𝜆) ,

𝑢 (3, 𝜆) = (−1)
2
𝑚(1)𝑚 (2) 𝜆

2
+ 𝑄
2
(𝜆) ,

...

𝑢 (𝑇 + 1, 𝜆) = (−1)
𝑇
𝑚(1) ⋅ ⋅ ⋅ 𝑚 (𝑇) 𝜆

𝑇
+ 𝑄
𝑇
(𝜆)

= (−1)
𝑛
|𝑚 (1)| ⋅ ⋅ ⋅ |𝑚 (𝑇)| 𝜆

𝑇
+ 𝑄
𝑇
(𝜆) ,

(36)

where 𝑄
𝑗
(𝜆) is a polynomial of degree precisely 𝑗 − 1 of 𝜆.

Observation 1. Consider

NSC (𝜆) = NSC (𝜆
𝑝,+
) , ∀𝜆 > 𝜆

𝑝,+
, (37)

where NSC(𝜆) is the number of sign changes of

{𝑢 (0, 𝜆) , 𝑢 (1, 𝜆) , . . . , 𝑢 (𝑇, 𝜆) , 𝑢 (𝑇 + 1, 𝜆)} . (38)

Observation 2. For 𝑗 ∈ {2, . . . , 𝑇}, denoted byΓ(𝑗), the number
of the elements in the set

{𝑚
𝑘
| 𝑚
𝑘
> 0 for some 𝑘 ∈ {1, . . . , 𝑗}} . (39)

Then Γ(𝑇) = 𝑛. Now

sgn (𝑢 (𝑗 + 1, 𝜆))

= sgn ((−1)𝑗𝑚
1
⋅ ⋅ ⋅ 𝑚
𝑗
𝜆
𝑗
)

= (−1)
𝑗+(𝑗−Γ(𝑗))

= (−1)
Γ(𝑗)
, 𝑗 ∈ {1, . . . , 𝑇} ,

(40)

if 𝜆 > 0 is large enough. Since

{0, 1, (−1)
Γ(2)
, . . . , (−1)

Γ(𝑇)
, (−1)

Γ(𝑇+1)
} (41)

changes sign exactly Γ(𝑇) times, it follows that

{𝑢 (0, 𝜆) , 𝑢 (1, 𝜆) , . . . , 𝑢 (𝑇, 𝜆) , 𝑢 (𝑇 + 1, 𝜆)} (42)

changes sign exactly Γ(𝑇) times as 𝜆 > 0 is large enough; that
is,

NSC (𝜆) = Γ (𝑇) . (43)

This together with (37) implies that NSC(𝜆
𝑝,+
) = 𝑛. So, 𝜓

𝑝,+

changes its sign exactly 𝑛 times.
Next, using the result of first step and Lemma 14, it follows

that 𝑝 = 𝑛.

Proof of Theorem 1. From Lemma 7–Lemma 15, the results of
Theorem 1 hold.

4. Application

As an application, we consider the existence of sign-changing
solutions of the discrete nonlinear boundary value problems
(12), (13).

In this section we suppose that

(H1) 𝑓 ∈ 𝐶([0,∞), (−∞, +∞)) with 𝑓(0) = 𝑓(𝑠
1
) =

𝑓(𝑠
2
) = 0, 0 < 𝑠

1
≤ 𝑠
2
; 𝑓(𝑠) > 0 for 𝑠 ∈ (0, 𝑠

1
) ∪

(𝑠
2
, +∞), 𝑓(𝑠) < 0 for 𝑠 ∈ (𝑠

1
, 𝑠
2
);

(H2) there exist 𝑓
0
, 𝑓
∞
∈ (0,∞) such that

𝑓
0
= lim
|𝑠|→0

+

𝑓 (𝑠)

𝑠
, 𝑓

∞
= lim
|𝑠|→∞

𝑓 (𝑠)

𝑠
; (44)

for simplicity, we give some notations at first.
For 𝑘 ≥ 1, ] ∈ {+, −}, let 𝑆]

𝑘
denote the set of functions in

𝑋 such that

(1) 𝑢has exactly 𝑘−1 simple generalized zeros in (1, 𝑇+1);
(2) ]𝑢(1) > 0.

