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Abstract In visual search tasks, the relative proportions of
target-present and -absent trials have important effects on
behavior. Miss error rates rise as target prevalence
decreases (Wolfe, Horowitz, & Kenner, Nature 435, 439–
440, 2005). At the same time, search termination times on
target-absent trials become shorter (Wolfe & Van Wert,
Current Biology 20, 121–124, 2010). These effects must
depend on some implicit or explicit knowledge of the
current prevalence. What is the nature of that knowledge?
In Experiment 1, we conducted visual search tasks at three
levels of prevalence (6%, 50%, and 94%) and analyzed
performance as a function of “local prevalence,” the
prevalence over the last n trials. The results replicated the
usual effects of overall prevalence but revealed only weak
or absent effects of local prevalence. In Experiment 2, the
overall prevalence in a block of trials was 20%, 50%, or
80%. However, a 100%-valid cue informed observers of the
prevalence on the next trial. These explicit cues had a
modest effect on target-absent RTs, but explicit expectation
could not explain the full prevalence effect. We conclude
that observers predict prevalence on the basis of an
assessment of a relatively long prior history. Each trial

contributes a small amount to that assessment, and this can
be modulated but not overruled by explicit instruction.

Keywords Visual search . Prevalence effect . Search
termination time . Explicit expectation

One may search for various objects in a variety of scenes.
For example, one may look for a friend in a lecture hall or
for a traffic signal when riding in a car. Even though visual
searches play an important role in daily life, we sometimes
fail to find a target. If targets appear rarely, we miss them
more frequently (Wolfe, Horowitz, & Kenner, 2005). This
phenomenon is termed the “prevalence effect” (Gur et al.,
2004). Wolfe et al. (2005) demonstrated that hit rates were
far lower at 1% target prevalence than at 50% prevalence
when observers searched for an object amid a noisy
background, roughly simulating an X-ray baggage screen-
ing task with nonexpert viewers. This prevalence effect has
been replicated (Rich et al., 2008; Wolfe et al., 2007; Wolfe
& Van Wert, 2010) and debated (Fleck & Mitroff, 2007). In
addition to modulating error rates, prevalence alters search
termination times on target-absent trials. Reaction times
(RTs) on target-absent trials decline as the target prevalence
declines. When targets are very rare, observers tend to
terminate unsuccessful searches much more rapidly than
they do when targets are more common. In contrast, RTs on
target-present trials are minimally affected by target
prevalence. The prevalence effect may be of importance,
since low prevalence is characteristic of tasks such as
airport security, medical screening (Gur et al., 2004), or a
predator’s search for prey (Bond & Kamil, 1998; Olendorf
et al., 2006).

Given that prevalence alters search behavior, it follows
that observers must have an estimate of the prevalence that
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applies to the current trial. Where does that estimate come
from? It could be based on the perceived prevalence over
some previous sets of trials. Thus, if the last 10 trials have
yielded 5 target-present and 5 target-absent trials, the
observer might guess that the current prevalence is about
50%. Alternatively, the observer could respond to explicit
information about the current trial. Even if the last 10 trials
have been 5 target-present and 5 target-absent trials, the
observer might change his behavior if told that the
probability of a target on the current trial is 90% or 10%.
We will call this an “expectation” effect. Under normal
circumstances, these factors are confounded. The local
prevalence (e.g., the last 10 trials) is related to the global
prevalence (the prevalence for the entire block of trials),
and the expectation for the next trial is based on what the
observer has been told about the block of trials and/or what
that observer has figured out from the history of preceding
trials. In this article, we will attempt to disentangle these
effects.

