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Direct Kinematics in 
Analytical Form of the 6-4 
Fully-Parallel Mechanism 
This paper presents the direct position analysis of the fully-parallel mechanism that 
features six connection points on the base and four on the platform. The shape of both 
base and platform is general and, in particular, not restricted to being planar. The 
analysis is performed first by writing a suitable set of five closure equations in five 
unknowns. Then, by a specifically-developed elimination scheme, the closure equation 
set is reduced to a 32nd-order algebraic equation with only one unknown, which proves 
free from extraneous roots. Hence 32 closure configurations of the 6-4 mechanism do 
exist in the complex field. A numerical example is reported that confirms the new 
theoretical results. 

Introduction 
In recent years, a surging interest has focused the atten

tion of robotics researchers and designers on fully-parallel 
mechanisms, which generally consist (see Fig. 1) of two rigid 
bodies (base and platform) connected through spherical pairs 
by six variable-length legs. The legs provide the platform with 
up to six degrees of freedom with respect to the base. 
Wherever an operational device such as a robot end-effector, 
a radar antenna, etc., has to be steadily placed or accurately 
moved in cartesian space, fully-parallel kinematic chains of
fer a series of widely-recognized advantages over serial or 
hybrid kinematic chains (Hunt, 1983). 

Despite their relatively simple arrangement, the kinematic 
analysis of fully-parallel mechanisms is challenging. In partic
ular, the direct position analysis, also referred to as direct 
kinematics, is recognized as the most involved issue in kine
matic characterization of fully-parallel chains. It is aimed at 
finding, for a given set of leg lengths, all possible configura
tions of the mechanism, i.e., all possible positions and orien
tations (locations) of the platform relative to the base. All 
closure configurations being of interest, an analytical-form 
solution is the most suitable one since it generally reduces 
the problem to solving one algebraic equation with only one 
unknown. Accordingly, the degree of the equation provides 
the number of platform locations in the complex field, and 
the locations themselves can be found by determining all 
roots of the equation. 

The first fully-parallel mechanism whose direct kinematics 
has been solved in analytical form was the well-known Stew
art platform, first described by Stewart (1965). This mecha
nism (see Fig. 1) features six legs that meet the platform 
pairwise, the base singly, and belongs to the class of 6-3 
fully-parallel mechanisms (the two-digit code conveys the 
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number of distinct connection points on base and platform, 
respectively). Griffis and Duffy (1989) analyzed the planar-
base case, whereas Innocenti and Parenti-Castelli (1990a) 
solved the general-geometry scheme. In both cases, 16 clo
sure configurations were stated possible in the complex field. 

Since then, several fully-parallel arrangements have been 
considered, and their direct kinematics solved in analytical 
form. The majority of these arrangements feature less than 
six connection points on the base, and more than three on 
the platform. While only a few of them can be regarded as 
special cases of the 6-3 Stewart platform, no generalization of 
such an arrangement has so far been endowed with an 
analytical-form direct kinematics solution. Just to glance at 
some of the solved cases, Nanua and Waldron (1990) pre
sented the direct position analysis of a 6-3 mechanism with a 

Fig. 1 The 6-3 Stewart platform 
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Fig. 2 The 6-6 generalized Stewart piatform Fig. 4 Ttie 6-4 structure 

Fig. 3 The 6-4 fuily-paraiiel mechanism 

positional subchain, whereas in Lin et al. (1990) the direct 
kinematics of several 4-4 arrangements with planar base and 
platform was presented. The most involved direct kinematics 
of a general-geometry fully-parallel mechanism solved in 
analytical-form up to now seems to be that regarding the 5-5 
arrangement (Innocenti and Parenti-Castelli, 1990b), for 
which 40 closure configurations have been found in the 
complex field. 

The main goal in considering a variety of increasingly 
complex schemes lies in developing the skill to affront, in 
analytical form, the direct kinematics of the generalized 
Stewart platform. This mechanism, described by Fichter 
(1986), and represented in Fig. 2, is a 6-6 arrangement; it 
represents the utmost generalization of the 6-3 Stewart plat
form. Although some valuable efforts have been devoted to 
finding an upper bound to the number of closure configura
tions of the generalized Stewart platform (Merlet, 1991; 
Raghavan, 1991), the author is still unaware of any definitive 
method able to solve the direct kinematics of that mechanism 
in analytical form. 

This paper presents the analytical-form direct kinematics 
solution of the 6-4 fully-parallel mechanism represented in 
Fig. 3. The mechanism features six variable-length legs, four 
of which meet the platform pairwise, while the remaining two 
meet both base and platform singly. The shape of base and 
platform is general and, in particular, not restricted to being 
planar. The 6-4 mechanism represents a first step in general
ization of the 6-3 Stewart platform: indeed it can be thought 
of as derived from the 6-3 Stewart platform by disjoining a 

pair of touching legs (compare Figs. 1 and 3). To further 
connote the mechanism it is noticed that, if all legs were 
considered to have constant length, and the point where one 
of the two single legs meets the base were allowed to move in 
a circular arc, the 6-4 arrangement would reproduce the 
double-wishbone suspension linkage of present-day racing 
cars (Bastow, 1987). 