Define 𝑆
𝑘
= 𝑆
+

𝑘
∪ 𝑆
−

𝑘
. They are disjoint in 𝑋. Finally, let

Ψ
±

𝑘
= R × 𝑆

±

𝑘
and let Ψ

𝑘
= R × 𝑆

𝑘
.

Theorem 16. Suppose that (H0), (H1), and (H2) hold. Assume
that 𝑓

0
< 𝑓
∞
. Then

(i) if

𝑟 ∈ (
𝜆
𝑘,+

𝑓
0

, +∞) , 𝑘 ∈ {1, 2, . . . , 𝑛} , (45)
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problems (12) and (13) have at least four sign-changing
solutions 𝑢

𝑘,1
∈ 𝑆
+

𝑘
, 𝑢
𝑘,2
∈ 𝑆
+

𝑘
, 𝑢
𝑘,3
∈ 𝑆
−

𝑘
, and 𝑢

𝑘,4
∈ 𝑆
−

𝑘
;

(ii) if

𝑟 ∈ (−∞,
𝜆
𝑙,−

𝑓
0

) 𝑙 ∈ {1, 2, . . . , 𝑇 − 𝑛} , (46)

problems (12) and (13) have at least four sign-changing
solutions 𝑢

1,1
∈ 𝑆
+

𝑙
, 𝑢
𝑙,2
∈ 𝑆
+

𝑙
, 𝑢
𝑙,3
∈ 𝑆
−

𝑙
, and 𝑢

𝑙,4
∈ 𝑆
−

𝑙
.

Moreover, for 𝑟 ∈ (𝜆
𝑘,+
/𝑓
∞
, 𝜆
𝑘,+
/𝑓
0
], there also exist at

least two sign-changing solutions 𝑢
𝑘,1

∈ 𝑆
+

𝑘
and 𝑢

𝑘,2
∈ 𝑆
−

𝑘
;

meanwhile, for 𝑟 ∈ [𝜆
𝑙,−
/𝑓
0
, 𝜆
𝑙,−
/𝑓
∞
), there also exist at least

two sign-changing solutions 𝑢
𝑙,1
∈ 𝑆
+

𝑙
and 𝑢

𝑙,2
∈ 𝑆
−

𝑙
.

Theorem 17. Suppose that (H0), (H1), and (H2) hold. Assume
that 𝑓

∞
< 𝑓
0
. Then

(i) if

𝑟 ∈ (
𝜆
𝑘,+

𝑓
∞

, +∞) , 𝑘 ∈ {1, 2, . . . , 𝑛} , (47)

problems (12) and (13) have at least four sign-changing
solutions 𝑢

𝑘,1
∈ 𝑆
+

𝑘
, 𝑢
𝑘,2
∈ 𝑆
+

𝑘
, 𝑢
𝑘,3
∈ 𝑆
−

𝑘
, and 𝑢

𝑘,4
∈ 𝑆
−

𝑘
;

(ii) if

𝑟 ∈ (−∞,
𝜆
𝑙,−

𝑓
∞

) 𝑙 ∈ {1, 2, . . . , 𝑇 − 𝑛} , (48)

problems (12) and (13) have at least four sign-changing
solutions 𝑢

1,1
∈ 𝑆
+

𝑙
, 𝑢
𝑙,2
∈ 𝑆
+

𝑙
, 𝑢
𝑙,3
∈ 𝑆
−

𝑙
, and 𝑢

𝑙,4
∈ 𝑆
−

𝑙
.

Moreover, for 𝑟 ∈ (𝜆
𝑘,+
/𝑓
0
, 𝜆
𝑘,+
/𝑓
∞
], there exist at least

two sign-changing solutions 𝑢
𝑘,1

∈ 𝑆
+

𝑘
and 𝑢

𝑘,2
∈ 𝑆
−

𝑘
;

meanwhile, for 𝑟 ∈ [𝜆
𝑙,−
/𝑓
∞
, 𝜆
𝑙,−
/𝑓
0
), there also exist at least

two sign-changing solutions 𝑢
𝑙,1
∈ 𝑆
+

𝑙
and 𝑢

𝑙,2
∈ 𝑆
−

𝑙
.

