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Computational comparisons of 
model genomes 

Christos Ouzounis, Georg Casari, Chris Sander, Javier Tamames and Alfonso Valencia 

Complete genomes from model organisms provide new challenges for 

computational molecular biology. Novel questions emerge from the genome data 

obtained from the functional prediction of thousands of gene products. In this 

review, we present some approaches to the computational comparison of 

genomes, based on sequence and text analysis, and comparisons of genome 

composition and gene order. 

With the recent publication of the complete genome 
sequences from two bacteria, Haemophilus injuenzae 
Rdi and Mycoplasma genitalium2, new challenges are 
emerging for computational biology. Two such chal- 
lenges are (1) to predict and annotate the fimctions of 
the gene products as rapidly and completely as poss- 
ible, and (2) to derive adequate abstractions that make 
genomes comparable at a higher-than-molecular level. 

Function prediction is a primary goal of genome- 
sequence analysis, as many newly determined 
sequences have no experimental information associ- 
ated with them, while functional information can be 
derived by examining homology to proteins of known 
function. Prediction can be carried out by integrating 
and co-ordinating a number of well-tested methods 
that rapidly and efficiently identie sequences with the 
highest degree of similarity horn complete databases, 
and can, therefore, assist function prediction using 
homology observations. The GeneQuiz system3 auto- 
matically annotates protein-encoding sequences and 
can identify novel functions, e.g. for H. influenzati and 
111. genitaliums sequences*. The use of integrated data- 
bases and software tools, combined with the appli- 
cation of a number of empirical rules that can auto- 
matically eliminate false annotation@, make this 
possible. 

If the functional annotations are known, what is the 
next step in genome analysis? We have been explor- 
ing new ways to make use of this information, and 
have been performing global comparisons of genomic 
data, addressing a number of questions. These analy- 
ses yield a profile of the composition of genomic func- 
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tions of an organism, identifying some components 
that are common to other species, and some that 
appear to be unique. These predicted ‘expression pat- 
terns’ can help in the identification of novel or poten- 
tial metabolic or regulatory pathways, and provide a 
faster route to the development of targets for drug 
design and discovery. 

Orthologues: functionally equivalent genes 
across species 

A gene with a certain level of sequence similarity to 
its homologue in the genome of another species may 
have the same function as its homologue; such genes 
are defined as orthologues7. How is it possible to deter- 
mine whether the two proteins encoded by the genes 
of different species have the same function? Proteins 
change during evolution, forming families of related 
molecules that have similar primary, secondary and 
tertiary structures, but which have divergent functions. 
Algorithms for sequence comparison can detect genes 
encoding homologous proteins, but are unable to 
determine definitively whether two molecules have 
exactly the same function. Therefore, function pre- 
diction by detection of sequence similarity, especially 
in incomplete genomes, can only be approximate, 
because it usually makes use of genes encoding the 
most similar proteins; however, these genes might not 
yet have been identified. 

In complete genomes, however, there is a finite 
number of genes, so it is possible to determine which 
genes share the highest degree of similarity, thus nar- 
rowing the set of experiments that must be performed 
to prove that proteins encoded by orthologous genes 
have the same function. Therefore, the average 
similarity value can be calculated, helping in the esti- 
mation of the rate of change in different families. The 

*Analysis of the H. in&wrzae, M. yerzitalicrm and S. cerevisiae genomes, 
including functional classification, is available on the World Wide Web 
at <http://www.sander.embl-heidelberg.de/ge. 
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redundancy of homologous families of proteins (e.g. 
transport proteins in bacteria) can also be measured, 20 

and the most conserved pairs of proteins can be identi- 
fied. The first analysis of this kind was performed with 
a contig set from Myco$asma capricolums that encoded 2 

almost half of the total number of proteins. We have 
‘g 15 

found that the average similarity between protein- .g 
encoding genes in M. capricolum and Escherichia coli is 5 
40%, with a wide variance (Fig. 1). It should be noted = 10 
that analyses of putative orthologues in incomplete -5 

genomes provide a lower estimate of sequence simi- b 

larity between orthologues. There may be other genes, e 
as yet unidentified in either genome, that display an z’ 5 
even higher similarity 

The identification of orthologues can be used in the 
reconstruction of metabolic pathways encoded by 0 
various bacterial genomes; E. coli metabolism has been 25 30 35 40 45 50 55 60 65 70 75 
used as the modelg. This approach can provide a 
deeper understanding of the primary-sequence data, 1 

Sequence identity (%) 

and can help in the identification of potentially inter- 
esting targets for medical, industrial and environmen- 
tal applications. 

