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Abstract
Let f be a smooth convex homogeneous function of degree p,1 < p < oo, on C\ {0}. We
show that if w is a minimizer for the functional whose integrand is f(Vwv),v in a certain
subclass of the Sobolev space W1P(Q), and Vu # 0 at z € €2, then in a neighborhood of
z, log f(Vu) is a sub, super, or solution (depending on whether p > 2,p < 2, or p =2)

to L where )

0 0
1= 3 o (Fun(TuC) 5 )
k,j=1
We then indicate the importance of this fact in previous work of the authors when
f(n) = |n|P and indicate possible future generalizations of this work in which this fact
will play a fundamental role.
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1 Introduction

Let €2 denote a bounded region in the complex plane C. Given p,1 < p < 00, let z = x1 + ix9
denote points in C and let WHP(Q2) denote equivalence classes of functions h : C—R with
distributional gradient Vh = h,, + th,, and Sobolev norm

1/p
I lbwroie = ([ 08 +198P)4) < o0
Q

where dA denotes two dimensional Lebesgue measure. Let C§°(€2) denote infinitely differen-
tiable functions with compact support in Q and let W, () denote the closure of C5°(Q) in
the norm of W'?(Q). Let f: C\ {0}—(0, 00) be homogeneous of degree p on C\ {0}. That is

£01) = P £ (7) > 0 when 5 € C\ {0}, (1)
Assume also that f is strictly convex in C\ {0}. Given h € W'?(Q) let E = {h+ ¢ : ¢ €
WyP(Q)}. Tt is well known (see [HKM, chapter 5]) that

inf / f(Vw)dA = / f(Vu)dA for some u € E.
0 0

wek

Moreover u is a weak solution at z € §2 to the Euler equation,
o [of 2
V- (VE(Vu(2) =Y ozr <8—W(VU(Z))) = fon, (V(2)) g, (2) = 0. (1.2)

k=12 k,j=1

That is, /(Vf(Vu(z)),V@(z))dA =0 whenever § € W, P(Q). Here V- denotes divergence
Q

in the z = x1 + iz variable and (-, ) denotes the standard inner product on C. Moreover
if f is sufficiently ‘ smooth, ’ it follows from either Schauder theory or the fact that Vu is a
quasiregular mapping of C that u has continous third derivatives in a neigborhood of z whenever
Vu(z) # 0. In this case (1.2) holds pointwise and we can differentiate this equation with respect
to x;,l =1,2, to get

2

0=V- (a%(v f(Vu(z)))) =) o ( 1 (Vu(z))uxjxl)

521 O \ Oy

From this display we see that if Vu(z) # 0, and wu, f are sufficiently smooth, then ¢ = wuy,,

satisfies
2

L= ) a% <bkj(z)§—gfj> =0 (1.3)

k7]:1

where by;(2) = fy.n,(Vu(z)) when 1 < k, j < 2. We claim that also ( = u is a solution to L{ = 0
in a neighborhood of z. To prove this claim and for later use note that from the homogeneity
of f and Euler’s formula it follows for k£ = 1,2 that if n # 0, then

D0 Feny (1) = (0= ) (1) and S f (n) = pf (). (1.4)
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Putting w in for ¢ in (1.3) and using (1.4), (1.2), it follows that

2

B= 2 g (Fan (T ) = 0= 03 50 (T2 =0

k,j=1

Using (1.3) for ¢ = uy,,l = 1,2, and { = u we prove

Theorem 1. In a neighborhood of z and under the above assumptions, log f(Vu)) is a sub
solution, solution, or super solution to L in (1.3) respectively when p > 2,p=2,p < 2.

Before proving Theorem 1 we indicate its relevance and possible applications of this theorem.
To this end we introduce the following notation. Let B(z,7) = {w € C : |w — z| < r} whenever
z € Cand r > 0. Let d(E, F) denote the distance between the sets E, FF C C. If A > 0 is
a positive function on (0,ry) with Tlgnm A(r) = 0 define H* Hausdorff measure on C as follows:

For fixed 0 < § < rg and £ C C, let L(0) = {B(z;,7:)} be such that E C |J B(z;,r;) and

0<r;<d, 1=1,2,... Set
E) = g(laf) Z A(74).

