
 

© 2007 The Authors DOI: 10.1111/j.1466-8238.2007.00334.x
Journal compilation © 2007 Blackwell Publishing Ltd www.blackwellpublishing.com/geb

 

59

 

Global Ecology and Biogeography, (Global Ecol. Biogeogr.)

 

 (2008) 

 

17

 

, 59–71

 

RESEARCH
PAPER

 

Blackwell Publishing Ltd

 

Spatial autocorrelation and the selection 
of simultaneous autoregressive models

 

W. Daniel Kissling

 

1,3

 

* and Gudrun Carl

 

2,3

 

ABSTRACT

 

Aim

 

Spatial autocorrelation is a frequent phenomenon in ecological data and can
affect estimates of model coefficients and inference from statistical models. Here,
we test the performance of three different simultaneous autoregressive (SAR) model
types (spatial error 

 

=

 

 SAR

 

err

 

, lagged 

 

=

 

 SAR

 

lag

 

 and mixed 

 

=

 

 SAR

 

mix

 

) and common
ordinary least squares (OLS) regression when accounting for spatial autocorrelation
in species distribution data using four artificial data sets with known (but different)
spatial autocorrelation structures.

 

Methods

 

We evaluate the performance of SAR models by examining spatial
patterns in model residuals (with correlograms and residual maps), by comparing
model parameter estimates with true values, and by assessing their type I error
control with calibration curves. We calculate a total of 3240 SAR models and
illustrate how the best models [in terms of minimum residual spatial autocorrelation
(minRSA), maximum model fit (

 

R

 

2

 

), or Akaike information criterion (AIC)] can be
identified using model selection procedures.

 

Results

 

Our study shows that the performance of SAR models depends on model
specification (i.e. model type, neighbourhood distance, coding styles of spatial
weights matrices) and on the kind of spatial autocorrelation present. SAR model
parameter estimates might not be more precise than those from OLS regressions in
all cases. SAR

 

err

 

 models were the most reliable SAR models and performed well in all
cases (independent of the kind of spatial autocorrelation induced and whether models
were selected by minRSA, 

 

R

 

2

 

 or AIC), whereas OLS, SAR

 

lag

 

 and SAR

 

mix

 

 models showed
weak type I error control and/or unpredictable biases in parameter estimates.

 

Main conclusions

 

SAR

 

err

 

 models are recommended for use when dealing with
spatially autocorrelated species distribution data. SAR

 

lag

 

 and SAR

 

mix

 

 might not
always give better estimates of model coefficients than OLS, and can thus generate bias.
Other spatial modelling techniques should be assessed comprehensively to test their
predictive performance and accuracy for biogeographical and macroecological research.
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INTRODUCTION

 

Spatial autocorrelation is a frequent phenomenon in ecological

data because observations from nearby locations are often more

similar than would be expected on a random basis (Legendre,

1993; Legendre & Legendre, 1998). This is especially true for

species distribution data because they are inherently spatially

structured (e.g. Jetz & Rahbek, 2002; Keitt 

 

et al.

 

, 2002; Dark,

2004; Guisan 

 

et al.

 

, 2006; Kissling 

 

et al.

 

, 2007). Two types of

spatial autocorrelation might be distinguished depending on

whether endogenous or exogenous processes generate the spatial

structure of species distributions (Legendre, 1993; Legendre &

Legendre, 1998; Fortin & Dale, 2005). In the case of endogenous

processes, the spatial pattern is generated by factors that are

an inherent property of the variable itself (‘inherent spatial auto-

correlation’; Fortin & Dale, 2005), for instance distance-related
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biotic processes such as reproduction, dispersal, speciation,

extinction or geographical range extension (Legendre, 1993;

Diniz-Filho 

 

et al.

 

, 2003). On the other hand, spatial autocorrelation

can be induced by exogenous processes that are independent of

the variable of interest (‘induced spatial dependence’; Fortin &

Dale, 2005). These are most likely spatially structured environ-

mental factors such as geomorphological processes, wind, energy

input or climatic constraints, which can cause species distributions

to be spatially structured (Legendre, 1993; Diniz-Filho 

 

et al.

 

,

2003).

Irrespective of which processes cause the spatial structure of

species distributions, the presence of spatial autocorrelation is

problematic for classical statistical tests (

 

anova

 

, correlation and

regression) because these methods assume independently

distributed errors (Legendre, 1993; Legendre & Legendre, 1998).

The first problem relates to the inflation of type I errors, which

means that confidence intervals are wrongly estimated when

observations are not independent, and hence classical tests of

significance of correlation or regression coefficients might be

biased (Legendre, 1993; Lennon, 2000; Legendre 

 

et al.

 

, 2002).

The second problem applies to shifts in model coefficients

between non-spatial and spatial regression models, which affects

our ability to evaluate the importance of explanatory variables

(Lennon, 2000; Lichstein 

 

et al.

