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Abstract

Scheduling competing jobs on multiprocessors has always
been an important issue for parallel and distributed systems.
The challenge is to ensure global, system-wide efficiency while
offering a level of fairness to user jobs. Various degrees of
successes have been achieved over years. However, few exist-
ing schemes address both efficiency and fairness over a wide
range of work loads. Moreover, in order to obtain analyti-
cal results, most of them require prior information about jobs,
which may be difficult to obtain in real applications.

This paper presents a novel adaptive scheduling algorithm
GRAD that ensures fair allocation under all levels of work-
load, and it offers provable efficiency without requiring prior
information of job’s parallelism. Moreover, it provides effec-
tive control over the scheduling overhead and ensures efficient
utilization of processors. Specifically, we show that GRAD is
O(1)-competitive against an optimal offline scheduling algo-
rithm with respect to both mean response time and makespan
for batched jobs and non-batched jobs respectively.

To the best of our knowledge, GRAD is the first non-
clairvoyant scheduling algorithm that offers such guarantees.
We also believe that our new approach of resource request-
allotment protocol deserves further exploration.

The simulation results show that, for non-batched jobs, the
makespan produced by GRAD is no more than 1.39 times of
the optimal on average. For batched jobs, the mean response
time produced by GRAD is no more than 2.37 times of the
optimal on average.

1. Introduction
Parallel computers are an expensive resource that often must
be shared among a large community of users. One major is-
sue of parallel job scheduling is how to efficiently share mul-
tiple processors among a number of competing jobs, while
ensuring each job a required quality of services (see e.g.
[15, 8, 7, 11, 9, 18, 24, 19, 25, 22, 31, 28, 23, 13, 14, 5]). Effi-
ciency and fairness are two important performance measures,
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where efficiency is often quantified in terms of makespan and
mean response time. This paper presents a scheduling algo-
rithm — GRAD, which offers provable efficiency in terms
of makespan and mean response time by allotting each job
a fair share of processor resources. Our algorithm is non-
clairvoyant [11, 9, 18, 13], i.e. it assumes nothing about the
release time, the execution time, and the parallelism profile of
jobs. We model the execution of each job as a dynamically
unfolding directed acyclic graph [8, 7].

A parallel job can be classified as adaptive or non-adaptive.
An adaptively parallel job [27] may change its parallelism,
and it allows the number of the allotted processors to vary
during its execution. A job is nonadaptive if it runs on a
fixed number of processors over its lifetime. With adaptivity,
new jobs can enter the system by simply recruiting proces-
sors from the already executing jobs. Moreover, in order to
improve the system utilization, schedulers can shift proces-
sors from jobs that do not require many processors to the
jobs in need. However, since the parallelism of adaptively
parallel jobs can change during the execution and the future
parallelism is usually unknown, how a scheduler decides the
processor allotments for jobs is a challenging problem. We
developed GRAD to schedule such adaptively parallel jobs.

Scheduling parallel jobs on multiprocessors can be imple-
mented in two levels [15]: a kernel-level job scheduler which
allots processors to jobs, and a user-level thread scheduler
which maps the threads of a given job to the allotted proces-
sors. The processor reallocation occurs periodically between
scheduling quanta. The thread scheduler provides paral-
lelism feedback to the job scheduler. The feedback is an es-
timation of the number of processors that its job can effec-
tively use during the next quantum. The job scheduler fol-
lows some processor allocation policy to determine the al-
lotment to the job. It may implement a policy that is ei-
ther space-sharing, where jobs occupy disjoint processor re-
sources, or time-sharing, where different jobs may share the
same processor resources at different points in time. Once a
job is allotted its processors, the allotment does not change
within the quantum.

Previous theoretical work [11, 9, 18] of adaptive schedul-
ing uses “dynamic equi-partitioning” (DEQ) [28, 22] as job
scheduler. DEQ allots processors to jobs through space shar-
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ing. However, it assumes that, at any time step, the number of
jobs is always less than or equal to the total number of proces-
sors. Therefore, the scheduling schemes based on DEQ only
work for this special case. Since multiprocessors are usually
shared among many user applications, the case of having more
numerous jobs than processors is very common. We will de-
sign a job scheduler that can handle both cases.

This paper presents a novel job scheduler RAD, which
unifies the space-sharing job scheduling algorithm DEQ with
the time-sharing round robin (RR) algorithm. When the total
number of jobs is smaller than or equal to the total number of
processors, it uses DEQ job scheduler, which allots each job
with an equal number of processors unless the job requests for
less. When the total number of jobs is greater than the total
number of processors, RAD applies time-sharing round robin
algorithm, which assigns each job with a single processor for
an equal slice of scheduling time.

Based on the “equalized allotment” scheme for processor
allocation, and by using the utilization in the past quantum as
feedback, we show that GRAD is provably efficient. The per-
formance is measured in terms of both makespan and mean
response time. GRAD achieves O(1)-competitiveness with
respect to makespan for job sets with arbitrary release times,
and O(1)-competitiveness with respect to mean response time
for batched job sets where all jobs are released simultaneously.
Unlike many previous results, which either assume clairvoy-
ance [24, 19, 25] or use instantaneous parallelism [11, 9],
GRAD removes these restrictive assumptions. Moreover, be-
cause the quantum length can be adjusted to amortize the cost
of context-switching during processor reallocation, GRAD
provides effective control over the scheduling overhead and
ensures efficient utilization of processors.

Our simulation results also suggest that GRAD performs
well in practice. For job sets with arbitrary release time, their
makespan scheduled by GRAD is no more than 1.39 times of
the optimal on average (geometric mean). For batched job
sets, their mean response time scheduled by GRAD is no
more than 2.37 times of the optimal on average.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the job model, scheduling model, and objec-
tive functions. Section 3 describes the GRAD algorithm. Sec-
tion 4 analyzes the competitiveness of GRAD with respect to
makespan. Section 5 shows the competitiveness of GRAD
with respect to mean response time for batched jobs, while
its detailed analysis is presented in Appendix A. Section 6
presents the empirical results. Section 7 discusses the related
work, and Section 8 gives some concluding remarks.