In visual search studies, Maljkovic and Nakayama
(1994) were among the first to explicitly distinguish
between expectation effects and estimates based on the
recent history of previous trials. In their experiment,
observers were asked to direct their attention to a singleton
item. It could be red amongst green items or green amongst
red items. On some blocks, the color of targets varied
randomly from trial to trial. In those cases, the observers
could not predict what color would come next. In other
blocks, the target color alternated from one trial to the next,
allowing observers to predict what color would come next.
RTs were significantly shorter when the target color was
repeated, as compared to when it was not. The influence of
approximately the last seven trials could be detected in the
RT for the current trial. In contrast, RTs were not affected
by the predictability of the color. The sure knowledge that
the next trial was a green target trial did not change
performance. Consequently, Maljkovic and Nakayama
concluded that RT facilitation was influenced by past
repetition, not future expectation.

As has been noted, the conditions for repetition and
expectation effects tend to happen together (e.g., if
prevalence is low, you will get more repetitions of target-
absent trials), so they could be easily confounded. For
example, Kristjánsson, Wang, and Nakayama (2002)
required observers to perform conjunction searches for
two types of potential targets (red–vertical or a green–
horizontal targets among red–horizontal and green–vertical
distractors). The observers performed better when the type
of target remained the same throughout the whole block
rather than varying randomly (see also Egeth, 1977; Wolfe,
Butcher, Lee, & Hyle, 2003). Obviously, in a design of this
sort, blocked conditions are associated with more repeti-
tions and a clear expectation for target type.

Wolfe and Van Wert (2010) dissociated local prevalence
from global prevalence by varying prevalence in a
sinusoidal fashion from 1.0 to 0 over 500 trials, and then
back again to 1.0 in the next 500 trials. The authors
calculated target prevalence, error rates, target-absent RTs,
and criterion values over blocks of 50 trials. Each
prevalence occurred twice, once as prevalence was falling
and once as it was rising. The error rates, target-absent RTs,
and criterion values clearly tracked the change in target
prevalence. However, equivalent prevalence values pro-
duced different results in the falling and rising phases of the
experiment. The error rates, target-absent RTs, and criterion
values lagged behind the current prevalence. It was possible
to use this lag to roughly estimate the number of trials that
were contributing to the observer’s estimate of the prevail-
ing prevalence. Wolfe and Van Wert concluded that “it
appears that observers compute prevalence over about four
dozen trials.”

Can the effects of prevalence be influenced by explicit
future expectations, or only by past repetitions? Wolfe and
Van Wert’s (2010) study was not equipped to look at this
factor, since prevalence changed in a predictable manner,
confounding prevailing prevalence and explicit expect-
ations about prevalence. Lau and Huang (2010) addressed
this question by giving their observers different instructions
on different trials (see also Reed, Ryan, McEntee, Evanoff,
& Brennan, 2011). In their Experiments 1 and 2, observers
were told that one color background meant high (50%)
prevalence of a target, while another color meant low (10%)
prevalence. On some blocks this was true. On other blocks,
the color cue was unrelated to the constant target
prevalence. Although target-absent RTs were affected by
the probabilistic cues, miss rates were governed by the
actual prevalence and were not influenced by the cues. In
Experiments 3 and 4 of Lau and Huang (2010), the cues
were always valid. Even though target-absent RTs were
affected by the cue, again, the effect of prevalence on miss
rates was linked to the overall prevalence and not to a
future expectation provided by the cue. There are three
reasons to think that this might not be the end of the story.
First, Lau and Huang focused on error rates rather than RTs.
Wolfe and Van Wert argued that error rates and RTs were
influenced separately by prevalence. Thus, it is possible
that there could be a significant effect on RTs, even if there
was no effect on errors. Second, the largest effect on RTs
for Wolfe and VanWert occurred when prevalence was very
high. Lau and Huang only explored the low-to-middle
range of prevalence. Third, Wolfe and VanWert’s experi-
ment permitted only a rather crude estimate of the number
of trials required to estimate prevalence. Here we looked for
evidence of more fine-grained effects.