 

, 2002). This can be a serious

shortcoming for hypothesis testing and inference from statistical

models (Dormann, 2007) and might even invert the interpreta-

tion of environmental effects on species distributions (Kühn,

2007). One therefore needs to test for the presence of spatial

autocorrelation in the residuals of regression models when

modelling species distributions to evaluate whether type I errors

and shifts in parameter estimates are likely to occur.

A number of methods exist to deal with spatial autocorrelation

in ecological data (Cressie, 1993; Haining, 2003; Diniz-Filho &

Bini, 2005; Fortin & Dale, 2005; Rangel 

 

et al.

 

, 2006). One of these

is spatial regression models, such as simultaneous autoregressive

(SAR) models (Cressie, 1993; Haining, 2003), which augment

the standard linear regression model with an additional term

that incorporates the spatial autocorrelation structure of a given

data set. This additional term is implemented with a ‘spatial

weights matrix’ where the neighbourhood of each location

(e.g. defined by distance) and the weight of each neighbour

(e.g. closer neighbours might receive higher weights) need

to be defined (e.g. Anselin & Bera, 1998; Fortin & Dale, 2005).

The spatial dependence of a location on neighbouring sites is

then modelled with a variance–covariance matrix based on the

defined spatial weights matrix (for details see Cressie, 1993;

Anselin, 1988, 2002; Anselin & Bera, 1998; Fortin & Dale, 2005).

The spatial weights matrix in SAR models thus accounts for

patterns in the response variable that are not predicted by

explanatory variables, but are instead related to values in

neighbouring locations.

Although SAR and other autoregressive models have been

known for decades in the statistical literature (Besag, 1974; Cliff

& Ord, 1981), their application in ecology and species distribution

research has been limited up to now (e.g. Jetz & Rahbek, 2002;

Keitt 

 

et al.

 

, 2002; Lichstein 

 

et al.

 

, 2002; Dark, 2004; Tognelli &

Kelt, 2004; Kissling 

 

et al.

 

, 2007). One reason might be that the

implementation of autoregressive models is mathematically

complex (Cressie, 1993) and computationally intensive (Rangel

 

et al.

 

, 2006), and freely available software packages have just

recently become available (R Development Core Team, 2005;

Rangel 

 

et al.

 

, 2006). As a consequence, most applications of

autoregressive models in ecology have so far restricted the range

of available options to incorporate spatial interaction. For

instance, most studies have not tested a variety of possible model

specifications (e.g. different neighbourhood distances, model

types or coding styles for the spatial weights matrix), nor have

they systematically investigated their potential to account

for spatial autocorrelation, including the precision of their

parameter estimates. Moreover, model selection procedures,

which allow the identification of a single best model or a set of

models (Burnham & Anderson, 1998; Johnson & Omland,

2004), are largely absent for spatially autocorrelated data (see

Hoeting 

 

et al.

 

, 2006).

In this paper, we tested the potential of three different SAR

model types (spatial error model, lagged model and mixed

model) with 27 spatial weights matrices (based on nine

neighbourhood distances and three different neighbourhood

weights) to account for spatial autocorrelation in four artificial

species distribution data sets with known spatial properties. All

four data sets had the same relationship between the response

variable and the two explanatory variables and only differed in

the way that spatial autocorrelation was induced. This allowed us

to systematically investigate the potential of SAR models to

account for certain types of spatial autocorrelation structures,

including the evaluation of the precision of parameter estimates

and type I error controls. Moreover, we illustrate how the best

SAR models can be selected from a range of model specifications

using model selection procedures based on minimum residual

spatial autocorrelation (minRSA), maximum model fit (

 

R

 

2

 

) and

the Akaike information criterion (AIC). The construction and

evaluation of SAR models was implemented with the free

software R (R Development Core Team, 2005) to enable

ecologists to freely use the methods presented here.

 

MATERIALS AND METHODS

Simultaneous autoregressive models

 

Simultaneous autoregressive models assume that the response at

each location 

 

i

 

 is a function not only of the explanatory variable

at 

 

i

 

, but of the values of the response at neighbouring locations

 

j

 

 as well (Cressie, 1993; Lichstein 

 

et al.

 

, 2002; Haining, 2003).

In SAR, the neighbourhood relationship is formally expressed in

a 

 

n 

 

×

 

 n

 

 matrix of spatial weights (

 

W

 

), with elements (

 

w

 

ij

 

) represent-

ing a measure of the connection between locations 

 

i

 

 and 

 

j

 

.

