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Abstract

Let f be a smooth convex homogeneous function of degree p, 1 < p <∞, on ℂ ∖ {0}. We
show that if u is a minimizer for the functional whose integrand is f(∇v), v in a certain
subclass of the Sobolev space W 1,p(Ω), and ∇u ∕= 0 at z ∈ Ω, then in a neighborhood of
z, log f(∇u) is a sub, super, or solution (depending on whether p > 2, p < 2, or p = 2 )
to L where

L� =

2∑
k,j=1

∂

∂xk

(
f�k�j (∇u(z))

∂�

∂xj

)
,

We then indicate the importance of this fact in previous work of the authors when
f(�) = ∣�∣p and indicate possible future generalizations of this work in which this fact
will play a fundamental role.
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1 Introduction

Let Ω denote a bounded region in the complex plane ℂ. Given p, 1 < p < ∞, let z = x1 + ix2

denote points in ℂ and let W 1,p(Ω) denote equivalence classes of functions ℎ : ℂ→ℝ with
distributional gradient ∇ℎ = ℎx1 + iℎx2 and Sobolev norm

∥f∥W 1,p(Ω) =

(∫
Ω

(∣ℎ∣p + ∣∇ℎ∣p)dA
)1/p

<∞

where dA denotes two dimensional Lebesgue measure. Let C∞0 (Ω) denote infinitely differen-
tiable functions with compact support in Ω and let W 1,p

0 (Ω) denote the closure of C∞0 (Ω) in
the norm of W 1,p(Ω). Let f : ℂ ∖ {0}→(0,∞) be homogeneous of degree p on ℂ ∖ {0}. That is

f(�) = ∣�∣pf(
�

∣�∣
) > 0 when � ∈ ℂ ∖ {0}. (1.1)

Assume also that f is strictly convex in ℂ ∖ {0}. Given ℎ ∈ W 1,p(Ω) let E = {ℎ + � : � ∈
W 1,p

0 (Ω)}. It is well known (see [HKM, chapter 5]) that

inf
w∈E

∫
Ω

f(∇w)dA =

∫
Ω

f(∇u)dA for some u ∈ E.

Moreover u is a weak solution at z ∈ Ω to the Euler equation,

∇ ⋅ (∇f(∇u(z))) =
∑
k=1,2

∂

∂xk

(
∂f

∂�k
(∇u(z))

)
=

2∑
k,j=1

f�k�j(∇u(z))uxkxj(z) = 0 . (1.2)

That is,

∫
Ω

⟨∇f(∇u(z)),∇�(z)⟩dA = 0 whenever � ∈ W 1,p
0 (Ω). Here ∇⋅ denotes divergence

in the z = x1 + ix2 variable and ⟨⋅, ⋅⟩ denotes the standard inner product on ℂ. Moreover
if f is sufficiently ‘ smooth, ’ it follows from either Schauder theory or the fact that ∇u is a
quasiregular mapping of ℂ that u has continous third derivatives in a neigborhood of z whenever
∇u(z) ∕= 0. In this case (1.2) holds pointwise and we can differentiate this equation with respect
to xl, l = 1, 2, to get

0 = ∇ ⋅
(
∂

∂xl
(∇f(∇u(z)))

)
=

2∑
k,j=1

∂

∂xk

(
∂2f

∂�k�j
(∇u(z))uxjxl

)
From this display we see that if ∇u(z) ∕= 0, and u, f are sufficiently smooth, then � = uxl
satisfies

L� =
2∑

k,j=1

∂

∂xk

(
bkj(z)

∂�

∂xj

)
= 0 (1.3)

where bkj(z) = f�k�j(∇u(z)) when 1 ≤ k, j ≤ 2. We claim that also � = u is a solution to L� = 0
in a neighborhood of z. To prove this claim and for later use note that from the homogeneity
of f and Euler’s formula it follows for k = 1, 2 that if � ∕= 0, then

2∑
j=1

�j f�k�j(�) = (p− 1)f�k(�) and
2∑

k=1

�k f�k(�) = pf(�). (1.4)
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Putting u in for � in (1.3) and using (1.4), (1.2), it follows that

Lu =
2∑

k,j=1

∂

∂xk

(
f�k�j(∇u(z))

∂u

∂xj

)
= (p− 1)

2∑
k=1

∂

∂xk
(f�k(∇u(z))) = 0.

Using (1.3) for � = uxl , l = 1, 2, and � = u we prove

Theorem 1. In a neighborhood of z and under the above assumptions, log f(∇u)) is a sub
solution, solution, or super solution to L in (1.3) respectively when p > 2, p = 2, p < 2.