Only one other 6-4 fully-parallel arrangement could be 
devised, namely, the one studied by Innocenti and Parenti-
Castelli (1991). It features three legs out of six that meet the 
platform at the same point, the remaining legs being singly 
connected to base and platform. Two sets of eight closure 
configurations each were found possible in the complex field 
for that arrangement. However, between the two possible 6-4 
mechanisms, only the one considered in the present paper is 
a generalization on the 6-3 Stewart platform; furthermore, it 
is believed to represent the first generalization of the Stewart 
platform to be endowed with an analytical-form direct kine
matics solution. 

Unlike all fully-parallel arrangements studied in the litera
ture, which required writing a maximum of three closure 
equations, the direct kinematics solution of the 6-4 mecha
nism here presented calls for a set of as many as five closure 
equations with five unknowns to be laid down. This imposes 
the adoption of a specifically-developed solution procedure 
that is able to drop four unwanted unknowns by means of a 
two-step elimination. As a result, a final algebraic equation 
of 32nd order, free from extraneous roots, is obtained. For 
every root, via back substitution, one location of the platform 
can be determined: hence the direct kinematics solution of 
the 6-4 mechanism admits of 32 closure configurations in the 
complex field. 

A numerical example is reported that confirms the new 
theoretical results. 

Kinematic Model 
When performing the direct position analysis of a mecha

nism, the displacement values of all actuated kinematic pairs 
are known. Accordingly, all actuators can be thought of as 
frozen, and the mechanism itself can be regarded as a struc
ture. The direct kinematics of the mechanism is then equiva
lent to finding all closure configurations of the structure. 

Figure 4 shows the 6-4 structure, derived from the 6-4 
fully-parallel mechanism in Fig. 3 by freezing all actuators. 
The leg lengths M^, N^, Mj, N2, L3, and L4 are given; 
moreover, the position of points P^, Q^, P2, Q2' ^3> ^4 is 
known in an arbitrary reference frame W,, fixed to the base, 
whereas points Bj, j = I, . . . , 4, are given in an arbitrary 
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(qi.q^.q,)^ 

Fig. 5 The auxiliary structure 

reference frame W„ fixed to the platform. It is worth noting 
that, although eacn leg of the 6-4 structure can still rotate 
about the line through the centers of the extremity spherical 
pairs, this freedom does not affect the location of the plat
form with respect to the base. 

The Auxiliary Structure. Due to the couple of legs P^Bi 
and Qi^i—whose length is Mj and N^, respectively-point 
5] is confined to a circle which lies on a plane orthogonal to 
line PiQil the circle center A^ and the circle radius Lj are 
given by: 

A,=P,+ 
M^-Nf + {Q,-P,f 

mx-Pi) 
(Qi-P,) (1) 

L, = M,2 
Mf Nl + (Qx-PifY 

1/^ 

4(G, - p,r 
(2) 

Similarly, point B2 is confined to a circle which lies on a 
plane orthogonal to line P2Q2' the center, A2, and the 
radius, L2, of such a circle are still given by expressions (1) 
and (2), provided index 2 is throughout substituted for index 
1. 

From a kinematic standpoint, the 6-4 structure is thus 
equivalent to the auxiliary structure represented in Fig. 5, 
where hnks ^ i ^ i and ^2^2 are hinged to the base and 
joined through spherical pairs to the platform. In Figs. 4 and 
5, points identified by the same label correspond. 

In order to determine the set of five closure equations, the 
auxiliary structure is first disassembled, then gradually re
assembled. At the beginning, all six spherical pairs are re
leased, while links A^B^ and ^2^2 still remain hinged at the 
base. 

The First Closure Equation. In the disassembled auxil
iary structure (see Fig, 5), links A^B^ and ^2^2 are free to 
rotate with respect to the base. With reference to the 7th 
revolute pair (j = 1, 2), mutually orthogonal unit vectors â  
and by are both chosen fixed to the base and orthogonal to 
the revolute pair axis. Hence the position of point Bj in 
reference frame W), is given by: 

(Bj - Aj) = Lj{cos djaj + sin djbj) (j = 1, 2) (3) 

where 9 is the angle between unit vector a and vector 
(BJ- AJ). 

The first step in the reassembling course consists in joining 
the platform to links A^B^ and A2B2 at points B^ and B2. 
This is feasible if and only if the following condition is 
satisfied: 

where index b ox p affixed to a vector specifies that the 
vector is to be resolved into components in reference frame 
Wi, or Wp, respectively. 