In the present study, our primary focus was on search
termination times on target-absent trials, in an attempt to
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clarify the roles of local prevalence and explicit expect-
ations. In Experiment 1, we used three target prevalence
conditions in a simulated luggage search task (6%, 50%,
and 94%). We found, at best, only small effects of local
prevalence, not enough to explain the overall prevalence
effect. In Experiment 2, we used reliable cues about the
target probability on the upcoming trial to dissociate the
prevailing local and global prevalences from explicit
expectations. We found that there were reliable cue effects,
though as with local prevalence, the effects of expectation
were not enough to account for the prevalence effect. These
results led us to the conclusion that the prevailing estimate
of prevalence is built up quite slowly over a rather large
number of trials.

Experiment 1

Method

Stimuli: making luggage We used stimuli like those
developed by Wolfe et al. (2007) and Wolfe and Van
Wert (2010). This laboratory version of luggage screening
made use of jpeg X-ray images supplied by the Depart-
ment of Homeland Security’s Transportation Security
Laboratory. The image set included empty bags and
images of objects that could be found in those bags.
Targets were drawn from a set of 100 images of guns and
100 images of knives. Bags were created with MATLAB
using the Psychophysics Toolbox (Brainard, 1997). Each
bag was loaded with 18 randomly chosen objects. Objects
were drawn to scale, so a hair dryer would be bigger than
a nail clipper. Selection of objects was random from the
set, so some bags contained unusual collections of objects.
The bag images varied in height from 9.5 to 20 deg at a
57-cm viewing distance, and in width from 16 to 21.5 deg.
Clothing appeared in X-ray images as an orange haze.
Eight pieces of clothing were added to each bag to
produce this effect, but these were not counted as “items”
in the bag. Figure 1 shows a sample bag. In the standard
color scheme, blue indicates metal, orange shows organic
material, and green shows material of intermediate
density.

Observers In Experiment 1, 15 novice observers who had
never seen the stimuli were tested in all conditions
(ages 19–27 years, mean age = 22.3 years, SD = 2.0; 6
women, 9 men). By self-report, the observers had no
history of eye or muscle disorders. None were colorblind
(Ishihara plates), and all had visual acuity no worse than
20/25 with correction. Informed consent was obtained
from observers, and each was paid 1,000 yen/h for his or
her time.

Procedure On each trial, a fixation cross was presented for
1,000 ms. Then a bag stimulus was presented until the
observers responded. Observers pressed one key for target
presence and another if they felt that there was no target.
Observers received accurate feedback. The target, if
present, was outlined on the screen after a response was
made. Correct “present” responses were rewarded with the
written comment “Good for you. You found the target. Take
a look and then press a key to continue.” The message after
a miss error “You missed the target. Take a look and then
press a key to continue.” Messages after target-absent trials
indicated whether the response was correct or incorrect.
Observers made another keypress to move to the next trial.

Observers were given 50 practice trials at 50% preva-
lence and then tested in three blocks having 6%, 50%, or
94% prevalence. There were 300 trials per block. Block
order was counterbalanced across observers. The computer
enforced breaks every 50 trials; therefore, 300 trials in each
block were divided into six sessions composed of 50 trials
each. Observers could get up and leave the testing room
during breaks, but this was not required.

Data analysis RTs over 5,000 ms and under 200 ms
were removed from the analysis. In Experiment 1, we
did not inform observers about target prevalence. There-
fore, we treated the first 50 trials of each block as practice
trials that allowed observers to learn the prevailing target
prevalence.

Results

Eliminating RT outliers resulted in the removal of 0.14% of
trials. The pattern of errors was the same with and without

Fig. 1 An example of the luggage-like stimuli used in these
experiments
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the data from those trials. Removing these outlier RTs
decreased the variability in the RT analysis.

Subjective prevalence After a block of trials, observers
were asked to give an explicit estimate of the prevalence.
The average subjective prevalence was 7% (SEM = 0.8) in
the 6% prevalence condition, 55% (SEM = 3.0) in the 50%
prevalence condition, and 92% (SEM = 0.7) in the 94%
prevalence condition. These results showed that observers
acquired an accurate and explicitly accessible estimate of
target prevalence in each condition.