The specification of the spatial weights matrix starts by identifying

the neighbourhood structure of each cell. This neighbourhood

can be identified by, for example, the adjacency of cells on a grid

map, or by Euclidean or great circle distance (e.g. the distance

along Earth’s surface) to define cells within or outside a respective

neighbourhood. The neighbours can further be weighted to give
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closer neighbours higher weights and more distant neighbours

lower weights. A number of methods are available for coding the

spatial weights matrix (see Bivand, 2006), for example: (1)

binary coding (locations are either listed as neighbours or not);

(2) row-standardization (which scales the covariances based on

the number of neighbours of each region in each row of the

spatial weights matrix); or (3) variance stabilization (stabilizes

variances by summing over all links, for details see Tiefelsdorf

 

et al.

 

, 1999). The final matrix of spatial weights 

 

W

 

 consists of

zeros on the diagonal, and weights for the neighbouring

locations (

 

w

 

ij

 

) in the off-diagonal positions.

Three different SAR models will be distinguished here

depending on where the spatial autoregressive process is believed

to occur (for details see Cliff & Ord, 1981; Anselin, 1988;

Haining, 2003). The spatial error model (SAR

 

err

 

) assumes that

the autoregressive process is found only in the error term. This is

most likely the case if spatial autocorrelation is not fully

explained by the included explanatory variables (‘induced spatial

dependence’), e.g. if an important spatially structured explana-

tory variable has not been taken into account (Diniz-Filho 

 

et al.

 

,

2003) or if spatial autocorrelation is an inherent property of

the response variable itself (‘inherent spatial autocorrelation’).

For the SAR

 

err

 

, the usual OLS regression model (

 

Y

 

 

 

=

 

 

 

Xββββ

 

 

 

+

 

 

 

e

 

) is

complemented by a term (

 

λ

 

W

 

u

 

) which represents the spatial

structure (

 

λ

 

W

 

) in the spatially dependent error term (

 

u

 

).

The SAR

 

err

 

 thus takes the form

 

Y

 

 

 

=

 

 

 

Xββββ

 

 

 

+

 

 

 

λ

 

W

 

u

 

 

 

+

 

 

 

e

 

where 

 

λ

 

 is the spatial autoregression coefficient, 

 

W

 

 is the spatial

weights matrix, ββββ

 

 is a vector representing the slopes associated

with the explanatory variables in the original predictor matrix 

 

X

 

,

and 

 

e

 

 represents the (spatially) independent errors.

Second, the SAR lagged model (SAR

 

lag

 

) assumes that the

autoregressive process occurs only in the response variable

(‘inherent spatial autocorrelation’), and thus includes a term

(

 

ρ

 

W

 

) for the spatial autocorrelation in the response variable 

 

Y

 

,

but also the standard term for the explanatory variables and

errors (

 

Xββββ

 

 

 

+

 

 

 

e

 

) as used in an ordinary least squares (OLS)

regression. The SAR

 

lag

 

 takes the form

 

Y

 

 

 

=

 

 

 

ρ

 

WY ++++

 

 Xββββ

 

 

 

+

 

 

 

e

 

where 

 

ρ

 

 is the autoregression coefficient, and the remaining

terms are as above.

Finally, spatial autocorrelation can affect both response and

explanatory variables (having both ‘inherent spatial autocorrela-

tion’ and ‘induced spatial dependence’). In this case, another

term (

 

WXγγγγ

 

) must additionally appear in the model, which

describes the autoregression coefficient (γγγγ

 

) of the spatially lagged

explanatory variables (

 

WX

 

). The SAR mixed model (SAR

 

mix

 

)

takes the form

 

Y

 

 

 

=

 

 

 

ρ

 

WY ++++

 

 Xββββ

 

 

 

+

 

 

 

WXγγγγ

 

 

 

+

 

 

 

e

 

.

For more details on SAR models and the estimation of the

covariance matrices see Cliff & Ord (1981), Anselin (1988, 2002),

Cressie (1993), Haining (2003) and Fortin & Dale (2005).

 

How to construct SAR models in R

 

The implementation of SAR models is illustrated here with the

free software R (R Development Core Team 2005). The three

SAR model types (SAR

 

err

 

, SAR

 

lag

 

, SAR

 

mix

 

) are implemented in R

in the library ‘spdep’ (Bivand, 2006). To use the SAR functions in

R, one needs to specify the neighbourhood distances first, and

the spatial weights matrix is then calculated by weighting

the neighbours with a certain coding scheme (e.g. binary, row

standardized or variance-stabilizing coding scheme, see above).

A more detailed, annotated code to construct SAR models in R is

given in Appendix S1 (see Supplementary Material).

 

Data

 

Four artificial data sets were created containing information on

species distribution of a virtual organism and two environmental

variables (‘

 

rain

 

’ and ‘

 

jungle

 

’). The four data sets were modified

versions of the freely available R volcano data set (R Development

Core Team, 2005), which gives topographic information on

the Maunga Whau volcano near Auckland, New Zealand, on a

10 

 

×

 

 10 m grid. The extent of the grid (5307 grid cells) was

first reduced to 1108 cells by simply increasing sea levels. Two

explanatory variables, ‘

 

rain

 

’ and ‘

 

jungle

 

’, were then created.