If the following relation is introduced: 

(^2 - B,), = {B2 -A2), + (A2-A,), - (B, -A,), 

(5) 
and relations (3) are taken into account, Eq. (4) can be 
rearranged as: 

(B, -A,),-(B2-A2), + (A2-A,),-(B, -A,), 

-(A2-A,),-(B2-A2), 

= [L\+L\ + (A2 -A,)l - (B2~B,)l]/2 (6) 

where the right-hand side is a constant quantity and the 
left-hand side contains unknowns flj and 62 [see Eq. (3)]. 
Equation (6) represents the first closure equation of the 
auxiliary structure. 

At this stage of reassembling, the linkage formed by base, 
platform, and links A^B^, A2B2 can be thought of as an 
RSSR closed loop mechanism (here R and S stand for 
revolute and spherical pair, respectively). Even if the position 
of the two links hinged at the base were known, the orienta
tion of the platform about line B^B2 would remain unde
fined. 

The Second Closure Equation. Three more unknowns 
—besides d^ and 62—are now introduced, namely the com
ponents q^, q2, and q^, in reference frame W^ of vector 
(53 -B , ) : 

(fi3--Sl)A = (^1.92.93) (7) 

A first condition that vector (£3 - B^\ must satisfy re
gards its magnitude: 

iB^-B,)\ = iB,-B,)], 

(B2 - Bi)l =-(B2 - BX (4) 

(8) 

where the right-hand side is obviously a known quantity. 
Equation (8) represents the second closure equation; it con
tains unknowns q^, (?2, and ^3 only. 

The Third Closure Equation. One further condition ex
presses the invariance of angle between vectors (B2 ~ ^1) 
and (^3 - B]) when seen from reference frames Wi, and W^: 

(B2 - 5,)/, • (^3 -B,), = (B2 -B,)p- (B, - B,)p (9) 

By taking into account relation (5), the third closure equation 
is determined as: 

(52 - A2), • (B, - B,), + (A2 - A,), • (B, - B,), 

-(B^-A,),-(B,-B,), 

= (B2-B^)p-(B,-B,)p (10) 

where the right-hand side is a constant quantity and the 
left-hand side [see Eqs. (3) and (7)] contains all five un
knowns. 

The Fourth Closure Equation. Now leg A^Bj^, whose 
length is L3, is added to the previously obtained linkage. 
This is feasible (see Fig. 5) if, and only if, the following 
condition holds: 

{B,-A,)l-L\ (11) 

Furthermore, if relation 

( £ 3 - ^ 3 ) 4 = ( 5 3 - 5 , ) , + (Bi -A,), - {A, -A,), 
(12) 

is introduced, and conditions (3) and (8) are taken into 
account, the following equation can be obtained: 
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(A, -A,), • (53 - B,), + (A,-A^), • (B , -A,), 

-(B,-A,),-(B,-B,), 

= [L\-LI + {B,-B{)1 + (^3 -A{)l\/2 (13) 

whose right-hand side is a constant term. Equation (13) 
represents the fourth closure equation, and contains un
knowns 0,, qi, ^2^ and q^. 

The Fifth Closure Equation. The last step in reassem
bling the auxiliary structure is the insertion of leg /I4B4. This 
is feasible (see Fig. 5) if, and only if, the following condition 
is satisfied: 

(•84 A^)^ — L4 (14) 

In order to rearrange Eq. (14), the following relations are 
introduced: 

{B,-A,), = (B,~B,), + (B, -A,), - (A, -A,), 

(15) 

( B 4 - 5 , ) = A ( B 2 - B i ) + M 5 3 - 5 , ) 

+ cr(B,-B,)x(B,-B,) (16) 

In relation (16), coefficients A, /A, and a are constant quanti
ties; they can be determined as explained in the following. 

Relation (16) holds in both reference frames W/, and W^ 
(that is why, in (16), the reference frame index has been 
dropped). If reference frame W^ is considered, all vectors 
appearing in Eq. (16) are known quantities. Hence, provided 
(B2 - B^)p and (JBJ - Bi)^ are not collinear, constants A, /x, 
and a are given by: 

A = {[(^2 - Bi)p • (B, - B,)p](B3 - B,)p 

- [(B3 - B,)p • (B4 - B,),] [(B, -B,)p- (B3 - B,)p] ]/C 

(17) 

t,= [[{B,-B,)^-{B,-B,)^]{B,-B,)l 

- [ ( B 2 - B , ) p - ( f i 4 - f i , ) , ] [ ( B 2 - B , ) , - ( 5 3 - f i i ) ^ ] } A 

(18) 

a = {[(B2 -B,)pX (B, - B,)p] • (^4 - B,)p}/i (19) 

where 

(=(B,- B,)l(B, - B,)l - [(B, - B,), • (B, - B , ) , ] ' 

(20) 

Now relation (15), together with relation (16) referred to 
Wi,, are inserted in (14). If conditions (3), (4), (5), and (8) are 
taken into account, the following equation can be obtained: 