Replication of the prevalence effect Figure 2 shows that
target prevalence influenced search termination time in our
study. As reported in the previous works, search termina-
tion time increased from an average of 1,184 ms at 6%
prevalence to 1,510 ms at 50% prevalence, and it was an
average of 2,728 ms at 94% prevalence. The main effect of
prevalence was statistically significant [F(2, 28) = 61.32,
p < .001]. Subsequent Bonferroni-corrected comparisons
indicated that there were significant differences among the
three conditions (all ps < .05). The target-present RTs were
reliably slower at low prevalence [F(2, 28) = 23.50, p <
.001]. Subsequent Bonferroni-corrected comparisons indi-
cated that RTs at 6% prevalence were longer than those at
both 50% prevalence and 94% prevalence (p < .05), and
that there was no difference between the 50% prevalence
and 94% prevalence conditions. There was a more modest
effect of prevalence on target-present RTs. These results
showed clear evidence that Experiment 1 produced a
typical prevalence effect on search termination times.

Prevalence had the usual effects on the error rates. The
miss rates are shown in Fig. 3 as a function of prevalence.
Miss rates decreased from an average of .15 at 6%
prevalence, to .06 at 50% prevalence, to .02 at 94%
prevalence. We used a nonparametric Friedman test because
the number of 100%-correct cells rendered the distribution
of errors clearly non-Gaussian (miss errors, Friedman

statistic = 19.6, p < .001; false alarms, Friedman = 14.3,
p < .01). Wilcoxon tests (Bonferroni corrected) indicated
significant differences among the three conditions in miss
rates (p < .05). False alarms were higher at 94% prevalence
than at either 6% prevalence or 50% prevalence (p < .05),
and there was no difference between the 6% and 50%
prevalence conditions. The trade-off between miss and false
alarm errors also showed that, as has been reported
elsewhere (Healy & Kubovy, 1981; Wolfe et al., 2007),
the main effect of prevalence was on criterion and not on
sensitivity (d'). The d's were 3.6 at 6% and 3.6 at 94% [F(2,
28) = 1.26, p = .30], while criterion changed from .6 at 6%
to –.3 at 94% [F(2, 28) = 54.01, p < .001]. Subsequent
Bonferroni-corrected comparisons indicated significant dif-
ferences among the three conditions (all ps < .05).

As Fig. 2 shows, there were very large effects of
prevalence on target-absent RTs, with smaller effects, as
has been reported elsewhere (Godwin, Menneer, Cave, &
Donnelly, 2010), in the opposite direction on target-present
RTs.

Local prevalence effect on RTs As noted, Wolfe and Van
Wert (2010) changed prevalence slowly over the course of
1,000 trials and found that RTs changed with the prevailing
prevalence. They could roughly estimate that prevailing
prevalence was computed over about 40–50 trials. The
structure of the present experiment allowed us to look for
more local effects within an experimental design that varied
overall prevalence. Though the prevalence over a block
might be 6%, 50%, or 94%, the local prevalence would
vary. Thus, if one looks, for example, at just the previous
10 trials, the local prevalence could be 0%, 10%, 20%, . . .
or 100%, depending on the number of target-present trials
in the group of 10. Of course, at 94% prevalence, 0% or
20% local prevalence will occur very rarely, and at 6%
prevalence, there will not be many higher values of local
prevalence. Nevertheless, there will still be substantial
variation in local prevalence over trials.
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Fig. 2 Average reaction times for target-present and -absent trials in
Experiment 1. Error bars represent ±1 SEM
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Fig. 3 Error rates for Experiment 1. Error bars represent ±1 SEM
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Figure 4 shows the results of such an analysis. Large
symbols reproduce the mean RT data from Fig. 2.
Smaller figures show the RTs as a function of the local
prevalence. Data are plotted for those conditions that
produced at least 150 trials, accumulated across all 15
observers. Thus, at 6% global prevalence, there are 150
trials at 0%, 10%, and 20% prevalence. Runs of 10 trials
with, say, 5 target-present trials occur at very low rates at
6% prevalence. Lines are regression lines through the
local-prevalence RT values for each global prevalence.
The target-absent trials are the RTs of interest. The slopes
of the local-prevalence lines are very shallow. Indeed, the
effects of local prevalence on RT are not statistically
reliable [50% global prevalence, F(4, 56) = 0.31, p = .87;
6% global prevalence, F(2, 28) = 0.97, p = .39]. The
results are qualitatively similar for local prevalence
computed for windows of 20, 7, or 5 trials (all ps > .05).