The variable 

 

rain

 

 (assumed to describe annual precipitation) was

a significant determinant of the virtual organism distribution in

all data sets, whereas the variable 

 

jungle

 

 (assumed to describe the

percentage of jungle cover) did not have any explanatory

power (noise). In all four data sets, the data on virtual organism

distribution were normally distributed and had the same

relationship to the explanatory variables 

 

rain

 

 and 

 

jungle

 

, based

on the following underlying model:

expected value (virtual organism) 

 

=

 

 

80 

 

−

 

 (0.015 

 

× rain) + (0 × jungle)

The data sets differed, however, in the way in which spatial

autocorrelation was induced. We first simulated three artificial

data sets, which correspond to the mathematical formulation of

the three model types for spatial externalities (Anselin, 2003).

These data sets might therefore comprise ecologically borderline

cases and were simulated with the aim of illustrating the

performance of SAR models under extreme conditions. In all

three cases we included spatial autocorrelation by multiplying a

vector or matrix by the transpose of the Cholesky decomposition

CT of a pre-specified variance–covariance matrix. However, the

data sets differed in where CT was incorporated. In the ‘error

data’, normally distributed errors containing spatial autocorrelation

were added to the linear predictor (Y = Xββββ + CTe), and spatial

autocorrelation was thus only present in the errors but not in the

response variable or in the explanatory variables (see Fig. 1a). In

real-case field data, this spatial autocorrelation pattern could, for

instance, be caused by not taking into account the ‘induced

spatial dependence’ of an important spatially structured explanatory

variable (see Diniz-Filho et al., 2003), or if spatial autocorrelation

is an inherent property of the response variable itself (‘inherent
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spatial autocorrelation’) and thus is not explained by the

included explanatory variables. In the ‘lag data’, the spatial

autocorrelation was incorporated in the explanatory variables

only but not in the errors (Y = CTXββββ + e), causing a spatial lag in

the distribution of the virtual organism (Fig. 1b). This reflects

the situation where all spatial autocorrelation in the response

variable comes from exogenous processes (‘induced spatial

dependence’), here from one spatially structured environmental

Figure 1 Spatial distribution of variables from four artificial data sets with different spatial autocorrelation structures. (a) Error data with 
spatial autocorrelation in errors only. (b) Lag data with spatial autocorrelation in both explanatory variables (rain, jungle) and in the distribution 
of the virtual organism, but not in the errors. (c) Mixed data with spatial autocorrelation in all variables. (d) Dormann data with spatial 
autocorrelation in virtual organism distribution and errors, and additional correlation (independent of errors) in rain. In all data sets, the 
relationship between response and explanatory variables is the same [E(virtual organism) = 80 − (0.015 × rain) + (0 × jungle)]. Equal-interval 
classification is shown, with light grey indicating minimum and black indicating maximum values. See text for more details.
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variable. In the ‘mixed data’ (Fig. 1c), spatial autocorrelation

was included in both the errors and the explanatory variables

(Y = CTXββββ + CTe). Both explanatory variables, response and

errors thus showed a spatially structured distribution (Fig. 1c).

This pattern can arise if both endogenous and exogenous

processes play a role (i.e. ‘inherent spatial autocorrelation’ and

‘induced spatial dependence’). Note that the taxonomy used for

describing the spatial autocorrelation in our data is similar to the

formulation of the SAR model types, although the underlying

regression models are not completely in line with them.

The fourth data set (‘data Dormann’, provided by C.F.

Dormann) aimed to mimic ecological data and is the one

currently used in a comprehensive evaluation of several statistical

procedures to deal with spatial autocorrelation in statistical

models (C.F. Dormann et al., unpublished). In this fourth

artificial data set, both explanatory variables (rain, jungle) were

simulated with the same mean and the same variance as in the

data above. The response variable (i.e. distribution of the virtual

organism) was also calculated with the same formula as above,

and normally distributed errors containing spatial autocorrelation

(by multiplying them by the transpose of the same Cholesky

decomposition CT) were then incorporated in the distribution

data for the virtual organism (Fig. 1d). In contrast to the data

above, the spatial distribution of the variable rain was simulated

to have a spatially structured pattern around the volcano in the

centre of the map, with highest values in the western part of the

study area. This spatial structure was created by adding a

geographical pattern to rain. Hence, there is no collinearity

between the rain pattern and the spatial distribution of the

virtual organism and the errors (Fig. 1d). The variable jungle was

purely randomly distributed in space (Fig. 1d).