Before proving Theorem 1 we indicate its relevance and possible applications of this theorem.
To this end we introduce the following notation. Let B(z, r) = {w ∈ ℂ : ∣w− z∣ < r} whenever
z ∈ ℂ and r > 0. Let d(E,F ) denote the distance between the sets E,F ⊂ ℂ. If � > 0 is
a positive function on (0, r0) with lim

r→0
�(r) = 0 define H� Hausdorff measure on ℂ as follows:

For fixed 0 < � < r0 and E ⊆ ℂ, let L(�) = {B(zi, ri)} be such that E ⊆
∪
B(zi, ri) and

0 < ri < �, i = 1, 2, ... Set

��� (E) = inf
L(�)

∑
�(ri).

Then
H�(E) = lim

�→0
��� (E).

In case �(r) = r� we write H� for H�.
Next supposeD ⊂ ℂ is a bounded simply connected domain, zo ∈ D,Ω = D∖B(z0,

1
2
d(z0, ∂D)),

and u is a minimizer for the above variational problem in Ω with boundary values u = 1 on
∂B(z0,

1
2
d(z0, ∂D)) and u = 0 on ∂D in the W 1,p(Ω) sense. Put u ≡ 0 outside of D. Then it

follows from [HKM, ch 15] that there exists a unique finite positive Borel measure � on ∂D
satisfying ∫

ℂ
⟨∇f(∇u(z)),∇�(z)⟩dA = −

∫
�d�

whenever � ∈ C∞0 (ℂ∖B̄(z0,
1
2
d(z0, ∂D))). Define the Hausdorff dimension of � denoted H-dim �,

by

H-dim � = inf{� : there exists E Borel ⊂ ∂Ω with H�(E) = 0 and �(E) = �(∂Ω)}.

If f(∇u) = ∣∇u∣2, i.e, when u is harmonic, Makarov [M] essentially proved

Theorem A.

(a) � is concentrated on a set of � finite H1 measure .
(b) There exists 0 < A <∞, such that � is absolutely continuous

with respect to Hausdorff measure defined relative to �̃ where

�̃(r) = r exp[A
√

log 1/r log log log 1/r], 0 < r < 10−6.
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In [BL], [L], and [LNP] the second author and coauthors have attempted to generalize
Theorem A to the case when f(�) = ∣�∣p, p ∕= 2, 1 < p <∞, i.e, when u is p harmonic in Ω. To
briefly outline this work, in [BL] the first author, together with Bennewitz, proved the following
theorem.

Theorem B. If ∂Ω is a quasicircle, then H-dim � ≤ 1 for 2 < p <∞, while H-dim � ≥ 1 for
1 < p < 2. Moreover, if ∂Ω is the von Koch snowflake then strict inequality holds for H-dim �.

In [L] we obtained the natural generalization of [M] to the p harmonic setting, at the expense
of assuming more about ∂Ω :

Theorem C. Given p, 1 < p < ∞, p ∕= 2, there exists k0(p) > 0 such that if ∂Ω is a k
quasi-circle and 0 < k < k0(p), then

(a) � is concentrated on a set of � finite H1 measure when p > 2.
(b) There exists A = A(p), 0 < A(p) <∞, such that if 1 < p < 2, then � is absolutely

continuous with respect to Hausdorff measure defined relative to �̃ (as in Theorem A).

Finally in [LNP] we proved the following theorem.

Theorem D. Let D ⊂ ℂ be a bounded simply connected domain and 1 < p <∞, p ∕= 2. Put

�(r) = r exp[A
√

log 1/r log log 1/r], 0 < r < 10−6.

Then
(a) If p > 2, there exists A = A(p) ≤ −1 such that � is concentrated

on a set of � finite H� measure.
(b) If 1 < p < 2, there exists A = A(p) ≥ 1, such that � is absolutely

continuous with respect to H�.

The key ingredient used in the proof of Theorems B −D was Theorem 1 when f(�) = ∣�∣p.
Thus although we still need to check a few details, we hope to prove in future work that

Plausible Theorem. Theorem A is valid when f is homogeneous of degree 2 and Theorem D
holds for f homogenous of degree p, p ∕= 2.

We give two proofs of Theorem 1, in the order which they were obtained. The second proof
illustrates the fact that hindsight is better than foresight.

2 Proof of Theorem 1

We first prove Theorem 1 when p = 2. Let v(z) = log f(∇u(z)). Then for k, j = 1, 2 we have
at z,

bkjvxj = f−1(∇u)
2∑

n=1

f�n(∇u)bkjuxnxj . (2.1)
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Summing (2.1) over k, j = 1, 2, and using (1.3) for � = uxn we get

Lv =
2∑

k,j=1

∂

∂xk

(
bkjvxj

)
= f−1(∇u)

2∑
n,j,k,l=1

bnlbkjuxlxkuxnxj−f−2(∇u)
2∑

n,j,k,l=1

bkjf�nf�luxlxkuxnxj .