If condition (H2) is replaced by

(H2) 𝑓
0
∈ (0,∞), 𝑓

∞
= ∞,

then we obtain the following result.

Theorem 18. Let (H0), (H1), and (𝐻2) hold. Then (12) and
(13) have a sign-changing solution in 𝑆]

𝑘
, (𝑘 = 1, 2, . . . , 𝑛) if

and only if 𝑟 ̸= 0. Moreover, for 𝑟 ∈ (−∞, 𝜆
𝑙,−
/𝑓
0
), there exist

at least two solutions 𝑢
𝑙,1
∈ 𝑆
+

𝑙
and 𝑢

𝑙,2
∈ 𝑆
−

𝑙
, and there also

exist at least two solutions 𝑢
𝑘,1

∈ 𝑆
+

𝑘
and 𝑢

𝑘,2
∈ 𝑆
−

𝑘
for 𝑟 ∈

(𝜆
𝑘,+
/𝑓
0
, +∞).

Recall that 𝐿 : 𝑋 → 𝑌; then

𝐿𝑢 (𝑡) = −Δ
2
𝑢 (𝑡 − 1) . (49)

Let 𝜁 ∈ 𝐶(R,R) be such that

𝑓 (𝑢) = 𝑓
0
𝑢 + 𝜁 (𝑢) . (50)

Clearly

lim
|𝑢|→0

𝜁 (𝑢)

𝑢
= 0. (51)

Let us consider

𝐿𝑢 − 𝜆𝑚 (𝑡) 𝑟𝑓
0
𝑢 − 𝜆𝑚 (𝑡) 𝑟𝜁 (𝑢) = 0 (52)

as a bifurcation problem from the trivial solution 𝑢 ≡ 0.
Equation (52) can be converted to the equivalent equation

𝑢 (𝑡) = 𝜆𝐿
−1
[𝑚 (⋅) 𝑟𝑓

0
𝑢 (⋅) + 𝑚 (⋅) 𝑟𝜁 (𝑢 (⋅))] (𝑡) . (53)

Further we note that ‖𝐿−1[𝑚(⋅)𝜁(𝑢(⋅))]‖ = 𝑜(‖𝑢‖) for 𝑢 near 0
in𝑋, since

󵄩󵄩󵄩󵄩󵄩
𝐿
−1
[𝑚 (⋅) 𝜁 (𝑢 (⋅))]

󵄩󵄩󵄩󵄩󵄩
= max
𝑡∈T̂

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇

∑

𝑠=1

𝐺 (𝑡, 𝑠)𝑚 (𝑠) 𝜁 (𝑢 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶 ⋅max
𝑠∈T

|𝑚 (𝑠)|
󵄩󵄩󵄩󵄩𝜁 (𝑢 (⋅))

󵄩󵄩󵄩󵄩 ,

(54)

where 𝐶 = max
𝑡∈T̂ ∑
𝑇

𝑠=1
𝐺(𝑡, 𝑠) and

𝐺 (𝑡, 𝑠) =
1

𝑇 + 1
{
(𝑇 + 1 − 𝑡) 𝑠, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇 + 1,

(𝑇 + 1 − 𝑠) 𝑡, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇 + 1.
(55)

Lemma 19. Suppose that (𝑟, 𝑢) is a nontrivial solution of (12)
and (13); then there exists 𝑘

0
∈ {1, 2, . . . ,max{𝑛, 𝑇 − 𝑛}} such

that

𝑢 ∈ 𝑆
]
𝑘
0

. (56)

Proof. Suppose on the contrary that for every 𝑘 ∈ {1, 2, . . . ,
max{𝑛, 𝑇 − 𝑛}}

𝑢 ∉ 𝑆
]
𝑘
. (57)

Then there exists 𝑡
0
∈ T such that

𝑢 (𝑡
0
) = 0, 𝑢 (𝑡

0
− 1) 𝑢 (𝑡

0
+ 1) ≥ 0. (58)