2. Scheduling and Analytical Model
Our scheduling input consists of a collection of independent
jobs J =

{
J1, J2, . . . , J|J |

}
to be scheduled on a collection

of P identical processors. Time is broken into a sequence
of equal-sized scheduling quanta 1, 2, . . ., each of length L,
where each quantum q includes the interval [L · q, L · q +

1, . . . , L(q + 1) − 1] of time steps. The quantum length L is

a system configuration parameter chosen to be long enough to
amortize scheduling overheads. In this section, we formalize
the job model, define the scheduling model, and present the
optimization criteria of makespan and mean response time.

We model the execution of a multithreaded job Ji as a dy-
namically unfolding directed acyclic graph (DAG, for short).
Each vertex of the DAG represents a unit-time instruction.
The work T1 (Ji) of the job Ji corresponds to the total num-
ber of vertices in the dag. Each edge represents a dependency
between the two vertices. The span T∞(Ji) corresponds to
the number of nodes on the longest chain of the precedence
dependencies. The release time r(Ji) of the job Ji is the time
at which Ji becomes first available for processing. Each job
is handled by a dedicated thread scheduler, which operates in
an online manner, oblivious to the future characteristics of the
dynamically unfolding DAG.

The job scheduler and the thread schedulers interact as fol-
lows. The job scheduler may reallocate processors between
scheduling quanta. Between quantum q − 1 and quantum q,
the thread scheduler of a given job Ji determines the job’s
desire d(Ji, q), which is the number of processors Ji wants
for quantum q. Based on the desire of all running jobs, the
job scheduler follows its processor-allocation policy to deter-
mine the allotment a (Ji, q) of the job with the constraint that
a (Ji, q) ≤ d(Ji, q). Once a job is allotted its processors, the
allotment does not change during the quantum.

Our scheduler uses makespan and mean response time as
the performance measurement.

Definition 1 The makespan of a given job set J is the
time taken to complete all the jobs in J , i.e. T(J ) =

maxJi∈J T (Ji), where T (Ji) denotes the completion time of
job Ji.

Definition 2 The response time of a job Ji is T (Ji) − r(Ji),
which is the duration between its release time r(Ji) and the
completion time T (Ji). The total response time of a job set
J is given by R(J ) =

∑
Ji∈J (T (Ji) − r(Ji)) and the mean

response time is R(J ) = R(J )/ |J |.

The competitive analysis of an online scheduling algorithm
is to compare the algorithm against an optimal clairvoyant al-
gorithm. Let T∗(J ) denote the makespan of an arbitrary job-
set J scheduled by an optimal scheduler, and T(J ) denote
the makespan produced by an algorithm A for the job set J .
A deterministic algorithm A is said to be c-competitive if there
exists a constant b such that T(J ) ≤ c · T∗(J ) + b holds for
the schedule of any job set. We will show that our algorithm
is c-competitive in terms of the makespan, where c is a small
constant. Similarly, for the mean response time, we will show
that our algorithm is also constant-competitive for any batched
jobs.

3. Algorithms
This section presents the job scheduler – RAD, and overviews
the thread scheduler – A-GREEDY [1].



RAD Job Scheduler
The job scheduler RAD unifies the space-sharing job schedul-
ing algorithm DEQ [28, 22] with the time-sharing RR algo-
rithm. When the number of jobs is greater than the number
of processors, GRAD schedules the jobs in a batched, round-
robin fashion, which allocates one processor to each job with
an equal share of time. When the number of jobs is not more
than the number of processors, GRAD uses DEQ as the job
scheduler. DEQ gives each job an equal share of spatial allot-
ments unless the job requests for less.

When a batch of jobs are scheduled in the round-robin fash-
ion, RAD maintains a queue of jobs. At the beginning of each
quantum, if there are more than P jobs, it pops P jobs from
the top of the queue, and allots one processor to each of them
during the quantum. At the end of the quantum, RAD pushes
the P jobs back to the bottom of the queue if they are uncom-
pleted. The new jobs can be put into the queue once they are
released.

DEQ attempts to give each job a fair share of processors.
If a job requires less than its fair share, however, DEQ dis-
tributes the extra processors to the other jobs. More pre-
cisely, upon receiving the desires {d(Ji, q)} from the thread
schedulers of all jobs Ji ∈ J , DEQ executes the following
processor-allocation algorithm:

1. Set n = |J |. If n = 0, return.

2. If the desire of every job Ji ∈ J satisfies d(Ji, q) ≥ P/n,
assign each job a (Ji, q) = P/n processors.

3. Otherwise, let J ′ = {Ji ∈ J : d(Ji, q) < P/n}. Assign
a (Ji, q) = d(Ji, q) processors to each Ji ∈ J ′. Update
J = J −J ′, and P = P−∑

Ji∈J ′ d(Ji, q). Go to Step 1.

Note that, at any quantum where the number of jobs is equal
to the number of processors, DEQ and RR give exactly the
same processor allotment, and allocate each of P jobs with
one processor.

Adaptive Greedy Thread Scheduler
A-GREEDY [1] is an adaptive greedy thread scheduler with
parallelism feedback. Between quanta, it estimates its job’s
desire, and requests processors from the job scheduler. During
the quantum, it schedules the ready threads of the job onto the
allotted processors greedily [16, 8]. If there are more than
a (Ji, q) ready threads, A-GREEDY schedules any a (Ji, q) of
them. Otherwise, it schedules all of them.

A-GREEDY’s desire-estimation algorithm is parameterized
in terms of a utilization parameter δ > 0 and a responsiveness
parameter ρ > 1, both of which can be adjusted for different
levels of guarantees for waste and completion time.