(2.2)
Multiplying (2.2) by f 2(∇u(z)) we rewrite this equation in the form ;

f 2(∇u)Lv = f(∇u)T1 − T2 (2.3)

where at z,

T1 =
2∑

n,j,k,l=1

bnlbkjuxlxkuxjxn and T2 =
2∑

n,j,k,l=1

bkjf�nf�luxlxkuxjxn . (2.4)

We now use matrix notation. We write at z,

(bkj(z)) = (f�k�j(∇u(z))) =

(
a b
b c

)

(uxkxj(z)) =

(
A B
B C

)
(
ux1
ux2

)
= ∣∇u∣

(
cos �
sin �

)
(2.5)

Let Et, tr E, denote the transpose and trace of the matrix E. Observe that if

D =

⎛⎝ A B

B C

⎞⎠⎛⎝ a b

b c

⎞⎠ then T1 = tr (D2). (2.6)

To simplify our calculations we choose an orthonormal matrix O such that

Ot

⎛⎝ A B

B C

⎞⎠O =

⎛⎝ A′ 0

0 C ′

⎞⎠

Ot

⎛⎝ a b

b c

⎞⎠O =

⎛⎝ a′ b′

b′ c′

⎞⎠ .

(2.7)

Then
T1 = tr D2 = tr [(OtDO)2] = (a′A′)2 + 2(b′)2A′C ′ + (c′C ′)2 (2.8)

We also note that if (
cos�
sin�

)
= Ot

(
cos �
sin �

)
(2.9)
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then from (1.4) with p = 2, (2.5), we find at z,

f(∇u) = (1/2)∣∇u∣2(cos � sin �)

⎛⎝ a b

b c

⎞⎠( cos �
sin �

)

= (1/2)∣∇u∣2(cos� sin�)

⎛⎝ a′ b′

b′ c′

⎞⎠( cos�
sin�

)

= (1/2)∣∇u∣2 [a′(cos�)2 + 2b′ sin� cos�+ c′(sin�)2].

(2.10)

Putting (2.10) and (2.8) together we deduce that

f(∇u)T1 = (1/2)∣∇u∣2 [(a′A′)2 + 2(b′)2A′C ′ + (c′C ′)2] [a′(cos�)2 + 2b′ sin� cos�+ c′(sin�)2].
(2.11)

We now consider T2. Note that if �m =
∑
l=1,2

uxmxlf�l(∇u), and �t = (�1 �2), then from (2.4),

(2.5), (2.7), (2.9), we get

T2 = �t

⎛⎝ a b

b c

⎞⎠� = (�′)t

⎛⎝ a′ b′

b′ c′

⎞⎠�′ where �′ = Ot �. (2.12)

Also using the above displays and (1.4) with p = 2, we obtain at ∇u(z)

(
f�1
f�2

)
= ∣∇u∣

⎛⎝ a b

b c

⎞⎠( cos �
sin �

)
=

∣∇u∣ O

⎛⎝ a′ b′

b′ c′

⎞⎠ (
cos�
sin�

)
.

(2.13)

Next we have at z,

� =

⎛⎝ A B

B C

⎞⎠( f�1(∇u)
f�2(∇u)

)
= ∣∇u∣O

⎛⎝ A′ 0

0 C ′

⎞⎠⎛⎝ a′ b′

b′ c′

⎞⎠( cos�
sin�

)

= ∣∇u∣O
(
a′A′ cos�+ b′A′ sin�
b′C ′ cos�+ c′C ′ sin�

)
.

(2.14)
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From (2.12), (2.14), we conclude that

T2 = ∣∇u∣2
[(

a′A′ cos�+ b′A′ sin�
b′C ′ cos�+ c′C ′ sin�

)t (
a′ b′

b′ c′

) (
a′A′ cos�+ b′A′ sin�
b′C ′ cos�+ c′C ′ sin�

)]

= ∣∇u∣2 [a′(a′A′ cos�+ b′A′ sin�)2 + 2b′(a′A′ cos�+ b′A′ sin�)(b′C ′ cos�+ c′C ′ sin�)

+ c′(b′C ′ cos�+ c′C ′ sin�)2].
(2.15)

To simplify (2.15) we observe from the Euler equation in (1.2) that

0 = tr

[(
A B
B C

)(
a b
b c

)]
= tr

[(
A′ 0
0 C ′

)(
a′ b′

b′ c′

)]
= a′A′ + c′C ′. (2.16)

To begin the estimation of T2 we write T2 = ∣∇u∣2 [ℎ0 + ℎ1b
′ + ℎ2(b′)2 + ℎ3(b′)3] where ℎm, 0 ≤

m ≤ 3, is independent of b′. From (2.15), (2.16), we conclude that

ℎ0 = a′(a′A′)2 cos2 �+ c′(c′C ′)2 sin2 �. (2.17)