HA(E) = lim 63(F).

Then

In case A\(r) = r® we write H® for H*.

Next suppose D C C is a bounded simply connected domain, z, € D, Q = D\ B(z, %d(zo, 0oD)),
and u is a minimizer for the above variational problem in 2 with boundary values u = 1 on
dB(z0, 2d(2,0D)) and u = 0 on dD in the WP(Q) sense. Put u = 0 outside of D. Then it
follows from [HKM, ch 15] that there exists a unique finite positive Borel measure p on 0D
satisfying

/(Vf(Vu(z)), VO(2))dA — —/edﬂ
C

whenever 6 € C§°(C\ B(z, 3d(z0, dD))). Define the Hausdorff dimension of 1 denoted H-dim g,
by

H-dim p1 = inf{a : there exists £ Borel C 092 with HY(E) = 0 and p(E) = pu(09Q)}.
If f(Vu) = |Vul? i.e, when u is harmonic, Makarov [M] essentially proved
Theorem A.

(a) p is concentrated on a set of o finite H' measure .
(b)  There exists 0 < A < 0o, such that j is absolutely continuous
with respect to Hausdorff measure defined relative to A where

Ar) = r exp[A+/log 1/r logloglog 1/7],0 < r < 107,



In [BL], [L], and [LNP] the second author and coauthors have attempted to generalize
Theorem A to the case when f(n) = |n|P,p # 2, 1 < p < o0, i.e, when w is p harmonic in €. To
briefly outline this work, in [BL] the first author, together with Bennewitz, proved the following
theorem.

Theorem B. If 00 is a quasicircle, then H-dim pu <1 for 2 < p < oo, while H-dim p > 1 for
1 < p < 2. Moreover, if 0¥ is the von Koch snowflake then strict inequality holds for H-dim p.

In [L] we obtained the natural generalization of [M] to the p harmonic setting, at the expense
of assuming more about 0fQ :

Theorem C. Given p,1 < p < oo,p # 2, there exists ko(p) > 0 such that if OQ is a k
quasi-circle and 0 < k < ko(p), then

(a) p is concentrated on a set of o finite H' measure when p > 2.
(b)  There ezists A= A(p),0 < A(p) < oo, such that if 1 < p < 2, then p is absolutely
continuous with respect to Hausdorff measure defined relative to A (as in Theorem A).

Finally in [LNP] we proved the following theorem.

Theorem D. Let D C C be a bounded simply connected domain and 1 < p < oo,p # 2. Put

Ar) =7 eXP[A\/log 1/r loglog1/r],0 < r < 1075,

Then
(a)  Ifp > 2, there exists A = A(p) < —1 such that p is concentrated

on a set of o finite H measure.
(b) If1<p<2, there exists A= A(p) > 1, such that p is absolutely
continuous with respect to H*.

The key ingredient used in the proof of Theorems B — D was Theorem 1 when f(n) = |n|P.
Thus although we still need to check a few details, we hope to prove in future work that

Plausible Theorem. Theorem A is valid when f is homogeneous of degree 2 and Theorem D
holds for f homogenous of degree p,p # 2.

We give two proofs of Theorem 1, in the order which they were obtained. The second proof
illustrates the fact that hindsight is better than foresight.