Before each quantum, A-GREEDY for a job Ji ∈ J pro-
vides parallelism feedback to the job scheduler based on
the Ji’s history of utilization in the previous quantum. A-
GREEDY classifies quanta as “satisfied” versus “deprived” and
“efficient” versus “inefficient.” A quantum q is satisfied if
a (Ji, q) = d(Ji, q), in which case Ji’s allotment is equal to

its desire. Otherwise, the quantum is deprived. 1 The quan-
tum q is efficient if A-GREEDY utilizes no less than a δ frac-
tion of the total allotted processor cycles during the quantum,
where δ is the utilization parameter. Otherwise, the quantum
is inefficient. Under the four-way classification, however, A-
GREEDY only uses three: inefficient, efficient-and-satisfied,
and efficient-and-deprived.

Using this three-way classification and the job’s desire for
the previous quantum, A-GREEDY computes the desire for the
next quantum as follows:

• If quantum q − 1 was inefficient, decrease the desire, set-
ting d(Ji, q) = d(Ji, q − 1)/ρ, where ρ is the responsive-
ness parameter.

• If quantum q − 1 was efficient-and-satisfied, increase the
desire, setting d(Ji, q) = ρd(Ji, q − 1).

• If quantum q − 1 was efficient-and-deprived, keep desire
unchanged, setting d(Ji, q) = d(Ji, q − 1).

4. Makespan
This section shows that GRAD is c-competitive with respect
to makespan, where c denotes a constant. The exact value
of c is related to the choice of A-GREEDY’s utilization and
responsiveness parameter, as will be explained shortly.

We first review the lower bounds of makespan. Given a job
set J and P processors, lower bounds on the makespan of any
job scheduler can be obtained based on release time, work,
and span. Recall that, for a job Ji ∈ J , the quantities r(Ji),
T1 (Ji), and T∞(Ji) represent the release time, work, and span
of Ji, respectively. Let T∗(J ) denote the makespan produced
by an optimal scheduler on a job set J on P processors. Let
T1 (J ) =

∑
Ji∈J T1 (Ji) denote the total work of the job set.

The following two inequalities give two lower bounds on the
makespan [9]:

T∗(J ) ≥ max
Ji∈J

{r(Ji) + T∞(Ji)} , (1)

T∗(J ) ≥ T1 (J ) /P . (2)

To facilitate the analysis, we state a lemma from [1] that
bounds the satisfied steps and the waste of a single job sched-
uled by A-GREEDY. Recall that, the parameter ρ > 1 denotes
A-GREEDY’s responsiveness parameter, δ > 0 its utilization
parameter, and L the quantum length.

Lemma 1 [1] For a job Ji with work T1 (Ji) and span T∞(Ji)

on a machine with P processors, A-GREEDY produces at
most 2T∞(Ji)/(1 − δ) + L logρ P + L satisfied steps, and it
wastes at most (1 + ρ − δ)T1 (Ji) /δ processor cycles in the
course of the computation.

The following theorem analyzes the makespan of a job set
J scheduled by GRAD.

1We can extend the classification of “satisfied” versus “deprived” from
quanta to time steps. A job Ji is satisfied (or deprived) at step t ∈ [L · q, L ·
q + 1, . . . , L(q + 1)− 1] if Ji is satisfied (resp. deprived) at the quantum q.



Theorem 2 Let ρ denote A-GREEDY’s responsiveness para-
meter, δ its utilization parameter, and L the quantum length.
Then, GRAD completes a job set J on P processors in

T(J ) ≤ ρ+1
δ

T1(J )
P + 2

1−δ max
Ji∈J

{T∞(Ji) + r(Ji)}

+ L logρ P + 2L (3)

time steps.

Proof. Suppose job Jk is the last job completed among
the jobs in J . Let S(Jk) denote the set of satisfied steps
for Jk, and D(Jk) denote its set of deprived steps. The job
Jk is scheduled to start its execution at the beginning of the
quantum q where Lq < r(Jk) ≤ L(q + 1), which is the
quantum immediately after Jk’s release. Therefore, we have
T(J ) ≤ r(Jk)+L+ |S(Jk)|+ |D(Jk)|. We now bound |S(Jk)|
and |D(Jk)| respectively.

From Lemma 1, we know that the number of satisfied steps
attributed to Jk is at most |S(Jk)| ≤ 2T∞(Jk)/(1 − δ) +

L logρ P + L.
We now bound the total number of deprived steps D(Jk)

of job Jk. For each step t ∈ D(Jk), GRAD applies either
DEQ or RR as job scheduler. RR always allots all processors
to jobs. By definition, DEQ must have allotted all processors
to jobs whenever Jk is deprived. Thus, the total allotment on
such a step t is always equal to the total number of proces-
sors P . Moreover, the total allotment of J over Jk’s deprived
steps D(Jk) is a (J , D(Jk)) =

∑
t∈D(Jk)

∑
Ji∈J a (Ji, t) =

P |D(Jk)|. Since any allotted processor is either working
productively or wasted, the total allotment for any job Ji is
bounded by the sum of its total work T1 (Ji) and total waste
w(Ji). By Lemma 1, the waste for the job Ji is at most
(ρ−δ+1)/δ times of its work. Thus, the total number of allot-
ted processor cycles for job Ji is at most T1 (Ji)+w(Ji) ≤ (ρ+

1)T1 (Ji) /δ. The total number of allotted processor cycles for
all jobs is at most

∑
Ji∈J (ρ+1)T1 (Ji) /δ = ((ρ+1)/δ)T1 (J ).

Given a (J , D(Jk)) ≤ ((ρ + 1)/δ)T1 (J ) and a (J , D(Jk)) =

P |D(Jk)|, we have |D(Jk)| ≤ ρ+1
δ

T1(J )
P .

Therefore, we can get

T(J ) < r(Jk) + L + |D(Jk)| + |S(Jk)|
≤ ρ + 1

δ

T1 (J )

P
+

2

1 − δ
max
Ji∈J

(T∞(Ji) + r(Ji))

+L logρ P + 2L .

Since both T1 (J ) /P and maxJi∈J {T∞(Ji) + r(Ji)} are
lower bounds of T∗(J ), we obtain the following corollary.