SAR model performance

We first calculated all SAR models (SARerr, SARlag, SARmix) with

the same spatial weights matrix, i.e. an arbitrarily (but commonly)

chosen neighbourhood distance of 1.5 and a coding style ‘W’ =
row standardized (see Appendix S1). This was done for all four

artificial data sets to illustrate the relative performance of SAR

models without applying any model selection criteria. We com-

pared the spatial autocorrelation pattern in model residuals using

correlograms (Legendre & Fortin, 1989; Legendre, 1993), which

plot Moran’s I values (a measure for autocorrelation; Moran,

1950) on the y-axis against distance classes of sampling stations

on the x-axis, and thus allow the assessment of the spatial auto-

correlation pattern with increasing distance. Correlograms and

Moran’s I values were calculated with the function correlog()

from the R package ‘ncf ’ (Bjørnstad, 2005). We also plotted maps

of model residuals to visualize their spatial pattern. Furthermore,

we compared model parameter estimates for intercept, rain and

jungle with the true (i.e. known) values (intercept, 80; rain, −0.015;

jungle, 0). For comparison, we also did all calculations with

simple OLS regressions for all data sets.

To assess the relative performance of parameter estimates in

terms of type I errors (i.e. the probability α of falsely rejecting the

null hypothesis H0: β = 0) we calculated so-called calibration

curves (see Fadili & Bullmore, 2002) where the observed number

of type I errors (i.e. positive tests per 100 data realizations) is

plotted against the expected number of type I errors (per 100

data realizations) across the full range of α. For this purpose,

we generated 100 data realizations for each of the four data sets.

The 100 data realizations of each artificial data set had exactly

the same relationships as explained above. The only difference

between the 100 realizations was that the normally distributed

errors were randomly generated separately each time. We

then calculated all models (SARerr, SARlag, SARmix and OLS; SAR

models with a neighbourhood distance of 1.5 and a coding style

‘W’) and recorded how often the P value of the (non-significant)

variable jungle was falsely estimated to be < α. The models work

well when the observed number of type I errors equals the

predicted one, i.e. when the calibration curve coincides with

the line of identity given as a straight line in all plots (Fadili &

Bullmore, 2002).

Model selection

Model selection can be helpful to identify a single best model or

to make inferences from a set of multiple competing hypotheses

(Johnson & Omland, 2004). Up to now, however, only a few

model selection procedures have been tested for spatially auto-

correlated data (e.g. Hoeting et al., 2006). We therefore devel-

oped model selection procedures and selected the best SAR

models from a range of models (see below) testing three model

selection criteria: (1) minimum residual autocorrelation

(minRSA); (2) maximum model fit (R2); and (3) the AIC. R2

values are not directly provided for SAR models, and maximum

model fit was thus assessed with a pseudo-R2 value (in the following

simply referred to as R2) calculated as the squared Pearson

correlation between predicted and observed (i.e. true) values. We

measured minRSA with correlograms (see above) by summing

up the absolute Moran’s I values in the first 20 distance classes of

the correlogram (similar to C.F. Dormann et al., unpublished).

AIC values are directly provided for SAR models and allow

the selection of models based on both model fit and model

complexity (Burnham & Anderson, 1998). They are now being

used widely in ecological and evolutionary studies (Johnson &

Omland, 2004).

For the model selection procedures, we simulated 10 data

realizations (similar to those above) for each of the four artificial

data sets. We chose 10 data realizations here because a larger

number of realizations would have been beyond our ability to

test a great variety and number of SAR models (see below). For

all 10 realizations of each of the four data sets we calculated the

three SAR model types (SARlag, SARmix, SARerr) with 27 different

spatial weights matrices (i.e. 81 model specifications with 10 data

realizations and four data sets = 3240 tested SAR models). The

spatial weights matrices were constructed with nine neighbour-

hood distances (from 1 to 5, in steps of 0.5). Additionally, three

coding styles (‘B’ = binary coding, ‘W’ = row standardized, and

‘S’ = variance stabilizing; see above) were tested. All SAR models

were run with both explanatory variables (rain, jungle). For each

of the 10 data realizations within each artificial data set we
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selected the best model (based on minRSA, R2 or AIC) from the

27 model specifications. We then assessed, for each of the four

data sets, which SAR models and spatial weights matrices (i.e.

neighbourhood distances and coding styles) were selected, and

which performed poorly (in terms of parameter estimates) given

a certain spatial autocorrelation structure in the data. To assess

parameter estimates of intercept, rain and jungle, we calculated

mean values (±SD) across the 10 data realizations from the best

models (i.e. selected based on minRSA, R2 or AIC, respectively),

and compared them with the true values. For comparison,

simple OLS regressions were also included in these analyses.