Also,
ℎ1 = 2(a′A′)2 sin� cos�+ 2a′A′c′C ′ sin� cos�+ 2(c′C ′)2 sin� cos�

= [(a′A′)2 + (c′C ′)2] sin� cos�.
(2.18)

Next we have

ℎ2 = a′(A′)2 sin2 �+ 2(a′A′C ′) cos2 �+ 2(c′A′C ′) sin2 �+ c′(C ′)2 cos2 �

= A′C ′(a′ cos2 �+ c′ sin2 �).
(2.19)

Finally we have
ℎ3 = 2A′C ′ sin� cos� (2.20)

Adding (2.17) - (2.20), multiplying the resulting expression by ∣∇u∣2 and comparing with (2.11)
we find in view of (2.16) that at z

f(∇u)T1 = T2. (2.21)

From (2.21), (2.2), (2.3) we now have shown that Lv = 0 at z when p = 2.
The proof that Lv ≥ 0 for p > 2 and Lv ≤ 0 for 1 < p < 2 is essentially the same only

in these cases we use the fact that f is homogeneous of degree p and in particular (1.4) for p.
More specifically the computation of T1 is unchanged. However the right hand side in (2.10)
should be multiplied by 2

p(p−1)
. The new (2.11) now becomes 2

p(p−1)
times the old (2.11). Also,

the right hand side in (2.13) should be multiplied by 1/(p− 1). We then get a new expression
for T2 in (2.15) which is 1/(p−1)2 times the old expression. From this discussion and the p = 2
case we conclude that if T = T2 when p = 2 then T ≥ 0 and for fixed p, 1 < p <∞, we have

Lv =

(
2

p(p− 1)
− 1

(p− 1)2

)
T =

p− 2

p (p− 1)2
T. (2.22)

Thus Lv ≥ 0 for p > 2 and Lv ≤ 0 when 1 < p < 2. The proof of Theorem 1 is now complete.
□
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3 Alternate Proof of Theorem 1

First some new notation, set

D2f = D2f(∇u(z)) =

(
a b
b c

)
=

(
f11 f12

f21 f22

)
and D2u = D2u(z) =

(
A B
B C

)
=

(
u11 u12

u21 u22

)
and let ∇u = (ux1 , ux2) = (u1, u2) be a row vector, Df = Df(∇u) = (f�1 , f�2) = (f1, f2) also be
a row vector. Then bkj = fkj so that equation (1.2) is tr(D2f D2u) = 0 while the homogeneity
conditions we will need are given by

D2f ∇ut = (p− 1) Df t and p(p− 1)f = ∇u D2f ∇ut

where the exponent t indicates the transpose of ∇u and Df . In this notation we can rewrite
equation (2.2), using these homogeniety conditions, as

f 2 Lv =
2∑

j,k,l,n=1

ffnlfkjulkunj − fkjfnflulkunj

=tr
(
f (D2f D2u)2 −Df tDf D2uD2f D2u

)
=tr

(
1

p(p− 1)
∇uD2f∇ut(D2f D2u)2 − 1

(p− 1)2
D2f∇ut(D2f∇ut)tD2uD2fD2u

)
=tr

(
1

p(p− 1)
∇uD2f∇ut(D2f D2u)2 − 1

(p− 1)2
D2f∇ut∇u(D2f D2u)2

)
.

Now D2fD2u =

(
� �

 −�

)
since tr(D2fD2u) = 0, squaring gives

(D2f D2u)2 = (�2 + �
)

(
1 0
0 1

)
= −det (D2fD2u) I .

Finally note that tr (D2f∇ut∇u) =
2∑

l,k=1

flkuluk = ∇uD2f∇ut. Substituting these into the

display for f 2 Lv and noting that tr I = 2 we have

f 2 Lv =− det (D2fD2u) ∇uD2f∇ut
(

2

p(p− 1)
− 1

(p− 1)2

)
=− det (D2f) det (D2u) ∇uD2f∇ut

(
p− 2

p(p− 1)2

)
.

Since f is convex both the terms det (D2f) and ∇uD2f∇ut are positive (for ∇u(z) ∕= 0). Since
f11 is positive consider f11det (D2u) = f11u11u22−f11u

2
12, using the equation tr(D2f D2u) = 0 in

the form f11u11 +2f12u12 +f22u22 = 0 we have f11det (D2u) = −(2f12u12 +f22u22)u22−f11u
2
12 =

−∇u2D
2f∇ut2 which is nonpositive. Altogether, see equation (2.22),

f11 f
2 Lv = det (D2f) ∇uD2f∇ut ∇u2D

2f∇ut2
(

p− 2

p(p− 1)2

)
.
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