Corollary 3 GRAD completes a job set J in

T(J ) ≤
(

ρ + 1

δ
+

2

1 − δ

)
T∗(J ) + L logρ P + 2L

time steps, where T∗(J ) denotes the makespan of J produced
by an optimal clairvoyant scheduler.

Since both the quantum length L and the processor num-
ber P are independent variables with respect to any job set
J , Corollary 3 shows that GRAD is O(1)-competitive with
respect to makespan.

5. Mean Response Time
Mean response time is an important measure for multiuser en-
vironments where we desire as many users as possible to get
fast response from the system. In this section, we first intro-
duce the lower bounds. Then, we show that GRAD is O(1)-
competitive for batched jobs with respect to the mean response
time.

Lower Bounds and Preliminaries
We first introduce some definitions.

Definition 3 Given a finite list A = 〈αi〉 of n = |A| integers,
define f : {1, 2, . . . , n} → {1, 2, . . . , n} to be a permutation
satisfying αf(1) ≤ αf(2) ≤ · · · ≤ αf(n). The squashed sum of
A is defined as

sq-sum(A) =

n∑
i=1

(n − i + 1)αf(i) .

The squashed work area of a job set J on a set of P proces-
sors is

swa (J ) =
1

P
sq-sum(〈T1 (Ji)〉) ,

where T1 (Ji) is the work of job Ji ∈ J . The aggregate span
of J is

T∞(J ) =
∑

Ji∈J
T∞(Ji) ,

where T∞(Ji) is the span of job Ji ∈ J .

The research in [29, 30, 11] establishes two lower bounds
for the mean response time:

R∗(J ) ≥ T∞(J )/ |J | , (4)

R∗(J ) ≥ swa (J ) / |J | , (5)

where R∗(J ) denotes the mean response time of J scheduled
by an optimal clairvoyant scheduler. Both the aggregate span
T∞(J ) and the squashed work area swa (J ) are lower bounds
of the total response time R∗(J ) under an optimal clairvoyant
scheduler.

Analysis
The proof is divided into two parts. In the first part where
|J | ≤ P , GRAD always uses DEQ as job scheduler. In this
case, we apply the result in [18], and show that GRAD is
O(1)-competitive. In the second part where |J | > P , GRAD
uses both RR and DEQ. Since we consider batched jobs, the
number of incomplete jobs decreases monotonically. When
the number of incomplete jobs drops to P , GRAD switches
its job scheduler from RR to DEQ. Therefore, we prove the
second case based on the properties of round robin scheduling
and the results of the first case. The following theorem shows



the total response time bound for the batched job sets sched-
uled by GRAD. Please refer to Appendix A for the complete
proof.

Theorem 4 Let ρ be A-GREEDY’s responsiveness parameter,
δ its utilization parameter, and L the quantum length. The
total response time R(J ) of a job set J produced by GRAD
is at most

R(J ) =
(
2 − 2

|J |+1

)(
ρ+1

δ swa (J ) + 2
1−δ T∞(J )

)
+O(|J |L logρ P ) , (6)

where swa (J ) denotes the squashed work area of J , and
T∞(J ) denotes the aggregate span of J .

Since both swa (J ) / |J | and T∞(J )/ |J | are lower bounds
on R(J ), we obtain the following corollary. It shows that
GRAD is O(1)-competitive with respect to mean response
time for batched jobs.

Corollary 5 The mean response time R(J ) of a batched job
set J produced by GRAD satisfies

R(J ) =
(
2 − 2

|J |+1

)(
ρ+1

δ + 2
1−δ

)
R∗(J ) + O(L logρ P ) ,

where R∗(J ) denotes the mean response time of J scheduled
by an optimal clairvoyant scheduler.

6. Experimental Results
To evaluate the performance of GRAD, we conducted four
sets of experiments, which are summarized below.

• The makespan experiments compares the makespan
produced by GRAD against the theoretical lower bound
for over 10000 runs of job sets.

• The mean response time experiments investigate how
GRAD performs with respect to mean response time for
over 8000 batched job sets.

• The load experiments investigate how the system load
affects the performance of GRAD.

• The proactive RAD experiments compare the perfor-
mance of RAD against its variation – proactive RAD.
The proactive RAD always allots all processors to jobs
even if the overall desire is less than the total number of
processors.

6.1. Simulation Setup
To study GRAD, we build a Java-based discrete-time sim-
ulator using DESMO-J [12]. Our benchmark application is
the Fork-Join jobs, where each job alternates between a serial
phase and a parallel phase. Fork-Join jobs arise naturally in
jobs that exhibit “data parallelism”, and apply the same com-
putation to a number of different data points. The repeated
fork-join cycle in the job reflects the iterative nature of these
computations.

GRAD requires some parameters as input. We set the re-
sponsiveness parameter to be ρ = 2.0, and the utilization para-
meter δ = 0.8 unless otherwise specified. GRAD is designed
for moderate-scale and large-scale multiprocessors, and we
set the number of processors to be P = 128. The quantum
length L represents the time between successive reallocations
of processors by the job scheduler, and is selected to amor-
tize the overheads due to the communication between the job
scheduler and the thread scheduler, and the reallocation of
processors. In conventional computer systems, a scheduling
quantum is typically between 10 and 20 milliseconds. The ex-
ecution time of a task is decided by the granularity of the job.
If a task takes approximately 0.5 to 5 microseconds, then the
quantum length L should be set to values between 103 and
105 time steps. Our theoretical bounds indicate that as long as
T∞ � L log P , the length of L should have little effect on our
results. In our experiments, we set L = 1000.

6.2. Makespan Experiments
The competitive ratio of makespan derived in Section 4,
though asymptotically strong, has a relatively large constant
multiplier. The makespan experiments were designed to eval-
uate the constants that would occur in practice and compare
GRAD to an optimal scheduler. The experiments are con-
ducted on more than 10, 000 runs of job sets using many com-
binations of jobs and different loads.