2 Proof of Theorem 1

We first prove Theorem 1 when p = 2. Let v(z) = log f(Vu(z)). Then for k,7 = 1,2 we have
at z,

2
brjVz; = 1 (Vu) ann(Vu)bkjuxnxj. (2.1)

n=1
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Summing (2.1) over k,j = 1,2, and using (1.3) for { = u,, we get

2

P 2 2
Lv = Z a_ (bkjvxj) = fﬁl(vu) Z bnlbkju:pl:vkuacnxj—fi2(vu> Z bkjfnnfmuaclzkuznmj-

Lk

k,j=1 n.jk,l=1 nj k=1
(2.2)
Multiplying (2.2) by f?(Vu(z)) we rewrite this equation in the form ;
fA(Vu) Lv = f(Vu) Ty — T (2.3)
where at z,
2 2
T = Z bnlbkjuzllkufb’jﬂ?n and T = Z bkjfﬂnfmuifzifkuljzn‘ (24)

n,j,k,l=1 n,j,k,l=1

We now use matrix notation. We write at z,

Il
N
S Q2
o o
~

(b (2)) = (foun, (Vu(2)))

(D = (5 ¢ ) 2.5

( Ug,y ) — |V ( C'OSQ )
Ugy sin 6
Let E', tr E, denote the transpose and trace of the matrix E. Observe that if

A B a b
D= then T} = tr (D?). (2.6)
B C b c

To simplify our calculations we choose an orthonormal matrix O such that

A B A0
0k 0=
B C 0o
(2.7)
a b a b
Ot 0=
b ¢ v
Then
Ty = tr D* = tr [(O'DO)?] = (a/A")*> + 2(b)?A'C’ + (dC')? (2.8)

We also note that if 5 ;
COoS ¢ [ cos
(singb ) =0 (sin@ ) (2.9)

5



then from (1.4) with p =2, (2.5), we find at z,

a b
cos 6
f(Vu) = (1/2)|Vul*(cos 6 sin6)
() ()

/!

a v (2.10)
2 . cos ¢
= (1/2)|Vul*(cos ¢ sin ¢) ,
( . ) ( sin ¢ )

= (1/2)|Vul* [a'(cos ¢)? + 2V sin ¢ cos ¢ + ¢/ (sin ¢)?].
Putting (2.10) and (2.8) together we deduce that

F(Vu)Ty = (1/2)|Vul? [(a’ A)? + 21 )2A'C" + (' C")?] [d (cos ¢)* + 20 sin ¢ cos ¢ + ¢ (sin ¢)?].
(2.11)
We now consider T5. Note that if A, = Zuwmxlfm(Vu), and \' = (A1 \g), then from (2.4),

I=1,2
(2.5), (2.7), (2.9), we get

a b a v
Ty =\ A= (\) X where X' = O" )\ (2.12)
b ¢ v

Also using the above displays and (1.4) with p = 2, we obtain at Vu(z)

a b
0
(f)=ra(; ) (220)
72 b c
a v
vuo( )(;ﬁjj).
b

(2.13)

Next we have at z,

(o)) e (L) (5 ) ()

B a’ A’ cos ¢ + b' A’ sin ¢
= [VulO ( b'C’ cos ¢+ ¢'C'sin ¢ )

(2.14)



From (2.12), (2.14), we conclude that

( a’ A’ cos ¢ + b’ A’ sin ¢ )t ( a b ) ( a’ A’ cos ¢ + b’ A’ sin ¢ )

_ 2
Ty =|Vul b'C' cosp + C'sin ¢ Vo b'C' cos g+ C'sin ¢

= |Vul|? [a'(a’ A’ cos ¢ + V' A’ sin ¢)? + 2 (a/ A’ cos ¢ + b A sin ¢) (b'C” cos ¢ + ¢/ C” sin ¢)

+d (VO cos ¢ + ¢ C’ sin ¢)?].
(2.15)
To simplify (2.15) we observe from the Euler equation in (1.2) that

oo [(AEY (2 Y= (20 (5 8] mwnsee e

To begin the estimation of Ty we write Ty = |Vu|? [ho + hib/ + ho(b')? + hs(b')?3] where h,,,0 <
m < 3, is independent of ¥'. From (2.15), (2.16), we conclude that

ho = d'(a’A')? cos® ¢ + (' C")? sin® ¢. (2.17)
Also,
hy =2(a’A")? sin ¢ cos ¢ + 2a’ A'dC’ sin ¢ cos ¢ + 2(¢'C")? sin ¢ cos ¢
(2.18)
= [(a’A")? + (< C")?] sin ¢ cos ¢.
Next we have
hy =a'(A")? sin? ¢ + 2(a’ A'C") cos? ¢ + 2(¢ A'C") sin ¢ + ¢/ (C")? cos? ¢
(2.19)
= A'C'(a’ cos? ¢ + ¢’ sin? ¢).
Finally we have
hs = 2A'C" sin ¢ cos ¢ (2.20)