Since 𝑢 ̸≡ 0 on T̂ , we may assume that
󵄨󵄨󵄨󵄨𝑢 (𝑡0 − 1)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢 (𝑡0 + 1)

󵄨󵄨󵄨󵄨 > 0. (59)

On the other hand, it follows from (52) and 𝑓(0) = 0 that

−Δ
2
𝑢 (𝑡
0
− 1) = 𝜆 [𝑟𝑚 (𝑡

0
) 𝑓 (𝑢 (𝑡

0
))] = 0, (60)

which implies that

𝑢 (𝑡
0
+ 1) − 2𝑢 (𝑡

0
) + 𝑢 (𝑡

0
− 1) = 0. (61)

However, by (59) and the fact 𝑢(𝑡
0
) = 0, we get

𝑢 (𝑡
0
+ 1) 𝑢 (𝑡

0
− 1) < 0, (62)

which contradicts (58).

Now, the results of Rabinowitz [23] for (52) can be stated
as follows.
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(i) For each integer 𝑘 ∈ {1, 2, . . . , 𝑛}, there exists a con-
tinuum C]

𝑘,+
of solutions to (52) joining (𝜆

𝑘,+
/𝑟𝑓
0
, 0)

to infinity inΨ]
𝑘
. Moreover,C]

𝑘,+
\{(𝜆
𝑘,+
/𝑟𝑓
0
, 0)} ⊂ Ψ

]
𝑘
.

(ii) For each integer 𝑙 ∈ {1, 2, . . . , 𝑇−𝑛}, there exists a con-
tinuumC]

𝑙,−
of solutions to (52) joining (−𝜆

𝑙,−
/𝑟𝑓
0
, 0)

to infinity inΨ]
𝑙
.Moreover,C]

𝑙,−
\{(−𝜆

𝑙,−
/𝑟𝑓
0
, 0)} ⊂ Ψ

]
𝑙
.

Lemma 20. Suppose that (H0), (H1), and (H2) hold. Then for
(𝑟, 𝑢) ∈ C]

𝑘,+
∪C]
𝑙,−
,

0 < 𝑢 (𝑡) < 𝑠
1
, 𝑡 ∈ T . (63)

Proof. Suppose on the contrary that there exists (𝑟, 𝑢) ∈ C]
𝑘,+

such that

max
𝑡∈T

𝑢 (𝑡) = 𝑠
1
. (64)

By (H0), (H1), and (H2), there exists 𝑏 ≥ 0 such that
𝑚(𝑡)𝑓(𝑠) + 𝑏𝑠 is strictly increasing in 𝑠 for 𝑠 ∈ [0, 𝑠

1
]. Then

−Δ
2
𝑢 (𝑡 − 1) + 𝑟𝑏𝑢 (𝑡) = 𝑟 (𝑚 (𝑡) 𝑓 (𝑢 (𝑡)) + 𝑏𝑢 (𝑡)) , 𝑡 ∈ T ,

(65)

and since Δ2𝑠
1
= 0 = 𝑓(𝑠

1
),

−Δ
2
𝑠
1
(𝑡 − 1) + 𝑟𝑏𝑠

1
= 𝑟 (𝑚 (𝑡) 𝑓 (𝑠

1
) + 𝑏𝑠

1
) , 𝑡 ∈ T . (66)

Subtracting, we get

−Δ
2
(𝑠
1
− 𝑢) (𝑡 − 1) + 𝑟𝑏 (𝑠

1
− 𝑢) > 0, 𝑡 ∈ T . (67)

Let 𝑤 = 𝑠
1
− 𝑢, and applying boundary value problem (12)

and (13), we have

−Δ𝑤 (𝑡 − 1) + 𝑟𝑏𝑤 (𝑡) > 0, 𝑡 ∈ T ,

𝑤 (0) = 𝑤 (𝑇 + 1) = 0.