Figure 1 shows how GRAD performs compared to an
optimal scheduler. The makespan of a job set J has two
lower bounds maxJi∈J (r(Ji) + T∞(Ji)) and T1 (J ) /P . The
makespan produced by an optimal scheduler is lower-bounded
by the larger of these two values. The makespan ratio in
Figure 1 is defined as the makespan of a job set scheduled
by GRAD divided by the theoretical lower bounds. Its X-
axis represents the range of the makespan ratio, while the his-
togram shows the percentage of the job sets whose makespan
ratio falls into the range. Among more than 10, 000 runs,
76.19% of them use less than 1.5 times of the theoretical lower
bound, 89.70% use less than 2.0 times, and none uses more
than 4.5 times. The average makepsan ratio is 1.39, which
suggests that, in practice, GRAD has a small competitive ra-
tio with respect to the makespan.

We now interpret the relation between the theoretical
bounds and experimental results as follows. When ρ = 2 and
δ = 0.8, from Theorem 2, GRAD is 13.75-competitive in the
worst case. However, we anticipate that GRAD’s makespan
ratio would be small in practical settings, especially when the
jobs have total work much great than the span and with the
machine moderately- or highly- loaded. In this case, the term
on T1 (J ) /P in Inequality (3) of Theorem 2 is much larger
than the term maxJi∈J {T∞(i) + r(i)}, i.e. the term T1 (J ) /P

generally dominates the makespan bound. The proof of The-
orem 2 calculates the coefficient of T1 (J ) /P as the ratio of
the total allotment (total work plus total waste) versus the to-
tal work. When the job scheduler is RAD, which is not a
true adversary, our simulation results indicate that the ratio of
the waste versus the total work is only about 1/10 of the total



 0

 10

 20

 30

 40

 50

 60

 70

 80

1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 3.5-4.0 4.0-4.5 4.5-

Pe
rc

en
ta

ge
 o

f 
Jo

b 
Se

ts
 in

 th
e 

R
an

ge

Range of Makespan Ratio

Figure 1: Comparing the makespan of GRAD with the theoret-
ical lower bound for job sets with arbitrary job release time.
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Figure 2: Comparing the mean response time of GRAD with
the theoretical lower bound for batched job sets.
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Figure 4: Comparing the proactive RAD against the original for
makespan with varying load.

work. Thus, the coefficient of T1 (J ) /P in Inequality (3) is
about 1.1. It explains why the makespan produced by GRAD
is less than 2 times of the lower bound on average as shown in
Figure 1.

6.3. Mean Response Time Experiments
This set of experiments is designed to evaluate the mean
response time of the batch job sets scheduled by GRAD.
Figure 2 shows the distribution of the mean response time
normalized w.r.t. the larger of the two lower bounds – the
squashed work bound swa (J ) / |J | and the aggregated criti-
cal path bound T∞(J )/ |J |. The histogram in Figure 2 shows
that, among more than 8, 000 runs, 94.65% of them use less
than 3 times of the theoretical lower bound, and none of them
uses more than 5.5 times. The average mean response time
ratio is 2.37. Similar to the discussion in Section 6.2, we can
relate the theoretical bounds for mean response time to the
experimental results.

6.4. Load Experiments
This set of experiments is designed to investigate how the load
affects the performance of GRAD. The load of a job set J on
a machine with P processors indicates how heavily the jobs
compete for processors on the machine, which is calculated
as follows

load =
T1 (J )

P ·
(

max
Ji∈J

r(Ji) − min
Ji∈J

r(Ji) + T∞(J )/ |J |
) .

For a batched job set, the load is just the average parallelism
of the set divided by the total number of processors.

Figure 3 shows how GRAD performs against the theoret-
ical lower bound with respect to makespan by varying sys-
tem load. The makespan ratio in this figure is defined as the
makespan of a job set scheduled by GRAD divided by the
larger of the two lower bounds. Each data point represents the
makespan ratio of a job set. The testing results suggest that
the makespan ratio becomes smaller when the load gets heav-
ier. Specifically, the makespan generated by GRAD is very
close to the lower bound when the load is greater than 4; it
never exceeds 1.5 times of the makespan produced when the
system load is greater than 3. However, when the load is less
than 2, the makespan ratio spreads in the range from 1 to 4.
To improve the performance of GRAD under light load, we
will explore such a variation of the job scheduler RAD (called
proactive RAD) in the next section.

6.5. Proactive RAD Experiments
Proactive RAD always allocates all processors to jobs even
if the total requests are less than the total number of proces-
sors. At a quantum q, when the total requests d(J , q) =∑

Ji∈J d(Ji, q) are greater than or equal to the total number
P of processors, the proactive RAD works exactly the same
as the original one. However, if d(J , q) < P , the proactive
RAD evenly allots the remaining P −d(J , q) processors to all
the jobs.



Figure 4 shows the makespan ratio of proactive RAD
against its original algorithm by varying system load. Each
data point in the figure represents a job set’s makespan ratio,
defined as the makespan produced by the proactive RAD di-
vided by that of the original. We can see that the makespan
ratio is less than 1 for most of the runs, indicating that the
proactive RAD out-performs the original one in most of these
job sets. Moreover, the difference between them becomes
more pronounced under light load, and diminishes with the
increase of the system load. The reason is that the proactive
RAD generally allocates more processors to jobs, especially
when the load is light. The increased allotment allows faster
execution of jobs which shortens the makespan of the job set.
Figure 4 gives evidences that the proactive RAD improves the
performance of our scheduling algorithm under light load.

7. Related Work

Adaptive parallel job scheduling has been studied both empir-
ically [22, 31, 28, 21] and theoretically [17, 10, 23, 13, 14, 5].
McCann, Vaswani, and Zahorjan [22] introduce the notion of
dynamic equipartitioning (DEQ), which gives each job a fair
allotment of processors based on the job’s request, while al-
lowing processors that cannot be used by a job to be real-
located to the other jobs. Brecht, Deng, and Gu [9] prove
that DEQ with instantaneous parallelism as feedback is 2-
competitive with respect to the makespan. Later, Deng and
Dymond [11] prove that DEQ with instantaneous parallelism
is also 4-competitive for batched jobs with respect to the mean
response time.