Genome compositions from automated 
function-classification 

Functional classification of genes and gene products 
is another aspect of genome analysis that can provide 
a basis for comparative genomics. This type of 

Figure 1 
Frequency histogram indicating the sequence identity of genes encoding 
82 Mycoplasma capricolum proteins with their putative orthologues in Escherichia 
colis. These numbers represent lower estimates: if protein-encoding genes 
with higher sequence-similaritres are found in either genome, the drstrrbution would 
probably shift to the right. The three most conserved gene pairs between the 
two bacteria are those encoding FtsH, enolase and ClpB, all of which share 
263% sequence identity over the length of available sequences (60-125 amino 
acids). 

Box 1. Functional classes for genome comparison 

Our definition of functional classes used for genome comparisons corresponds with the one that was previously 
proposed*3 for characterizing Escherichia co/i. Of the nine classes, eight are shown, and these can be classified 
into three super-classes; the ninth class consists of unknown functions, and is not shown. Typical keywords for the 
superclasses are: ENERGY - photosynthesis, oxygen transport, respiratory protein, monooxygenase, kinase, 
hydrophobic ion transporter; INFORMATION -activator, zinc finger, early protein, nuclear protein, developmental pro- 
tein; COMMUNICATION - hormone, amidation, serine/threonine protein kinase, G-protein coupled reCeptOr, Serine 
protease inhibitor, cell adhesion. 

ENERGY 

Metabolism 
l Amino acid metabolism 
l Cofactor biosynthesis 
l Prosthetic groups and carriers 
l Central intermediary 

metabolism 
l Energy conservation (e.g. 

sugar modification and 
degradation, pentose 
phosphate cycle, glycolysis, 
gluconeogenesis, electron 
transport, respiration, 
secondary metabolism) 

l Fatty acid and phospholipid 
biosynthesis 

l Purines, pyrimidines, 
nucleosides, nucleotides 

INFORMATION 

DNA and RNA 
l Replication (including 

recombination and repair) 
l Transcription (including 

splicing) 

Translation 
l Translation, ribosomal proteins 

Proteins 
l Protein biosynthesis, folding, 

internal transport, 
translocation, post-translational 
modification and degradation 

COMMUNICATION 

Signal 
l Regulatory functions 
l Cell division 
l Cell killing 

Environment 
l Interaction with environment: 

recognition, adhesion, defense 
(toxic substances), 
extracellular 
degradation 

Structure 
l Structural proteins 

Transport 
l Transport through membranes 
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Figure 2 
Schema of the method used to classify sequences in functional classes. 

corresponding to each functional class is created; (c)the database is searched and 
all sequences are classified into functional classes; and (d) the procedure is iterated. 
Classified sequences can be input manually, or from the automatic classification pro- 
vided by the method, or from a combination of both methods, 

(a) Sequences are classified into functlonal classes; (b) a dictionary with keywords 

Energy 
(40%) 

Information 

ommunication 
(2%) 

_______ 

Figure 4 

most of its coding potential to replication and translation, while its 
metabolic capacity is restricted, owing to its parasitic lifestyle. 