(68)

Let 𝑒 : T → (0,∞), such that

−Δ
2
𝑤 (𝑡 − 1) + 𝑟𝑏𝑤 (𝑡) = 𝑒 (𝑡) > 0, 𝑡 ∈ T . (69)

Let 𝐺
1
(𝑡, 𝑠) be the Green function of the boundary value

problem

−Δ
2
𝑤 (𝑡 − 1) + 𝑟𝑏𝑤 (𝑡) = 𝑒 (𝑡) > 0, 𝑡 ∈ T ,

𝑤 (0) = 𝑤 (𝑇 + 1) = 0.

(70)

From 𝑟 > 0, 𝑏 > 0, applying Theorem 6.8 and Corollary 6.7
of [24], we have 𝐺

1
(𝑡, 𝑠) > 0, ∀ 𝑡, 𝑠 ∈ T and 𝐺(0, 𝑠) = 𝐺(𝑇 +

1, 𝑠) = 0 for 𝑠 ∈ T .
Problem (70) is equivalent to

𝑤 (𝑡) =

𝑇

∑

𝑠=1

𝐺
1
(𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠, 𝑡 ∈ T̂ . (71)

By using the positivity of 𝐺
1
(𝑡, 𝑠) and 𝑒(𝑠), we have

𝑤 (𝑡) > 0, 𝑡 ∈ T ; (72)

that is, 𝑠
1
> 𝑢(𝑡), 𝑡 ∈ T . This contradicts (64).

There exists (𝑟, 𝑢) ∈ C]
𝑙,−

such that

max
𝑡∈T

𝑢 (𝑡) = 𝑠
1
. (73)

Note that in this case 𝑟 < 0, so we can choose 𝑏̃ ≥ 0 such that
𝑚(𝑡)𝑓(𝑠) − 𝑏̃𝑠 is strictly decreasing in 𝑠 for 𝑠 ∈ [0, 𝑠

1
]. Then

−Δ
2
𝑢 (𝑡 − 1) − 𝑟𝑏̃𝑢 = 𝑟 (𝑚 (𝑡) 𝑓 (𝑢) − 𝑏̃𝑢) , 𝑡 ∈ T , (74)

and since Δ2𝑠
1
(𝑡 − 1) = 0 = 𝑓(𝑠

1
),

−Δ
2
𝑠
1
(𝑡 − 1) − 𝑟𝑏̃𝑠

1
> 𝑟 (𝑚 (𝑡) 𝑓 (𝑠

1
) − 𝑏̃𝑠

1
) , 𝑡 ∈ T . (75)

Subtracting, we get

−Δ
2
(𝑠
1
− 𝑢) (𝑡 − 1) − 𝑟𝑏̃ (𝑠

1
− 𝑢) (𝑡) > 0, 𝑡 ∈ T . (76)

Let 𝑤 = 𝑠
1
− 𝑢, and applying boundary value condition (13),

we have

−Δ
2
𝑤 (𝑡 − 1) − 𝑟𝑏̃𝑤 (𝑡) > 0, 𝑡 ∈ T ,

𝑤 (0) = 𝑤 (𝑇 + 1) = 0.

(77)

Similar to the above proof, we have 𝑠
1
> 𝑢(𝑡), 𝑡 ∈ T . This

contradicts (73).

In the following we will investigate other sign-changing
solutions of problems (1) and (2).

Let 𝜉 ∈ 𝐶(R,R) be such that

𝑓 (𝑢) = 𝑓
∞
𝑢 + 𝜉 (𝑢) . (78)

Clearly

lim
𝑢→∞

𝜉 (𝑢)

𝑢
= 0. (79)

Let us consider

𝐿𝑢 − 𝜆𝑚 (𝑡) 𝑓
∞
𝑢 = 𝜆𝑚 (𝑡) 𝜉 (𝑢) (80)

as a bifurcation problem from infinity. We note that (80) is
equivalent to (12) and (13).

Now, the results of Rabinowitz [25] for (80) can be stated
as follows.

(i) For each integer 𝑘 ∈ {1, 2, . . . , 𝑛}, there exists a contin-
uumD]

𝑘,+
of solutions to (80) meeting (𝜆

𝑘,+
/𝑟𝑓
∞
,∞).