A(Bi - A,), • (B2 - A2), + KA2 - A,), • (B, - A,), 

- A ( ^ 4 - ^ 1 ) . - (^2 -^2)1, + KA, -A,), • (B, -A,), 

+ n(B,-A,),-{B,-B,),-fi(A,-A,),-(B,-B,), 

+ ^[(B2-A2),X(B,-B,),] -(B.-A,), 

+ a[(A2-A,),X(B,-B,),] -(B.-A,), 

-(r[(B2-A2)i,X(B,-B,),] -(A,-A,), 

+ a[(B,-A,),X(B,-B,),] .(A,-A,), 

-cr[{A2-A,),X(B,-B,),] -(A,-A,), 

-iA,-A,),-iB,-A,), 

= [LI -L\- {A, -A,)l - (B, - Bi)p]/2 

+ kL\ + k(A2-A,),-(A,-A,), (21) 

which represents the fifth closure equation. The terms on the 
right-hand side of Eq. (21) are constant, while the left-hand 
side contains [see Eqs. (3) and (7)] all five unknowns 6^, 62, 
q], q2, and q^ 

Solution of the Closure Equation Set 
The five closure Eqs. (6), (8), (10), (13), and (21) represent 

a set of necessary and sufficient conditions for assembly of 
the auxiliary structure. Prior to affronting solution of the 
closure equation set, each equation is rewritten in order to 
show the dependence on each of the unknowns. 

Direct inspection of Eq. (6) shows that it has the form: 

£ a^ff^Sf'^C^^'^S^i'''^ = 0 (22) 
(,i = 0,l,2 

where coefficients a^j (ij = 0, 1, 2) are constant quantities 
that depend only on the geometry of the auxiliary structure; 
they can be determined by comparison with Eq. (6). In Eq. 
(22), the following notation has been introduced: 

Cj = cos Oj Sj = sin Oj ( ; = 1, 2) (23) 

Moreover, integer exponents u(k) and v(k) are defined as: 

u(k) = [k- mod(k, 2 ) ] /2 ; v(k) = mod{k, 2) (24) 

and mod(A:, 2) is the remainder of the division of integer k by 
2. 

Obviously closure Eq. (7) can be rewritten as: 

qf + ql + ql + b = 0 (25) 

where b is a constant term. 
Inspection of closure Eqs. (10), (13), and (21) proves that 

they have the form: 

Z (c,o,Cr<"5r<'> + Co,,Cr''52"<")«. = 0 (26) 
= 0,1,2 

/t = 0 , . . . ,3 

E rf,o,cr'"5r<')^, = 0 
1=0,1,2 

k = 0,...,3 

E e,v,Cj'<"5r(''C5'<^>5|(^\, = 0 
i ,/ = 0,l,2 
/ t -0 , . . . ,3 

where 
9 o = 1 

(27) 

(28) 

(29) 

must be considered. In Eqs. (26), (27), and (28), coefficients 
C;oj, Cgj/,, djQi^, and 6,̂ .̂ depend only on the geometry of the 
auxiliary structure. 

To sum up, the closure equation set can henceforth be 
considered as represented by Eqs. (22), (25), (26), (27), and 
(28). 

Elimination of q^, q^, and q^. The left-hand sides of 
Eqs. (26), (27), and (28) depend linearly on q^, ^2, and qy 
Hence those equations can be linearly solved for q^, (/j. and 
^3, which turn out to be functions of Q^ and Oj- By Cramer's 
rule, the following expression for q^, q2, and q^ can be 
expected: 

9i = D,/D„; q2 = D ^ / D Q ; q^ = D^/D^ (30) 

where 

D 
(i,y = 0,...,4)U(( = 5,6;/-0, l ,2) 

(/: = 0, , . . , 3 ) (31) 

and coefficients /,y^ depend on coefficients c,g^, c,oj., ^,0*' 
and eyi of Eqs. (26), (27), and (28) only. 

Actually, numerical computation shows that quantity D„ 
admits the following expression: 
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/,i = o,.. 
f- C"'-'^S"'-'^C"'-^^S"' ii) (32) 

which is slightly simpler than the first of relations (31). 
The elimination of unknowns q^, q2, and q^ from the set 

of five closure equations is accomplished by substituting 
expressions (30) in Eq. (25). The following condition is thus 
obtained: 

D? + Z)| + £)f + hDl = 0 (33) 

and numerical computation shows it can be put in the form: 

i : g,..,cr(')5j'(0cO)5Ky) = 0 (34) 
j - O 10; 
; - 0 , . . . , 8 

where coefficients ,̂ŷ  are constant quantities. Equations 
(22) and (35) together represent a reduced set of closure 
equations whose only unknowns are By and Q^-

Elimination of Q^- By substituting for Cy and 5y (/ = 1, 
2) the well-known identities: 

q = (1 - t])/{\ + tf); Sj = 2t/(l + tj)' (35) 

Eqs. (22) and (34) can be respectively written in the following 
algebraic form: 

E ^iM = 0 
/J = 0,l,2 

E n,M = 0 

(36) 

(37) 
( = 0, ,10; 

where coefficients w,y and «,y depend only on the geometry 
of the auxiliary structure. 