Even though using instantaneous parallelism as feedback is
intuitive, it can either cause gross misallocation of processor
resources [26] or introduce significant scheduling overhead.
For example, the parallelism of a job may change substantially
during a scheduling quantum, alternating between parallel and
serial phases. Depending on which phase is currently active,
the sampling of instantaneous parallelism may lead the task
scheduler to request either too many or too few processors.
Consequently, the job may either waste processor cycles or
take too long to complete. On the other hand, if the quantum
length is set to be small enough to capture frequent changes
in instantaneous parallelism, the proportion of time spent re-
allotting processors among the jobs increases, resulting in a
high scheduling overhead.

Our previous work in [18] presents a two-level adaptive
scheduler AGDEQ, which uses DEQ as the job scheduler, and
A-GREEDY as the thread scheduler. Instead of using instan-
taneous parallelism, AGDEQ uses the job’s utilization in the
past as feedback. AGDEQ is O(1)-competitive for makespan,
and in a batched setting, O(1)-competitive for mean response
time. However, as with other prior work [9, 11] that uses DEQ
as the job scheduler, AGDEQ can only be applied to the case
where the total number of jobs in the job set is less than or
equal to the number of processors.

8. Conclusions
We have presented a non-clairvoyant adaptive scheduling al-
gorithm GRAD that ensures provable efficiency, fairness and
minimal overhead.

The request-allotment protocol in GRAD can be applied to
other thread schedulers. For example, A-GREEDY is suitable
for scheduling jobs in more centralized setting such as data
parallel applications. However, for applications with more
distributed settings, we can use A-STEAL [2, 3] as thread
scheduler, which is a distributed adaptive thread scheduler us-
ing randomized work stealing. Analogously, one can develop
a two-level scheduler by applying the request-allotment pro-
tocol in GRAD, and application-specific thread schedulers.
Such a two-level scheduler may provide both system-wide
performance guarantees such as minimal makespan and mean
response time, and optimization of individual applications.

With respect to mean response time, our schedulers are
O(1)-competitiveness only for batched parallel jobs. Some
researchers [20, 4, 6] have studied the online non-clairvoyant
scheduling of serial jobs with arbitrary release time. It remains
an interesting open problem to develop non-clairvoyant sched-
ulers that minimizes mean response time for parallel jobs with
arbitrary release times
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Appendix A. Proof of Theorem 4
The proof is divided into two cases — when |J | ≤ P and when
|J | > P .

Case 1: when |J | ≤ P

For the first case where |J | ≤ P , GRAD always use DEQ as job
scheduler. In our previous work [18], we show that AGDEQ (the
combination of DEQ and A-GREEDY) is O(1)-competitive with re-
spect to mean response time for batched jobs when |J | ≤ P . The fol-
lowing lemma from [18] bounds the mean response time of a batched
job set with |J | ≤ P .

Lemma 7 [18] A job set J is scheduled by GRAD on P processors
where |J | ≤ P . The total response time R(J ) of the schedule is at
most

R(J ) ≤ c ·
(

ρ+1
δ swa (J ) + 2

1−δ T∞(J ) + |J |L(logρ P + 1)
)

where c = 2− 2/(|J |+ 1).

Case 2: when |J | > P

We now derive the mean response time of GRAD for batched jobs
for the second case where |J | > P . Since all jobs in the job set
J arrive at time step 0, the number of uncompleted jobs decreases
monotonically. When the number of uncompleted jobs drops down
to P or below, GRAD switches its job scheduler from RR to DEQ.
We divide the analysis into three parts. In Part (a), we prove two
technical lemmas (Lemmas 8 and 9) which show the properties of
round robin as the job scheduler. In Part (b), we analyze the com-
pletion time of the jobs which are scheduled by RR during their entire
execution. In Part (c), we combine results and give response time of
GRAD in general.

A batched job set J can be divided into two subsets - RR set and
DEQ set. The RR set, denoted as JRR , includes all the jobs in J
which are entirely scheduled by RR for their execution. The DEQ
set, denoted as JDEQ , includes all the jobs in J which are sched-
uled by RR at the beginning, and by DEQ eventually. There exists a
unique quantum q called the final RR quantum such that q is the last
quantum scheduled by RR, and from quanta q + 1 onwards are all
scheduled by DEQ. According to RAD, there must be greater than
P uncompleted jobs at the beginning of q, and less than or equal to P

uncompleted jobs immediately after the execution of q. Let σ denote
the total number of uncompleted jobs immediately after the execution
of the final RR quantum. We know that σ =

∣∣JDEQ

∣∣, and σ ≤ P .
Let π denote a permutation that lists the jobs according to the as-
cending order of their completion time, i.e. T (Jπ(1)) ≤ T (Jπ(2)) ≤
. . . ≤ T (Jπ(|J |)). We have JRR =

{
Jπ(i) | 1 ≤ i ≤ |J | − σ

}
and

JDEQ =
{

Jπ(i) | i > |J | − σ
}

, i.e. JDEQ includes the σ jobs that
are completed last, and JRR includes the other |J | − σ jobs.

We define two notations – t-suffix and t-prefix, and use them
to simplify the notations. For any time step t, t-suffix denoted as
−→t represents the set of time steps from t to the completion of J by
−→t = {t, t + 1, . . . , T (J )}, while t-prefix denoted as←−t represents set
of time steps from 1 to t by←−t = {1, 2, . . . , t}. We shall be interested
in the suffixes of jobs. Define the t-suffix of a job Ji ∈ J to be the
job Ji

(−→t )
, which is the portion of job Ji that remains after t − 1

number of time steps have been executed. The t-suffix of the job set
J is

J
(−→t )

=
{

Ji

(−→t )
: Ji ∈ J and Ji

(−→t )
�= ∅

}
.