Discussion

Apparently, observers are not highly responsive to local
variation in prevalence. There are three possibilities. (1)
Perhaps the effect of prevalence builds up slowly, and this
experiment simply lacked the power to see the effects that
occurred over 5 or 10, or even 20, trials. Wolfe and Van
Wert (2010) estimated that performance was based on
prevalence over 40–50 trials. The design of Experiment 1
was able to look at shorter runs of trials. Once the run
length became longer, the range of local prevalence did not
vary much from the global prevalence, making this
experimental design uninformative. (2) Alternatively, per-
haps there is no effect of prevalence until observers have a

quite large sample of trials. Perhaps it appears ballistically
after that large number of trials have been evaluated.
Finally, (3) maybe prevalence effects on RTs occur only
when observers have gathered enough information to
explicitly predict the prevalence of the next trial. Experi-
ment 2 will show that there is some evidence for a role of
explicit information.

Experiment 1b

However, Proposition (1) above also seems to be true. In
order to look for subtle effects of local prevalence, we
analyzed data collected for a different experiment (dubbed
1b here).

Method

A group of 20 observers between the ages of 18 and 55
searched for a “T” among “L”s for 600 trials at 50%
prevalence. By self-report, they had no history of eye or
muscle disorders. None were colorblind (Ishihara plates),
and all had visual acuity no worse than 20/25 with
correction. Informed consent was obtained from all observ-
ers, and each was paid $10/h for his or her time.

Observers searched for a black “T” among black “L”s
presented on a white background. All items could be
presented in any of four 90-deg rotations. Letter’s sub-
tended approximately 2 deg. Set sizes were 5, 10, 15, and
20 items. On each trial, a fixation cross was presented.
Then a stimulus was presented until observers responded.
Observers pressed one key for target presence and another
if they felt that no target was present. Observers received
accuracy feedback after each trial.

Results

Eliminating outliers (RTs > 3,000 ms) resulted in the
removal of 0.075% of trials. The error rates were 4.1% miss
and 1.5% false alarm errors.

In what may be a mere coincidence, the slope of the RT
× prevalence function for these data (2.8 ms per percent
prevalence; see Fig. 5) is identical to the slope for the 50%
global prevalence data, shown in Fig. 4. However, the
greater number of subjects and trials rendered the local
prevalence effect significant in this case [F(4, 76) = 4.65,
p = .002]. Subsequent Bonferroni-corrected comparisons
indicated that RTs were longer for 70% prevalence than for
30% prevalence (p < .05), and that there were no
differences among the other conditions. We conclude,
therefore, that observers can respond to local prevalence.
The effect of each trial is small and, as a consequence, it
takes many trials, perhaps the four dozen or so suggested
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Fig. 4 Reaction time (RT) spreads as a function of global and
local prevalence in Experiment 1. Large symbols reproduce the RT
data from Fig. 2; the squares are target-absent trials, the circles
target-present trials. Smaller figures and regression lines show RTs
as a function of local prevalence. Data are plotted only for those
conditions producing at least 150 trials across 15 observers. Error
bars represent ±1 SEM
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by Wolfe and Van Wert (2010), before prevalence reaches
its full effect. This might seem to suggest an analysis in
which we look for an effect of not-so-local prevalence over
a range of 40 or 50 trials. As noted above, the difficulty
with this analysis is that the range of local prevalence over
50 trials is very limited. At 50% global prevalence, for
example, the great bulk of local-prevalence values lie
between 45% and 55%, a range too small to see a
prevalence effect on RTs.