In order to simultaneously solve Eqs. (36) and (37) for t^ 
and t2, one unknown, say t2, must be eliminated. By adopt
ing the notation: 

^; 

Fj = 

= Y, m 
1 = 0,1,2 

E 
; = o,.. 

n 
,10 

ijn 

A 

(/ = 

(y = 

eliminant of Eqs. (36) and (37) can 

Bo £ , 

0 £o 
0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

Fo F, 
0 Fo 

£2 

£ , 

E, 
0 

0 

0 

0 

0 

P2 

F, 

0 

£2 

E, 

Eo 
0 

0 

0 

0 

^ 3 

F2 

0 

0 

E2 

E, 

Eo 
0 

0 

0 

F, 

F3 

0 

0 

0 

£2 

E, 

EQ 

0 

0 

^ 5 

F, 

0 

0 

0 

0 

E2 

E, 

Eo 
0 

Fe 

Fs 

0 , 1 , 

0, . . 

2) 

. , 8 ) 

be written 

0 

0 

0 

0 

0 

E2 

E, 

Eo 

Fi 

F, 

0 

0 

0 

0 

0 

0 

E2 

E, 

Fs 

Fi 

as: 

0 

0 

0 

0 

0 

0 

0 

E2 

0 

^ 8 

(38) 

(39) 

= 0 

(40) 

Equation (40) represents the condition for Eqs. (36) and 
(37) to have a common root for fj- Based on the order of 
terms Ej and Fj (see relations (38) and (39)), the degree of 
Eq. (40) cannot exceed 36. Actually, numerical computation 
shows that the real degree of Eqs. (40) is 32; hence this can 
be put in the form: 

E G,t{ = 0 (41) 
; = 0 , . . . ,32 

where coefficients Gy, 7 = 0, . . . , 32, depend only on the 
geometry of the auxiliary structure. 

Equation (41) provides 32 solutions for J, in the complex 
field. It represents the final result of elimination of un
knowns 62, qi, ?2' ^fd (̂ 3 from the original set of five 
closure equations. 

Back Substitution 
For every root of Eq. (41), one closure configuration of the 

auxiliary structure can be determined by the following back-
substitution procedure. 

Let f,;, (1 < h < 32) be the generic root of Eq. (41). For 
ti = ti^, the left-hand sides of Eqs. (36) and (37) can be 
considered as polynomials in t2- Such polynomials generally 
admit a G.C.D. of the first order, whose root directly pro
vides the solution sought, fjA- fo^ h- Since /„, and <2/i are 
known, so are (see relations (35)) the values d^i, and 621, for 
0y and 62- Hence, by Eqs. (32), (31), and (30), values q^/^, 
q2h, and q^f^ ioT qi, q2, and q^ can be univocally determined. 

By referring to Fig. 5 or, equivalently, to Eqs. (3), it is easy 
to recognize that Oi,, and Qj/i ^re responsible for the posi
tion of points By and flj with respect to the base reference 
frame Wf,. The position of By being known, vector (qyf,, ^2;,, 
^3;,) (see relation (7)) provides the position of point B^ with 
respect to W),. Since the positions of three distinct points of 
the platform are known, so is the position of every other 
point of the platform. In particular, the position of B^ can be 
directly obtained from Eq. (16), if this is considered as 
referred to Wj,. 

Concluding, the auxiliary structure, as well as the 6-4 
fully-parallel mechanism, exhibit 32 closure configurations in 
the complex field. 

Numerical Example 
With reference to Fig. 3, a 6-4 fully-parallel mechanism is 

considered as having the dimensions listed below (all lengths 
are given in arbitrary length unit). The coordinates of points 
on the base, referred to W/,, are: P, = (0, 0, 0), Q, = (5, 0, 
1), P2 = ( -2 , 4, -1) , Q2 = ( - 3 , - 1 , 1), A3 = (6, - 2 , 2), 
v44 = ( - 3, 5, -1) . The coordinates of points Bj, (j = 1, ..., 
4) on the platform, referred to W, are: 5, = (4, 1, 4), 
B2 = (0, 3, 3), ^3 = (4, 1, 5), B4 = ( -4 , 3, 3). As for the leg 
lengths, the following values are assumed: PyBy = 5.74, QyBy 
= 3.32, ^2 52 = 4.58, Q2B2 = 5.39, A^B^^ 4.69 
4.58. 

A,B,= 

By adopting the proposed solution procedure, 32 closure 
configurations have been determined, ten of which are real, 
and the remainder complex. They are reported in Table 1 in 
terms of (x, y, z) coordinates of points Bj (/ = 1, . . . , 4) in 
reference frame Wf,. Only one solution is reported in Table 1 
out of every couple of complex conjugate solutions. 

It has been numerically proved that each of the 32 solu
tions satisfies the original system of five closure equations, 
thus confirming that no extraneous solution has been intro
duced by the adopted elimination procedure. 