Thus, we have J = J
(−→

1
)

, and the number of uncompleted jobs

at time step t is the number
∣∣J (−→t )∣∣ of nonempty jobs in J

(−→t )
.



Similarly, we can define the t-prefix of a job Ji as Ji

(←−t )
, and the

t-prefix of a job set J as J
(←−t )

.

Case 2 - Part (a)

The following two technical lemmas present the properties of round
robin as a job scheduler. The first lemma shows that jobs make al-
most the same progress on the execution of their work when they are
scheduled by RR. The second lemma relates the work of jobs to their
completion time.

Lemma 8 A batched job set J is scheduled by GRAD on a ma-
chine with P processors where |J | > P . At any time step t sched-
uled by RR, for any two uncompleted jobs Ji and Jj , we have∣∣T1

(
Ji

(←−t ))
− T1

(
Jj

(←−t ))∣∣ ≤ L, where L is the length of the
scheduling quantum.

Proof. Since RR gives an equal share of processors to all uncom-
pleted jobs, for any two jobs that arrive at the same time, their allot-
ments differ by at most L at any time. When a job’s allotment is 1,
its allotted processor is always making useful work. Then the work
done for any two uncompleted jobs differs by at most L at any time
before their completion.

Lemma 9 A batched job set J is scheduled by GRAD on a machine
with P processors where |J | > P . The following two statements are
true:

1. If Ji ∈ JRR , Jj ∈ JRR , and T1 (Ji) < T1

(
Jj

)
, then T (Ji) ≤

T (Jj).
2. If Ji ∈ JRR , and Jj ∈ JDEQ , then T1 (Ji) ≤ T1

(
Jj

)
.

Proof. We now prove the first statement. Let t = T (Ji). At time
step t, job Ji completes work T1 (Ji). From Lemma 8, we know
that T1

(
Jj

(←−t ))
≥ T1

(
Ji

(←−t ))
− L = T1 (Ji) − L. Since job

Jj completes after job Ji, job Jj takes at least one more scheduling
quantum than Ji to complete its execution. Thus the work done for
Jj during the period from t to T (Jj) is at least L. Therefore, we have
T1

(
Jj

)
= T1

(
Ji

(←−−−
T (Jj)

))
≥ T1

(
Ji

(←−t ))
+ L ≥ T1 (Ji).

For any two jobs Ji ∈ JRR , and Jj ∈ JDEQ , we have T (Ji) <

T (Jj). By using a similar analysis, we can prove the second state-
ment.

Lemma 9 relates the work of jobs to their completion time. Its
second statement tells us that only the σ jobs with largest work are
scheduled by DEQ eventually, and the other |J | − σ jobs are sched-
uled by RR for their overall execution. Moreover, according to its
first statement, under the schedule of RR, the jobs with less work are
completed more quickly than those with more work. Consider the
jobs according to their work such that T1 (J1) ≤ T1 (J2) ≤ · · · ≤
T1

(
J|J |

)
. From Lemma 9, we have JRR = {Ji|1 ≤ i ≤ |J | − σ}

and JDEQ = {Ji|i > |J | − σ}.

Case 2 - Part (b)

The following lemma bounds the completion time of the jobs in JRR

where T1 (Ji) denotes the work of a job Ji.

Lemma 10 GRAD schedules a batched job set J on a machine
with P processors where |J | > P . Consider the jobs according
to their work such that T1 (J1) ≤ T1 (J2) ≤ · · · ≤ T1

(
J|J |

)
.

For 1 ≤ i ≤ |J | − σ, the completion time T (Ji) of a job Ji is

T (Ji) ≤
(

(|J | − i + 1) T1 (Ji) +
∑

1≤j<i T1

(
Jj

))
/P + L.

Proof. Since we consider the jobs according to their work, from
Lemma 9, we have Ji ∈ JRR where 1 ≤ i ≤ |J | − σ. Such a job
Ji completes its overall execution under the schedule of RR as job
scheduler.

We first evaluate T1

(
J

(←−t ))
, which is the work done for J up

to a time step t. Suppose that the job Ji terminates at the end of a
quantum q where T (Ji) = q(L + 1) − 1. Let t = qL − 1 be the end
of the quantum q − 1, which is L steps before the completion of Ji.
The work done for Ji in interval ←−t is T1

(
Ji

(←−t ))
= T1 (Ji) − L.

According to Lemma 8, no job completes more than T1

(
Ji

(←−t ))
+L

amount of work in interval←−t . Therefore, for any job Jj with j > i,
we have

T1

(
Jj

(←−t ))
≤ T1

(
Ji

(←−t ))
+ L

= T1 (Ji) . (7)

For each job Jj where j < i, by definition, we always have

T1

(
Jj

(←−t ))
≤ T1

(
Jj

)
. (8)

Thus, at time step t, from Inequalities (7) and (8), the total work done
for the job set J is

T1

(
J

(←−t ))
=

∑
1≤j<i T1

(
Jj

(←−t ))
+ T1

(
Ji

(←−t ))
+

∑
i<j≤|J | T1

(
Jj

(←−t ))
≤ (|J | − i + 1)T1 (Ji) +

∑
1≤j<i T1

(
Jj

)
. (9)

Since RR always allots all processors to jobs, and all allotted
processors are making useful work, RR executes P ready threads
at any time step. Thus, the total work done for job set J increases by
P at each time step. From Inequality (9), we have

t = T1

(
J

(←−t ))
/P

≤
(

(|J | − i + 1) T1 (Ji) +
∑

1≤j<i T1

(
Jj

))
/P .

Since T (Ji) = t + L, we complete the proof.

Case 2 - Part (c)

The following lemma bounds the total response time of job sets
scheduled by GRAD when |J | > P , where swa (J ) denotes
squashed work area, and T∞(J ) denotes the aggregate span.