Experiment 2: The role of explicit information
about prevalence

Experiment 1 showed that local prevalence effects are, at
best, quite small. However, a second type of a local effect
could be larger. If the observer has explicit and credible
information about the target probability on the upcoming
trial, perhaps that clear expectation about the future could
have more of an impact than the estimate of the recent past.
Lau and Huang (2010) argued against such an effect, but as
noted, they may not have looked for the effect in the place
where it was most likely to appear. In Experiment 2, we
created situations in which the prevailing prevalence history
was different from this future expectation. In this experi-
ment, high- and low-prevalence trials were randomly mixed
in a block. Of course, the mixture created an overall
prevalence for the block. Those overall target prevalence
rates were 20%, 50%, and 80%. One of two levels of
prevalence expectation was indicated by a cue before each
trial (see Table 1). This design allowed us to compare the
magnitudes of the effects of block prevalence and cued
prevalence expectation.

Method

Stimuli The stimuli used were the same as in Experiment 1.

Observers In Experiment 2, 15 observers with no previous
experience of the stimuli were tested in all conditions (ages
18–23 years, mean age = 20.1 years, SD = 1.6; 2 women,
13 men).

Procedure In Experiment 2, the procedure was the almost
same as in Experiment 1, but fixation cues appeared on
each trial, informing the observer about the prevalence on
the next trial. Table 1 shows the marginal probabilities and
the conjunctive probabilities for each condition in this
experiment. Observers were given 50 practice trials at
50% prevalence and were then tested for 300 experimental
trials in each of the 20%, 50%, and 80% overall
prevalence conditions. In each overall prevalence condi-
tion, there were 96 “50%-cue” trials (32%) and 204
“extreme-cue” trials (68%). In the 20% prevalence
condition, target prevalence was 50% when the 50% cue
appeared, but was 6% when the extreme cue appeared. In
the 80% prevalence condition, target prevalence was 50%
when the 50% cue appeared but was 94% when the
extreme cue appeared. In the 50% prevalence condition,
both cues were associated with 50% prevalence. In
Experiment 2, we used two kinds of fixation cue (“+”
and “*”). For each observer, these were randomly assigned
as the 50% cue and the extreme cue. Therefore, observers
needed to learn the relationship of the cue to the
probability of a target on that trial. The first 50 trials of
each block were practice trials that allowed the observers
to learn the global prevalence and the cue values.
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Fig. 5 The effects of local prevalence on RTs for a T-versus-L search
(Exp. 1b). Data are plotted only for those conditions producing at least
300 trials across 20 observers. Error bars represent ±1 SEM

Table 1 Marginal probabilities and conjunctive probabilities for the
conditions of Experiment 2

Cue Total

50% Extreme

20% Overall Prevalence

Present .16 .04 .20

Absent .16 .64 .80

Total .32 .68 1.0

Prevalence .50 .06

50% Overall Prevalence

Present .16 .34 .50

Absent .16 .34 .50

Total .32 .68 1.0

Prevalence .50 .50

80% Overall Prevalence

Present .16 .64 .80

Absent .16 .04 .20

Total .32 .68 1.0

Prevalence .50 .94
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Results

Eliminating outliers resulted in the removal of 1% of trials.
The pattern of errors was the same with and without the
data from those trials. Removing these outlier RTs
decreased the variability in the RT analysis.

Subjective prevalence Since observers would need to learn
the probabilities associated with the cues, it was important
to determine whether, in fact, they did learn these
probabilities. We asked observers to estimate the subjective
prevalence associated with each cue. In the 20% prevalence
condition, they reported that the subjective prevalences
were 46% (SEM = 4.5) for the 50%-cue trials (objective
prevalence = 50%) and 13% (SEM = 1.8) for the extreme
(6%) cue. In the 80% prevalence condition, they reported
that the subjective prevalences were 47% (SEM = 5.8) for
the 50%-cue trials (50%) and 88% (SEM = 1.2) for the
extreme (94%) cue. In the 50% prevalence condition, they
reported that the subjective prevalences were 43% (SEM =
4.8) for the 50%-cue trials (50%) and 58% (SEM = 4.1) for
the extreme-cue trials (50%). These results showed that
observers acquired a broadly accurate impression of target
prevalence in all conditions.