Moreover, for each closure configuration it has been veri
fied that the distance between any couple of points con
nected by a leg equals the corresponding leg length. Such an 
overall test proves that even the adopted five closure equa
tions are free from extraneous roots, and represents an 
ultimate check on the correctness of the results presented. 

Conclusions 
The analytical-form direct kinematics of the 6-4 fully-

parallel mechanism with general geometry has been pre
sented. 

When all actuator displacements are given, the mechanism 
reduces to a structure. Inspection of the kinematic peculiari
ties of this structure has allowed a system of five closure 
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Table 1 Closure configurations In terms of (x, y, z) coordinates (real and imaginary 
parts) in reference frame W^ of points By, y = 1 4 

configuration 1 
4.60799399WO0. O.OOOOOOOOe+OO) 
4.144399166-01, O.OOOOOOOOe+OO) 
4.85721S86e+00, O.OOOOOOOOe+00) 

-3.456565926+00, O.OOOOOOOOe+00) 
configuration 2 

4.0646098664C0, O.OOOOOOOOâ CO) 
-2.894810756-01, O.OOOOOOOOe+OO) 

4.5437S754e*O0, O.OOOOOOOOoKIO) 
-3.138624286+00, O.OOOOOOOOe+OO) 

configuration 3 
3.984366666+O0, O.OOOOOOOOe+OO) 
6.555752036-02, O.OOOOOOOOe+OO) 
4.034712516+O0, O.OOOOOOOOe+OO) 

-3.922242626+00, O.OOOOOOOOe+OO) 
configuration 4 

3.999044O6e+OO, O.OOOOOOOOe+OO) 
-5.137551956-02, O.OOOOOOOOe+00) 

3.975675516+00, O.OOOOOOOOe+OO) 
-4.047245606+00, O.OOOOOOOOe+OO) 
— — - configuration 5 

3.967173646+00, O.OOOOOOOOe+00) 
1.669361526+00, O.OOOOOOOOe+OO) 
3.285343696+00, O.OOOOOOOOe+OO) 

- 1 . 2 5 4 5 6 7 4 4 6 + 0 0 , O.OOOOOOOOetOO) 

conf igurat ion 6 

5.217272536+00. O.OOOOOOOOe+00) 
1.647727456+00, O.OOOOOOOOe+OO) 
5.852869206+00, O.OOOOOOOOe+OO) 
2.655599786-02, OOOOOOOOOe+OO) 

configuration 7 
5.209358006+O0, O.OOOOOOOOe+OO) 
1.6164842964O0, O.OOOOOOOOe+OO) 
5.338851166+00, O.OOOOOOOOe+OO) 

-2.261983706*00, O.OOOOOOOOe+OO) 
configuration 8 

5.253538106+00, O.OOOOOOOOe+OO) 
7.009519056-01, O.OOOOOOOOe+OO) 
5.509158716+00, O.OOOOOOOOe+OO) 

-2.928140326+00, O.OOOOOOOOe+OO) 
-configuration 9 

5.2340878O6+O0, O.OOOOOOOOe+OO) 
9.163917476-01, O.OOOOOOOOe+00) 
5.148139146+00, O.OOOOOOOOe+00) 

-2.33518078e+O0, O.OOOOOOOOe+OO) 
-configuration 10 

4.118958076+00, O.OOOOOOOOe+OO) 
1.660932856+00, O.OOOOOOOOe+00) 
4,990805926+00, O.OOOOOOOOe+OO) 

- 2 . 1 2 2 1 6 6 5 7 6 - 0 1 , O.OOOOOOOOe+00) 

conf igura t ions 11 and 12 

4.076476146+O0, -2.420639946-03) 
1.923198526+00, 5.021496996-01) 
2.376459326+00, 1.073308706+00) 

-3.394103096+00, -1.282859896+00) 
configurations 13 and 14 

5.052227506+00, 4.208531156-02) 
1.628535726+00, -4.971252086-01) 
5.141299886+00, 1.01648689e+O0) 
1.073775566+00, -1,705271126-01) 

configurations 15 and 16 
3.777599966+00, 1.02573191e+O0) 
1.659794276+01, 1.408234976+01) 
2.709299726+00, 5.480982256-01) 
2077634376+01, 2.899936306+01) 

-configurations 17 and 18 
4,699653326+00, 9.270909136-01) 
4.607240046+00, 4.029621936*00) 
4,254831616+00, 1.788531286+00) 
1.504932226+00, 6.372723576+00) 

configurations 19 and 20 
4.138403706+00 -1.282020006+00) 
1.446851056+01, 1.305538886+01) 
1.554868786+00 -1.203115646+00) 
1.617226436+01, 2.841976396+01) 

configurations 21 and 22 
;5.302265506+00, 1,72463956e+O0) 

-8.204632686+O0, -3.105854236+00) 
1.222620936+01, 5.256583966-01) 

-1.181785516+01. 4.296220706+00) 
configurations 23 and 24 

4.887588196+00, 1.562913956*00) 
-1.229989946*01, 1.386069436*00) 