RESULTS

SAR model performance

The different spatial autocorrelation structures of the four

artificial data sets (Fig. 1) were not equally detected by the

different models tested. OLS models generally showed a spatial

autocorrelation pattern in the residuals for all data sets except the

lag data (Figs 2 & 3), which contained spatial autocorrelation in

the explanatory variables and the response but not in the errors

(Fig. 1). For an arbitrarily (but commonly) chosen spatial

weights matrix with a neighbourhood distance of 1.5 and a

coding style ‘W’ (= row standardized), the SARlag model was only

able to remove the spatial autocorrelation in the lag data and the

Dormann data but not in the two other data sets where spatial

autocorrelation was induced in the errors (Figs 2 & 3). The SARerr

and SARmix models with this particular spatial weights matrix

instead performed well, and were able to account for the spatial

autocorrelation structures in all four data sets (Figs 2 & 3). How-

ever, parameter estimates from OLS and SAR models (with this

single spatial weights matrix) were not always very precise,

depending on the data set analysed (Fig. 4). Those from SARerr

models performed best whereas OLS, SARlag and SARmix model

parameter estimates sometimes showed strong deviations from

the true values (Fig. 4). Type I error control by OLS and SARlag

was poor in all cases except for the lag data (Fig. 5, columns 1 and

3), whereas type I error control by SARerr and SARmix was very

good over the full range of probability thresholds (Fig. 5,

columns 2 and 4).

Model selection for SAR

In contrast to above (and Fig. 4), the model selection procedures

were designed to test a great variety of SAR models with different

(but not arbitrarily chosen) spatial weights matrices. Most of

the 360 SAR models that were selected by our model selection

criteria (i.e. minRSA, R2 or AIC) had a spatial weights matrix with

a neighbourhood distance of 1 or 1.5 (83%) and a row standard-

ized coding style ‘W’ (67%). However, SAR models with higher

neighbourhood distances up to 5 distance units (e.g. SARlag mod-

els used with error and lag data) and coding styles ‘B’ (19%) and

‘S’ (14%) were also selected (see Appendix S2 for summary

statistics from model selection). Parameter estimates of intercept,

rain and jungle from these selected SAR models were usually very

close to the true values (Fig. 6). However, some notable excep-

tions became apparent. SARlag and SARmix models sometimes

showed strong (and unpredictable) deviations from the true

parameter values, in particular for estimates of intercept and

partly for rain. These biases in parameter estimates were evi-

dent in all data sets with spatial autocorrelation in the errors

(error data, mixed data, data Dormann) but not in the lag data

where autocorrelation was absent from the errors. Across all data

Figure 2 Correlograms for residuals from 
ordinary least squares (OLS) and three 
simultaneous autoregressive models (SARerr, 
SARlag, SARmix) for four artificial data sets with 
different spatial autocorrelation structures (see 
Fig. 1). All models have the same relationship 
between response and explanatory variables 
[E(virtual organism) = 80 − (0.015 × rain) + 
(0 × jungle)]. The spatial weights matrix 
of all SAR models was calculated with a 
neighbourhood distance of 1.5 and a row 
standardized coding scheme (‘W’). 
See text for more details.
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sets, SARerr models performed well and gave the most precise

parameter estimates (Fig. 6), independent of the model selection

criteria used (minRSA, R2 or AIC). Parameter estimates from

OLS regressions were unbiased (Fig. 6) although spatial auto-

correlation was present in the OLS residuals (Figs 2 & 3; see also

minRSA in Appendix S2). However, for the Dormann data, for

example, the variance of the parameter estimate of jungle was

very large (Fig. 6) and thus type I error control was poor (Fig. 5).

For all data sets except the lag data, selected SAR models had

higher R2-values, lower AIC values and less spatial autocorrela-

tion in the residuals (minRSA) than OLS regressions (see Appendix

S2 for summary statistics from model selection). The lag data

were correctly identified by SARlag, yielding the lowest AIC values.

AIC values of SARmix were often almost as good as those of

Figure 3 Residual maps illustrating the spatial distribution of residuals from non-spatial (ordinary least squares, OLS) and spatial simultaneous 
autoregressive (SARlag, SARmix, SARerr) regression models. Models and data are the same as in Figs 1 & 2. Equal-interval classification is shown, 
with light grey indicating minimum and black indicating maximum residual values. See text for details on models.
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SARerr. SAR models with precise parameter estimates were

always indicated by a combination of low AIC values and low

minRSA values (see Appendix S2).

DISCUSSION

Simultaneous autoregressive models have the potential to reduce

or remove the spatial pattern of model residuals and thus help to

meet the assumption of independently distributed errors in regres-

sion models. However, our study shows that the performance of

SAR models depends on model specification (i.e. model type,

neighbourhood distance, coding styles of spatial weights matrices),

and SAR model parameter estimates are not always more precise

than those from OLS regressions. Our results indicate that SARerr

models are the most reliable SAR models in terms of precision

of parameter estimates, reduction of spatial autocorrelation in

model residuals and type I error control, independent of which

kind of spatial autocorrelation is present in the data set. Other

SAR models (SARlag, SARmix) and OLS regressions showed weak

type I error control and/or unpredictable biases in parameter

estimates when spatial autocorrelation was present in the errors.