(ii) For each integer 𝑙 ∈ {1, 2, . . . , 𝑇 − 𝑛}, there exists
a continuum D]

𝑙,−
of solutions to (80) meeting

(−𝜆
𝑙,−
/𝑟𝑓
∞
,∞).

Lemma 21. Suppose that (H0), (H1), and (H2) hold. Then for
(𝜆, 𝑢) ∈ D]

𝑘,+
∪D]
𝑙,−
, we have

max
𝑡∈T

𝑢 (𝑡) > 𝑠
2
. (81)

Proof. It is similar to the proof of Lemma 20, so we omit it.
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Lemma 22. Suppose (H0), (H1), and (H2) hold. Then

(
𝜆
𝑘,+

𝑓
∞

, +∞) ⊂ ProjR (D
]
𝑘,+
) , 𝑓𝑜𝑟 𝑘 = 1, 2, . . . , 𝑛,

(−∞,
𝜆
𝑙,−

𝑓
∞

) ⊂ ProjR (D
]
𝑙,−
) , 𝑓𝑜𝑟 𝑙 = 1, 2, . . . , 𝑇 − 𝑛.

(82)

Proof. Firstly, we will prove (𝜆
𝑘,+
/𝑓
∞
, +∞) ⊂ ProjR(D

]
𝑘,+
).

Take Λ ⊂ R as an interval such that Λ ∩ {(𝜆
𝑗,+
/𝑓
∞
)|𝑗 ∈

{1, 2, . . . , 𝑛}} = {𝜆
𝑘,+
/𝑓
∞
} and M is a neighborhood of

(𝜆
𝑘,+
/𝑓
∞
,∞) whose projection on R lies in Λ and whose

projection on 𝑋 is bounded away from 0. Then by [25,
Theorem 1.6 and Corollary 1.8], we have that either

(1) D]
𝑘,+
\M is bounded inR×𝐸 in which caseD]

𝑘,+
\M

meets{(𝜆, 0)|𝜆 ∈ R}; or
(2) D]

𝑘,+
\M is unbounded.

Moreover if (2) occurs and D]
𝑘,+

\ M has a bounded
projection on R, then D]

𝑘,+
\ M meets (𝜇,∞) where 𝜇 ∈

{𝜆
𝑗,+
/𝑓
∞
, 𝑗 = 1, 2 . . . , 𝑛with 𝑗 ̸= 𝑘}.

Obviously Lemma 21 implies that (1) does not occur. So
D]
𝑘,+
\M is unbounded.

Lemma 19 guarantees that D]
𝑘,+

is a component of solu-
tions of (80) in Ψ

]
𝑘
which meets (𝜆

𝑘,+
/𝑓
∞
,∞). Therefore

there is no 𝑗 ∈ {1, 2, . . . , 𝑛} \ {𝑘} such that D]
𝑘,+

also meets
(𝜆
𝑗,+
/𝑓
∞
,∞). Otherwise, there will exist (𝜂, 𝑦) ∈ D]

𝑘,+
such

that𝑦has amultiple zero point 𝑡
0
∈ (0, 𝑇+1); that is,𝑦(𝑡

0
) = 0

and 𝑦(𝑡
0
− 1)𝑦(𝑡

0
+ 1) ≥ 0. However this contradicts with

Lemma 19, and consequently ProjR(D
]
𝑘,+
\M) is unbounded.

Thus

(
𝜆
𝑘,+

𝑓
∞

, +∞) ⊂ ProjR (D
]
𝑘,+
) , (83)

and similarly we have

(−∞,
𝜆
𝑙,−

𝑓
∞

) ⊂ ProjR (D
]
𝑙,−
) .

(84)

Proof of Theorems 16, 17, and 18. From Lemmas 19–22 we
have already completed the proof of Theorems 16 and 17. We
note that if 𝑓

∞
= ∞, then 𝜆

𝑘,+
/𝑓
∞
= 0 and 𝜆

𝑙,−
/𝑓
∞
= 0

which imply that the results of Theorem 18 hold.
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