8.750756366+00, 3.499431396+00) 
-2.543334036+01, 1.095394686+01) 

configurations 25 and 26 
2.690645976+00, -4.263181766+00) 

-6.462614076+00, 1.015769676-02) 
3.364868536+00, -1.005390446+01) 

-3.295253356*00, -1.550566526-01) 
-configurations 27 and 28 

4.771398766+00, -1.52065342e+O0) 
-1.090435346+01, -3.718195116+00) 

5.722193306*00, -2.371505586+00) 
-2.350582376+01, -5.657395836-01) 

configurations 29 and 30 
4.57018069e+00, 1.360436086+00) 
3.148846606+00, -9.387309316+00) 
2.160503486+00, 2.212576956+00) 
7.883789546-01, -1.687228876+01) 

-configurations 31 and 32 
4,553175166+00, -2.432819146+00) 
1.956693566+00, 1.366201446-01) 
7,723386036+00, -1.219276496+01) 
2,016336216+01, -4.80983761e-03) 

3.29586789e+00, 
2.806424656+00, 
2.355842396+00, 
1.87588873e+O0, 

1.783316366*00 
3.128786986+00, 
2.351304036+00, 
5.917267516+00, 

8.632935146-01 
2.977597976+00, 
9.909008226-01 
3.240210846+00, 

1.102336176+00, 
3.029689256+00, 
1019116866+00, 
2.682126646+00, 

4.233413116-01 
1.61131733e+O0, 
5,543391576-01 
9.733526296-01 

-1.103312946+00 
1.274210446+00, 

-3.822942906-01 
3.736652926+00, 

1.210925826+00, 
1,766490116+00 
2.193623596-01 
1.264880976+00, 

1,957291606-01 
6.447062936-01 
8.997523426-01 
4.219010996-01 

-6.230259496-01 
7.104721346-01 

-1,736966796+00, 
1,889512746+00, 

2.153982966+00, 
1.312636206*00, 
2.470888356+00, 
2.576531376+00, 

-1.874151356+00, 
1,999080696+00, 

-2.263917456+00, 
-2.899600916-01 

-2,413087096+00, 
9,032730236-01 

-2.998464786+00, 
4,658762096+00, 

-5,873874406+00, 
4,303785686+00, 

-7.109738016*00, 
1.398908346*01 

5.702446856+00, 
2.666996696*00, 
4.462979506+00, 
6,040023976-01 

-7.247473246+00, 
-5.751299036+00, 
-6,760656336+00, 
-5,703264986+00, 

9,319112566+00, 
1,739674456+00, 
1.253379886+01 
9,212851046+00, 

(8.60716460e+O0, 
4,457917846+00, 
1,139074446+01 
4,213664996+00, 

2,194552946+01 
2,904680266+00, 
2,119915526+01 
4,339166156-01 

8,419948506*00, 
5,198721136+00, 
7,841811796+00, 
4,550274036-01 

-7,771952596+00, 
-2,568777566+00, 
-8,212787346+00, 
-5,679112376-01 

1,283516236+01 
1,283944766+00, 
2,089519716+01 
1,852091126+01 

0.000000006*00) 
0.000000006*00) 
0.000000006*00) 
0.000000006*00) 

O.OOOOOOOOe+OO) 
0.000000006*00) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 

O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOe+00) 
0.000000006*00) 

O.OOOOOOOOe+00) 
0.000000006*00) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 

O.OOOOOOOOe+OO) 
O.OOOOOOOOe+00) 
O.OOOOOOOOe+00) 
O.OOOOOOOOe+OO) 

0.000000006*00) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOetOO) 
O.OOOOOOOOe+00) 

O.OOOOOOOOe+00) 
O.OOOOOOOOe+00) 
O.OOOOOOOOe+00) 
0.000000006*00) 

O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOe+00) 

O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOe+00) 
O.OOOOOOOOe+OO) 

O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 
O.OOOOOOOOetOO) 

1.785577686-02) 
-7.611472146-01) 

2.647746356+00) 
2.519031616-01) 

2.013484516-01) 
-4.018263646-01) 

6.890583546-01) 
4.904594606-02) 

-3.771121136*00) 
-9.482435556*00) 
-3.080710196+00) 
-9.583557336+00) 

-1.232857266+00) 
-3.077690586+00) 
-1.625979816+00) 
-7.145217956+00) 

2.160647936+00) 
3.993522746+00) 
2.110647946+00) 
5.736068676+00) 

-3.340019576+00) 
2.331211516+00) 

-9.472739456+00) 
7.687844376+00) 

-1.319071396+00) 
3.195374726+00) 

-1.636344266+00) 
1.096580856+01) 

-9.685164526+00) 
2.330613216-01) 

-1.830742816+01) 
3.640683626-02) 

7.664585086-01) 
-2.275060936+O0) 

6.739097416-01) 
-3.663907876+00) 

-1.755421866-01) 
-3.298034396-01) 
-1.287171006*00) 
-1.008602876+00) 

-2.711314186-01) 
5.638743016-01) 

-1.137574876+01) 
6.360978496+00) 

9.226300386-01, 
2.704356606+00, 
6.897373126-01. 
2.317811986+00, 

3.639550726*00. 
3.158306916+00. 
2.970366526*00. 
3.485064516*00. 