Lemma 11 Suppose that a job set J is scheduled by GRAD on a
machine with P processors where |J | > P . The response time R(J )

of J is bounded by

R(J ) =

(
2− 2

|J |+1

)(
ρ+1

δ swa (J ) + 2
1−δ T∞(J )

)
+ |J |L + O(LP logρ P ) . (10)

Proof. The jobs in J can be divided into RR set JRR and DEQ
set JDEQ . Let n = |J | denote the number of jobs in J . Recall
that σ denotes the number of jobs in JDEQ , i.e. σ ≤ P . Consider
the jobs in the ascending order of their completion time such that
T (J1) ≤ T (J2) ≤ · · · ≤ T (Jn). From Lemma 9, we have JRR =

{Ji|1 ≤ i ≤ n− σ} and JDEQ = {Ji|i > n− σ}. We will calculate
the total response time of the jobs in JRR and JDEQ respectively.

Step 1: To calculate R(JRR), we apply Lemma 10. For any job
Ji ∈ JRR , its completion time is T (Ji) ≤ (1/P )((n− i+1)T1 (Ji)+



∑
1≤j<i T1

(
Jj

)
) + L according to Lemma 10. Thus, the total re-

sponse time of the jobs in JRR is

R(JRR) ≤ 1
P

∑
1≤i≤n−σ(2n− σ − 2i + 1)T1 (Ji) + Ln. (11)

Step 2: We now calculate R(JDEQ ). The σ jobs in JDEQ are
scheduled by RR until the time step t = T (Jn−σ) at which the job
Jn−σ completes, and scheduled by DEQ afterwards. The total re-
sponse time of JDEQ is

R
(
JDEQ

)
= R

(
JDEQ

(−−→
t + 1

))
+ σ · t . (12)

From Lemma 10, we know that the completion time of the job Jn−σ

is

t ≤
(

(σ + 1)T1 (Jn−σ) +
∑

1≤i<n−σ T1 (Ji)

)
/P + L . (13)

To get R
(
JDEQ

)
, we only need to calculate R

(
JDEQ

(−−→
t + 1

))
.

Since the job set JDEQ is scheduled by DEQ as the job scheduler
from time step t onwards, we can apply the total response time bound
in Lemma 7 to calculate R

(
JDEQ

(−−→
t + 1

))
. During the interval←−t ,

job Jn−σ completes T1 (Jn−σ) amount of work. From Lemma 8,
we know that each job Ji with i > n − σ has completed at least
T1 (Jn−σ) − L amount of work. Thus, such a job Ji has remaining
work T1

(
Ji

(−−→
t + 1

))
≤ T1 (Ji)−T1 (Jn−σ)+L. The squashed work

of JDEQ

(−−→
t + 1

)
is

swa
(
JDEQ

(−−→
t + 1

))
=

1

P
sq-sum

(〈
T1

(
Ji

(−−→
t + 1

))
| n− σ + 1 ≤ i ≤ n

〉)
≤ 1

P
sq-sum (〈T1 (Ji)− T1 (Jn−σ) + L| n− σ + 1 ≤ i ≤ n〉)

= 1
P

∑
n−σ+1≤i≤n

(n− i + 1) (T1 (Ji)− T1 (Jn−σ) + L)

≤ 1
P

∑
n−σ+1≤i≤n(n− i + 1)T1 (Ji)

− (1 + σ)σ

2P
T1 (Jn−σ) + PL . (14)

Let the constant c = 2− 2/(1 + P ) < 2. According to Lemma 7, we
have

R(JDEQ (
−−→
t + 1)) ≤ c · ρ + 1

δ
swa

(
JDEQ (

−−→
t + 1)

)
+ E1 , (15)

where E1 = c · 2
1−δ T∞(J ) + cPL(logρ P + 1).

We will now calculate the response time of JDEQ . Since we
know c = 2 − 2/(1 + P ) > 1, the responsiveness parameter ρ > 1,
and the utilization parameter δ ≤ 1, we have c(ρ + 1)/δ > 2. Given
Equation (12), and Inequalities (13), (14) and (15), the response time
of JDEQ is

R(JDEQ )

= R(JDEQ (
−−→
t + 1)) + σ · t

≤ c · ρ+1
δ swa

(
JDEQ (

−−→
t + 1)

)
+ E1 + σ · t

≤ c · ρ+1
δP

∑
n−σ+1≤i≤n(n− i + 1)T1 (Ji)

+ σ
P

∑
1≤i<n−σ

T1 (Ji) + E2 , (16)

where E2 = E1 +
(
c · ρ+1

δ + 1
)

PL .

Step 3: Given R(JRR) in Inequality (11), R(JDEQ ) in Inequal-
ity (16), and c(ρ + 1)/δ > 2, the response time of J is the sum of

them as follows:

R(J )

= R(JRR) + R(JDEQ )

<
1

P

∑
1≤i≤n−σ

(2n− σ − 2i + 1)T1 (Ji) + Ln

+ c · ρ + 1

δP

∑
n−σ+1≤i≤n

(n− i + 1)T1 (Ji)

+
σ

P

∑
1≤i<n−σ

T1 (Ji) + E2

=
1

P

∑
1≤i≤n−σ

(2n− 2i + 1)T1 (Ji) + E2 + Ln

+ c · ρ + 1

δP

∑
n−σ+1≤i≤n

(n− i + 1)T1 (Ji)

+
σ

P

∑
1≤i<n−σ

T1 (Ji)−
σ

P

∑
1≤i≤n−σ

T1 (Ji)

≤ c · ρ + 1

δP

∑
Ji∈J

(n− i + 1)T1 (Ji)

+ c · 2

1− δ
T∞(J ) + Ln + E2

=

(
2− 2

n + 1

)(
ρ + 1

δ
swa (J ) +

2

1− δ
T∞(J )

)
+ Ln + O(PL logρ P ) .

Lemmas 7 and 11 bound the total response time of a batched job
set J when |J | ≤ P and |J | > P respectively. Combining them, we
have completed the proof of Theorem 4.