Replication of the global prevalence effect Experiment 2
can be treated as a replication of Experiment 1. This is
shown in Fig. 6. There was a strong overall prevalence
effect on target-absent RTs [F(2, 28) = 10.81, p < .001].
Subsequent Bonferroni-corrected comparisons indicated
that RTs were longer with 80% overall prevalence than
with either 20% or 50% prevalence (p < .05) and that there
was no difference between the 20% and 50% prevalence
conditions. There was no overall prevalence effect on

target-present trials [F(2, 28) = 2.45, p = .10]. We restricted
the analysis of local prevalence to those local prevalence
values that generated at least 150 total trials over the 15
observers. The local prevalence effect was significant in the
20% overall prevalence condition [F(4, 56) = 3.64, p =
.01]. Subsequent Bonferroni-corrected comparisons indi-
cated a significant difference only between 10% local
prevalence and 30% local prevalence (p < .05). The local
prevalence effects were not significant at 50% overall
prevalence [F(4, 56) = 1.73, p = .15] or 80% overall
prevalence [t(14) = 0.55, p = .59]. This pattern of results is
similar to that seen in Experiment 1. Local effects of
prevalence are either weakly present or so weak as to be
statistically unreliable, again consistent with the idea that
larger numbers of trials are used to derive the estimate of
prevalence that drives search behavior.

Replication of the cueing effect on miss rates The error
rates are shown in Fig. 7 as a function of prevalence and
cue condition. The basic prevalence effect on errors was
replicated, with overall miss errors declining as prevalence
rises and false alarm errors rise. These effects were
statistically significant. We used a nonparametric Fried-
man test because the number of 100% correct cells
rendered the distribution of errors clearly non-Gaussian.
(miss errors, Friedman statistic = 15.6, p < .001; false
alarms, Friedman = 13.6, p < .01). Wilcoxon tests
(Bonferroni corrected) indicated significant differences
among the three conditions in terms of miss rates (all ps <
.05). False alarms were higher in the 80% prevalence than in
either the 20% prevalence or the 50% prevalence condition
(p < .05), and there was no difference between 20%
prevalence and 50% prevalence. The only effect of cue that
appears to be reliable is a difference between 1% and 2.4%
false alarm errors at 20% prevalence (Wilcoxon signed rank:
p = .048). This effect, while tiny, is in the predicted
direction: Higher expected prevalence (50%) produces more
false alarm errors than does lower expected prevalence (6%).
No other comparisons approach significance (all ps > .2).

Expectation effect on RTs The main question of interest in
Experiment 2 was whether a cue that reliably tells the
observer about the probability of a target on the next trial
influences the search termination time on that trial. Figure 8
shows the RT data as a function of cue types. If the
prevalence effect were entirely driven by the expected
prevalence, then 50%-cue RTs should be the same in all
prevalence conditions, since that cue reliably indicated 50%
prevalence on the next trial in all cases. Clearly, that
hypothesis can be rejected. There is a significant effect of
overall prevalence on 50%-cue target-absent RTs [F(2, 28) =
6.12, p = .006]. Subsequent Bonferroni-corrected compar-
isons indicated that RTs were longer at 80% prevalence than
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Fig. 6 Local and global prevalence effects in Experiment 2. The
upper data points (squares) show target-absent trials. Circles are
target-present trials. Open squares and circles show RTs as a function
of local prevalence averaged over 10 preceding trials. Filled squares
and circles show average target-absent RTs for each prevalence block.
Data are plotted only for those conditions producing at least 150 trials
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at 50% prevalence (p < .05) and that no differences appeared
between 20% prevalence and 50% prevalence and between
20% prevalence and 80% prevalence. However, we can also
reject the hypothesis that the cues had no effect. If there were
no effect of the cues, the 50%-cue and extreme-cue RTs
should be the same. This hypothesis can also be rejected. At
20% overall prevalence, a 6% cue produced reliably shorter
RTs than did a 50% cue [t(14) = 4.53, p < .001], and at 80%
prevalence, a 94% cue produced reliable longer RTs than did
a 50% cue [t(14) = 2.78, p = .015]. Fortunately, there was no
effect at 50% overall prevalence, since both cues denoted
50% prevalence on the next trial [t(14) = 0.35, p = .73].
There were no significant effects of cues on target-present
trials [all t(14)s < 1.5, all ps > .15].