The functional compositions of two complete genomes4,5. The rela- 
tive sizes of the charts reflects genome size. While Haemophilus 
influenzae displays a typical compositlon for a bacterial genome 
(compare with Fig. 31, Mycoplasma genitalium appears to devote 

Animals 

Plants 

Yeasts 

Bacteria 

Viruses 

I”“,‘~‘~,~~~~,““,‘~~‘,~~~~,~~~~,~’~’,~’~~,~~~’, 
0 10 20 30 40 50 60 70 80 90 100 

Functional composition (%) 

Figure 3 
Basic functional composition of various taxa’*. Only organisms with more than 100 
sequences in SWISS-PROT are represented. Viruses include phages and eukaryotic 
viruses, both displaying very similar composition. For each taxon, (blue) energy-, 
(green) information- and (red) communication-related composition is shown as a per- 
centage of the total. The three most interesting patterns are: (1) that viruses have a 
small, but significant, amount of metabolic enzymes (mostly involved in nucleotide 
biosynthesis), (2) that yeasts and plants are remarkably similar, and (3) that there is 
an increase in communication-related proteins during cellular evolution. 

approach raises the following questions: How can we 
devise useful abstractions that allow model genomes to 
be compared? In other words, how can we class@ pro- 
teins beyond the similarity of the sequences encoding 
them? The problem is, how can genomes be compared 
when sequence similarity is not sufficient; for example, 
if most homologous proteins have not been identified, 
or if they are too divergent or simply not as abundant 
between species (e.g. between mycoplasmas and mam- 
mals). We have approached this problem by catego- 
rizing protein functions into nine classes (eight classes 
of major functions, and one unknown; Box 1). These 
classes, which correspond with a number of cellular 

1 processes, can be clustered into three super-classes: 
energy-, information- and communication-related 1// 1.,. 1 . 
genes and proteins”‘, in a simplltication that has a 
physical basis; i.e. the substrates of these super-classes 
are usually small molecules, nucleic acids or proteins, 
correspondingly. This situation is analogous to that 
seen for expression patterns obtained from expressed 
sequence tag (EST) sequencing”, except that the 
compositional profiles define a potential, and not an 
actual, genetic pattern. 

TIBTECH AUGUST 1996 (VOL 14) 
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Figure 5 
Numbers of pairs of functionally related genes in the genome of Haemophilus influenzael. The two planar axes represent the classes in 
which neighboring genes belong, the third axis represents the number of gene pairs. It is clear that the numbers in the diagonal value 
dominate, corresponding to adjacent genes of the same functional class**. Genes for which there is no function assignment, or cases 
where the function assignment is not clear, are classified as unknown (and are not shown); values above 60 (only for pairs of metabolic 
genes) are also not shown. 

We have developed an automatic functional classifi- 
cation system (Fig. 2; J. Tamames, G. Casari, 
C. Ouzounis, C. Sander and A. Valencia, unpublished) 
to classify thousands of predicted protein functions as 
rapidly and reliably as possible. A set of pre-classified 
sequences is used to build a dictionary of keywords 
characteristic of each functional class, and uses this 
dictionary to classify other sequences based on their 
keywords. The process is repeated, starting with the 
enlarged set of classified sequences, deriving new asso- 
ciations between keywords and functional classes, and 
classifying more sequences. In this way, the dictionaries 
are enriched with unique and distinctive patterns of 
keywords that describe each functional class. Inconsis- 
tencies, conflicts and other problems are dealt with, 
and the procedure converges when no more keywords 
can be uniquely associated with a class (Fig. 2). 

This system has been used to estimate the compo- 
sitions of functional classes of a number of species that 
are well-represented in the sequence databasesi’. For 

example, it appears that during evolution, the fraction 
of (intra- and extra-cellular) communication-related 
proteins increases monotonically with the phylo- 
genetic status of major taxa (Fig. 3). This pattern of 
increase clearly reflects the differences between 
prokaryotic and eukaryotic cells, and the changes that 
occurred during the transition from unicellular to 
multicellular organisms. In our analysis, differences in 
genome composition are observed between the genes 
encoding the complete sets of identified proteins of 
H. i$uenzae and M. gerhdiwr (Fig. 4), and for the genes 
encoding the proteins of Saccharmycees cerrvisiae (yeast), 
the first completely sequenced eukaryotic genomei3. 
Functional compositions correspond well with the 
estimates previously obtained from the taxa in which 
these species belong. These compositional patterns are 
useful general descriptors of the genomic make-up of 
model organisms, and implicitly define a similarity 
measure between genomes that can be used in future 
comparative studies. 