We do not therefore recommend them for real species distribution

data where spatial autocorrelation is most likely to occur in

model residuals, e.g. when important environmental variables

have not been taken into account (Diniz-Filho et al., 2003).

In our artificial data sets, the induced spatial autocorrelation

structure was often removed when using SAR models with small

neighbourhood distances (i.e. 1 or 1.5 distance units). This is

consistent with some real ecological data sets where the spatial

autocorrelation signature can be removed by using autoregressive

models that incorporate information from neighbours immediately

surrounding the focal cell (so-called first-order neighbourhoods,

e.g. Jetz & Rahbek, 2002; Overmars et al., 2003; Kissling et al.,

2007). However, other species distribution analyses show that

higher-order neighbourhoods (i.e. larger distances) are necessary

if the removal of spatial autocorrelation is attempted (e.g.

Lichstein et al., 2002; Tognelli & Kelt, 2004; Kühn, 2007). It is

obvious that the degree of spatial autocorrelation depends on

the data set analysed, and, consequently, it is difficult to decide

a priori which neighbourhood structure (i.e. distance and coding

style) is the most efficient one. We therefore suggest that ecologists

should test a wide variety of SAR model specifications for each

species distribution data set, and identify a single best model or a

set of models (Burnham & Anderson, 1998; Johnson & Omland,

2004) based on one or more model selection criteria (see below).

Because statistical models aim to describe data, the preferred

model selection criterion should be based on R2 values because

they describe model fit, or even better on AIC values, which are

based on model fit and model complexity (Burnham & Anderson,

1998; Johnson & Omland, 2004). AIC values have also been

suggested recently for spatially autocorrelated data when using

geostatistical models (Hoeting et al., 2006), but studies on AIC

model selection with spatially autocorrelated data are otherwise

largely lacking. To our knowledge, there is almost no informa-

tion in the literature about whether minRSA (i.e. the reduction

of spatial autocorrelation in model residuals) can also be a valid

model selection criterion that identifies models with precise

parameter estimates. In our model selection procedures, we

could not find any difference in the precision of parameter

estimates when SARerr models were selected by minRSA, R2 or

AIC values. We therefore expect all three model selection criteria

to be reliable when used with SARerr models. In contrast, SARlag

and SARmix models sometimes showed differences in the precision

of parameter estimates depending on which model selection

criterion was used (Fig. 6). However, there was no clear (i.e.

systematic) trend in whether one of them is more reliable than

Figure 4 Parameter estimates from ordinary least squares (OLS) 
and simultaneous autoregressive models (SARerr, SARlag, SARmix) 
for four artificial data sets with different spatial autocorrelation 
structures (black, error data; light grey, lag data; white, mixed data; 
dark grey, Dormann data). SAR models were calculated with a 
spatial weights matrix based on a neighbourhood distance of 1.5 and 
a row standardized coding scheme ‘W’, and correspond to Figs 2 & 3. 
The data sets are illustrated in Fig. 1.
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another. Overall, based on the performance of the SARerr models,

we recommend that AIC and minRSA should be used jointly to

identify the most appropriate model.

Our study supports previous findings (e.g. Legendre et al.,

2002) that type I errors from traditional, non-spatial analyses are

strongly inflated when spatial autocorrelation is present (see OLS

in Fig. 5). In contrast, SARerr and SARmix models were not prone

to type I errors for all tested data sets (Fig. 5). However, SARlag

models showed similar levels of type I error inflation than OLS

(Fig. 5), indicating that both methods are unable to reject

Figure 5 Type I error calibration curves for ordinary least squares (OLS) and simultaneous autoregressive models (SARerr, SARlag, SARmix) from 
100 data realizations. Illustrated are the observed versus predicted type I error probabilities for falsely estimating the (non-significant) variable 
‘jungle’ to be significant (i.e. P < α, in the full range of α [0, 1]). Models perform well for a given data set (a, error data; b, lag data; c, mixed data; 
d, data Dormann) when the calibration curve coincides with the line of identity given as a straight line in all plots.
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Figure 6 Box-and-whisker plots of parameter estimates for intercept (upper row), rain (middle row) and jungle (lower row) across 10 data realizations of four data sets (a, error data; b, lag data; c, mixed 
data; d, data Dormann) with different spatial autocorrelation structures. Ordinary least squares (OLS) values were derived from ordinary least squares regressions for the 10 data realizations within each 
data set. For simultaneous autoregressive models (SARerr, SARlag, SARmix), values were obtained from model selection procedures based on minimum residual spatial autocorrelation (minRSA, black), 
maximum model fit (R2, white) and Akaike information criterion (AIC, grey), respectively (see text for details). True parameter values of the four data sets are indicated as a straight line in each graph.
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non-significant explanatory variables (here: jungle) if spatial

autocorrelation is present in the residuals (a likely feature of real

ecological data sets). The lag data, where all spatial autocorrelation

in the response variable (‘spatial lag’) was caused by one spatially

structured explanatory variable (‘induced spatial dependence’),

did not constitute a problem with regard to type I error control

for any of the tested methods (Fig. 5). This indicates that type I

errors are not inflated if the spatial structure of species distributions

is caused only by those explanatory variables that are included

in the model. However, in many situations we might not be able

to include all important environmental variables, for instance

if they are not available at a required spatial resolution or at

the necessary biological accuracy (Diniz-Filho et al., 2003;