Thus, the results of Experiment 2 replicated those of
Experiment 1. In addition, they showed that search
termination RTs could be influenced by information about
future prevalence. However, the effect was only modest in
size. Explicit expectation was certainly not the primary
source of the prevalence effect seen in other experiments.

General discussion

In two experiments, we again replicated significant
prevalence effects on errors and RTs. Obviously,
observers must have information about prevalence that
drives these effects. In a standard search experiment, the

plausible sources of information are highly correlated
with each other. When prevalence is fixed, the explicit
expectation of the prevalence on the next trial is
essentially same as the history of prevalence over some
preceding set of trials. Here we could begin to tease
apart the effects of different sources of information, and
we could reject some hypotheses.

Is the prevalence effect based primarily on the expected
prevalence? Their results allowed Lau and Huang (2010)
to reject this hypothesis. Indeed, they found no reliable
effects of expected prevalence. Our Experiment 2 results,
likewise, did not support that hypothesis.

Is the prevalence effect entirely unaltered by expected
prevalence? The results of our Experiment 2 did not
support this hypothesis, as well. Expected prevalence
produced reliable effects on target-absent RTs. There was
only a hint of an effect on error rates. Wolfe and Van Wert
(2010) proposed that prevalence effects on errors and RTs
should be partially dissociable, because prevalence affected
two internal decision criteria. One criterion governs
decisions about individual items during search (“Is this
attended item a target?”). The other is specifically related to
quitting times on target-absent trials. Both of these will
influence error rates. The quitting criterion will be the
primary source of prevalence effects on target-absent RTs.
Thus, if explicit expectations had a greater influence on the
quitting criterion than on the target/nontarget criterion, we
might expect to see larger expectation effects on target-
absent RTs than on error rates.

Is the prevalence effect based primarily on the local
prevalence over the last few trials? The results of both
Expriments 1 and 2 allow us to reject this hypothesis. We
presented an analysis of local prevalence defined by a 10-
trial window. However, RTs were not strongly related to the
local prevalence over any small window of trials. Only in
the 20% prevalence condition of Experiment 2 did local
prevalence over a 10-trial window reach statistical signif-
icance, and one might worry whether a single significant
outcome is actually significant, in the broader sense of that
term.
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Is the prevalence effect entirely unrelated to local preva-
lence over the last few trials? Finally, we can reject this
hypothesis, too. Experiment 1b showed that with enough
statistical power, the weak effects of local prevalence are
statistically reliable.

Taken together with the results of Wolfe and VanWert
(2010), the present results are consistent with the view that
the effects of prevalence build up incrementally over many
instances of a search. The estimate of four dozen given by
Wolfe and VanWert might be correct, but it would take a
very large study to pin this number down accurately, even if
a fixed number of trials were used to derive the current
estimate of prevalence. It seems more plausible that a given
target-present or target-absent trial has its greatest
impact on the next trials and that its impact then fades
over time. Again, measuring such a function would be
extremely laborious. It is probably adequate to say that
several dozen trials go into the prevailing estimate of
prevalence and that explicit information about future
prevalence can modify but cannot completely dominate
this prevailing estimate.
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