4.04066668e*O0. 
2.957848696+00 
5.031213846+00 
3.126622186+00, 

3.967379696+00, 
3,029610366+00, 
4,963636916+00, 
2,923555676+00, 

4,126731816+00 
3.440440766-01, 
4,946417506+00, 

-2,309952716*00, 

-2,123762676+00, 
-5,095351646-01, 
-2,399713716+00 

2,195027816+00 

-2,084189996+00, 
7,055424096-01, 

-2,07840814e*O0, 
1,545705616+00 

-2,305090486*00, 
-2,556683326*00, 
-1,653301416+00 
-8,893358836-01, 

-2,207939026+00, 
-2,294548796+00, 
-2,604481146*00 
-4,294398656+00, 

3.367809656+00, 
-4.071180806-01, 

2.994376546+00, 
-3,707667606*00, 

3,590219296+00, 
1,165375996+00 
6,258307196+00 

-6,497662496-01, 

-1,299537516*00, 
-1,446474586+00, 
-2,69685460e+00, 
-3,100130466+00, 

5,074600206+00. 
1,453451056*01. 
5.405659336+00. 
2.686550836*01. 

-5.366665766-01, 
4.552166766+00. 

-7.511107246-01, 
9,336785506+00, 

3,270581486+00, 
-1,166291736+01, 

3,176601826+00, 
-2,762853306+01, 

-2,546727606+00. 
-4,274555236+00, 
-7,059818956*00, 

1,686699026+00. 

-4,753409296-01, 
4,759198986-01, 
1,000060716+00, 
1,166817356*01, 

1,050937026+01, 
-4.885313906-01. 

2.08979987e+O1, 
-6,086261346-01, 

1,056060986-01, 
3,025701136+00, 
1,126194466+00, 
3,745011106-01, 

1,111696576+00. 
-9,366445496+00. 

1,899950786+00. 
-1.754499336*01, 

1.196724186*00 
-3.297163286-01, 

1,578247706*01, 
-4,318751756+00, 

0,000000006+00) 
0,000000006*00) 
0,000000006*00) 
0,000000006*00) 

0,000000006+00) 
0,000000006+00) 
0,000000006+00) 
OOOOOOOOOe+OO) 

O.OOOOOOOOe+00) 
0.000000006*00) 
0.000000006*00) 
0.000000006*00) 

0.000000006*00) 
O.OOOOOOOOe+OO) 
0.000000006*00) 
O.OOOOOOOOe+00) 

O.OOOOOOOOe+OO) 
O.OOOOOOOOe+OO) 
0.000000006*00) 
0.000000006*00) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOe+00) 

0 .000000006+00 ) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOe+OO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOe+OO) 

O.OOOOOOOOe+OO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOe+OO) 

O.OOOOOOOOetOO) 

O.OOOOOOOOetOO) 

1 .210319976 -02 ) 

- 1 .65179318e tOO) 

1 .07691093etOO) 

2 . 3 6 1 1 4 7 1 8 e t O 0 ) 

-2.104265586-01) 
-1.253128516*00) 
-3.176491946-01) 
-3.387530126-01) 

-5.128659536*00) 
-1.666491406+01) 
-4.092598136+00) 
-2.165226716+01) 

-4.63545457»t00) 
-5.679415496*00) 
-4.954348776+00) 
-5.816029436*00) 

6.410100006+00) 
1.651150136+01) 
3.976669086+00) 
1.815635626+01) 

-8.623197826*00) 
4.275101676+00) 

-1.483482026+01) 
2.045524386*00) 

-7.814569756+00) 
8.681471516+00) 

-1.228653056+01) 
2.007838126+01) 

2.131590886+01) 
5.877321606-01) 
2.107225836+01) 
2,962935366-01) 

7,604267096+00) 
-7,546749896+00) 

8,344320166*00) 
-2,022466166+01) 

-6,902180426*00) 
-5,518163256+00) 
-4,980167066+00) 
-3,523921976+00) 

1.216409576*01) 
1.477995936+00) 
2,0421790(i6*O1) 
2.588163366*01) 
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equations with five unknowns to be found. The way the 
equations have been determined guarantees they are free 
from extraneous roots. 

By a specifically-developed solution procedure, four un
wanted unknowns have been eliminated, still avoiding the 
inclusion of extraneous roots. As a result, an algebraic equa
tion of 32nd order has been obtained which exhibits 32 roots 
in the complex field. For every root, a closure configuration 
of the 6-4 fully-parallel mechanism can be determined. Hence 
the direct position analysis of the general-geometry 6-4 fully-
parallel mechanism admits of 32 solutions in the complex 
field. 

Finally, a numerical example has been reported which 
confirms the new theoretical results. 
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