Dormann, 2007). This will cause spatial autocorrelation to

be present in model residuals and thus can cause type I

error inflation in OLS and SARlag models but not in SARerr and

SARmix (Fig. 5).

Apart from type I errors, the estimation of model coefficients

is an additional difficulty in modelling species distributions with

spatially autocorrelated data (Lennon, 2000; Diniz-Filho et al.,

2003; Dormann, 2007). Our study clearly showed that the selection

of the SAR model type (SARerr, SARlag, SARmix) can strongly influence

parameter estimates, which might be even worse (e.g. for SARlag

and SARmix) than parameter estimates from common OLS

regressions (Figs 4 & 6). This is surprising, because many studies

suggest (or simply assume) that parameter estimates (and

hypotheses derived) from spatial models are generally better

than those from OLS regressions (e.g. Lennon, 2000; Lichstein et

al., 2002; Dark, 2004; Tognelli & Kelt, 2004; Dormann, 2007;

Kühn, 2007). Our results should thus cause us to be cautious

about assuming that spatial regression techniques always provide

better parameter estimates than OLS so long as it has not been

demonstrated under which circumstances this is true. It is

important to note, however, that our artificial data sets are

simplifications of the real world since we have only one explanatory

variable significantly correlated with the response, and hence

there is no multicollinearity in our data. More comprehensive

tests of SAR models and other spatial modelling techniques

should be conducted to disentangle the influence of multiple,

spatially autocorrelated explanatory variables on parameter

estimation.

The examination of differences in parameter estimates

between spatial and non-spatial methods might be helpful for

improving our understanding of the ecological mechanisms

behind the patterns we observe (Diniz-Filho et al., 2003).

Lennon (2000) suggested that parameter shifts between spatial

and non-spatial multiple regression analyses are particularly

strong if explanatory variables are spatially autocorrelated, and

that environmental factors with less spatial autocorrelation are

much more likely to be rejected by traditional, non-spatial

analyses (so-called ‘red shifts’). This could be a serious problem,

because it would lead to a systematic bias in the choice of

explanatory variables towards those that have the greater spatial

autocorrelation. Diniz-Filho et al. (2003) supported this view by

showing that spatial models de-emphasize explanatory variables

with strong spatial autocorrelation and thus give more

importance to variables acting at smaller spatial scales. Moreover,

they interpreted this as a hierarchical effect, so that differences

between spatial and non-spatial methods could reflect

mechanisms at different spatial scales. Although our analyses

were not designed to test these issues, our results support this last

view because systematic shifts in parameter estimates between

SAR and OLS were not observed when dealing with one spatially

autocorrelated explanatory variable (Fig. 6).

The interpretation of parameter estimates and model

coefficients from spatial models is now among the most

important issues in geographical ecology (Lennon, 2000;

Diniz-Filho et al., 2003; Tognelli & Kelt, 2004; Dormann, 2007;

Kühn, 2007). This is not simply a statistical discussion but has

profound implications for biogeography, macroecology and

global change research because biased estimates and incorrect

model specifications will influence the testing of hypotheses and

the prediction of species distributions (e.g. Diniz-Filho et al.,

2003; Dark, 2004; Guisan et al., 2006; Dormann, 2007). Our

study complements previous studies on species distribution and

spatial autocorrelation (e.g. Keitt et al., 2002; Legendre et al.,

2002; Lichstein et al., 2002; Diniz-Filho et al., 2003; Tognelli &

Kelt, 2004; Dormann, 2007; Kühn, 2007) and is thus a further

step towards a better understanding of the behaviour and

potential of spatial methods. We propose to extend the ongoing

comprehensive tests of non-spatial methods for modelling

species distributions (e.g. Segurado & Araújo, 2004; Elith et al.,

2006) with a comprehensive assessment and full comparison of

the various spatial modelling techniques (Cressie, 1993; Haining,

2003; Rangel et al., 2006; C.F. Dormann et al., unpublished). This

should include an evaluation of the predictive performance

and accuracy of spatial models under changing environmental

conditions such as climate change (for good examples with

non-spatial methods see Araújo et al., 2005a, b; Hijmans &

Graham, 2006). These methodological comparisons will help to

identify the potential and pitfalls of the various spatial modelling

techniques and might help to reduce uncertainty in model

predictions.
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