TIBTECH AUGUST 1996 (VOL 14) 
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Figure 6 
(a) An illustration of the conserved dew cluster present in Escherichia coli and 
Haemophilus influenzae22, containing a number of functionally related genes. The 
direction of transcription is colinear. Genes are labeled according to their name in 
E. coli, and markers represent functional classifications: red circles are used to denote 
genes encoding proteins involved in signaling, blue squares are used to denote genes 
encoding proteins with structural functions. Axes display the absolute position of 
genes in the H. influenzae genome paired with their orthologues from E. coli. This 
example demonstrates the patterns that emerge at this level of sequence compari- 
son. (b) The conserved fucose (fuc) operon. While the genes in the H. influenzae 
fuc operon (top) are all transcribed in the same orientation, most genes in the 
E. coli fuc operon (bottom) are transcribed in the opposite orientation, with the excep- 
tion of the first gene. Some rearrangements are also visible. Genes encoding trans- 
port proteins are colored orange, genes encoding proteins involved in metabolism 
are colored green, and genes encoding proteins involved in signaling are colored 
blue. 

Conserved clusters of functionally related genes 
Is chromosome organization conserved in related 

species? This question, which was first raised in re- 
lation to genomic maps of plastidsi”Js and bacterial”‘“, 
was investigated using only homologous sequences. 

However, using the comprehensive functional classifi- 
cation described above, we can ask whether function- 
ally related, but not necessarily homologous, genes of 
any two genomes are in a similar sequential order along 
chromosomes. 

To facilitate this, we have compiled data from 
intra- and inter-genomic comparisons of E. coli and 
H. ir$uenzae. All E. coli sequences were classified into 
the nine functional classes, using annotation from the 
sequence databases, in conjunction with keywords - a 
functional class dictionary was created. The relative 
locations of genes (not their absolute order) were taken 
from genome repositories, and genes for which there 
is no accurately mapped location were omitted. The 
positions of genes, which were deduced fi-om the order 
of the genes along the chromosome, were used for 
comparing the two genomesiJ,a(‘. The numbers of 
gene pairs are compared with the results from a ran- 
dom modela’, which estimates the probability of two 
functionally related genes being adjacent on the 
genome, in order to establish the statistical significance 
of these observations. 

The main conclusion is that clusters of genes 
belonging to the same functional classes (that do 
otherwise not share sequence similarity) have patterns 
of aggregation along chromosomes that appear to be 
statistically significantaa. For example, in H. i$uenzae, 
there is a clear aggregation of genes encoding metab- 
olism- and translation-associated proteins (Fig. 5). In 
addition, patterns of linear conservation between 
genomes are observed (Fig. 6). TLvo examples of 
genome-order comparison in regions of the 
H. influenzae and E. co/i genomes are presented. The first 
example illustrates the case for the dew cluster in the 2’ 
region on the E. coli chromosome. In this region, all 
sequences belong to the signal or structural classes, and 
the order is preserved (Fig. 6a). The second example 
is that of thefr4c operon, at 63’ in E. coli and 35’ in 
H. irzjuenzae: together withfi4cA, fuc0 (upstream) is 
transcribed in the negative orientation with respect to 
the origin in E. coli, whilefi4cP (adjacent to&c& and 
the downstream genes are transcribed in the positive 
orientation; in H. influenzae, all genes are transcribed 
in the opposite direction to their direction of tran- 
scription in E. coli (Fig. 6b). Not all of the clusters are 
operons, and these clusters may represent newly 
identified regulatory units. In addition, it may be 
possible to predict the functional class of unknown 
genes and formulate a hypothesis for the cellular 
processes with which they are associated, further guid- 
ing experimental analysis. 

Global views 
The approaches described above are posing new 

questions for the computational comparison of model 
genomes, and are helping us to obtain different global 
views of complete genome data. Having accurate esti- 
mates for the expected sequence similarity between 
orthologues in different species will be the basis for 
more-reliable function predictions. Automatic anno- 
tation and classification of sequences, possibly based 

TIBTECH AUGUST 1996 (VOL 14) 
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on alternative classification schemes, can supply global 
views of complete genomes. Finally, gene-order com- 
parisons contribute towards the understanding of 
chromosome structure and evolution, complementing 
traditional sequence comparison. 
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