Adding (2.17) - (2.20), multiplying the resulting expression by |Vu|? and comparing with (2.11)
we find in view of (2.16) that at z

From (2.21), (2.2), (2.3) we now have shown that Lv = 0 at z when p = 2.

The proof that Lv > 0 for p > 2 and Lv < 0 for 1 < p < 2 is essentially the same only
in these cases we use the fact that f is homogeneous of degree p and in particular (1.4) for p.
More specifically the computation of 73 is unchanged. However the right hand side in (2.10)
should be multiplied by zﬁ' The new (2.11) now becomes zﬁ times the old (2.11). Also,
the right hand side in (2.13) should be multiplied by 1/(p — 1). We then get a new expression
for Ty in (2.15) which is 1/(p—1)? times the old expression. From this discussion and the p = 2

case we conclude that if T'= T, when p = 2 then T" > 0 and for fixed p,1 < p < 0o, we have

- 2 1 _ p-2
LU_(p(p—l) (p—l)z)T p(p—1)? r (2.22)

Thus Lv > 0 for p > 2 and Lv < 0 when 1 < p < 2. The proof of Theorem 1 is now complete.
O




3 Alternate Proof of Theorem 1

First some new notation, set

20 _ 2 _(a b\ _ (fu fie 2, _ 2 _ (A B\ _ (un up
D*f = D*f(Vu(z)) = (b c) = <f21 f22> and D*u = D*u(z) = <B 52 Bl U
and let Vu = (ug,, uy,) = (u1, u2) be arow vector, Df = D f(Vu) = (f,,, f.) = (f1, f2) also be
a row vector. Then by; = fi; so that equation (1.2) is tr(D?f D?u) = 0 while the homogeneity
conditions we will need are given by
D?*f Vu' = (p—1) Df* and p(p — 1) f = Vu D*f Vu'

where the exponent ¢ indicates the transpose of Vu and D f. In this notation we can rewrite
equation (2.2), using these homogeniety conditions, as

2
f2 Lv= Z [ frifrjintin; — frjfofitintin,

jk:ln 1

=tr (f (D*f D*v)*> — Df* Df D*uD*f D*u)

2 u 2 2 1 2 ut 2 utt 2u 2 2U
(p qu FVUl(D2f D*u)? — (p_l)ZD FVul(D2fVul) D2uD*f D )
1

(p—1)2

=tr (p qu2 fVut(D*f D*u)? — D? fVu'Vu(D? fD2u)2> :

Now D?fDu = (O‘

y _60) since tr(D?f D*u) = 0, squaring gives

(D*f D*u)? = (a* + 37) (é (1)) = —det (D*fDu) I
2
Finally note that tr (D?fVu!Vu) = Z fuwus = VuD?fVu!. Substituting these into the
Lk=1
display for f? Lv and noting that tr I = 2 we have

t 2 1
f? Lv = — det (D*fD*u) VuD? fVu <p(p -1 (- 1)2)

[ p—2
= —det (D*f) det (D*u) VuD® fVu (zﬁ ) '

Since f is convex both the terms det (D?f) and VuD?fVu! are positive (for Vu(z) # 0). Since
f11 is positive consider fiidet (D?u) = fi1uy1uss— f11u2,, using the equation tr(D?f D?*u) = 0 in
the form fiiui1 +2 fiours + faotss = 0 we have fiidet (D?u) = —(2fisuns + faotion) s — fr1ufy =
—Vuy D? fVul, which is nonpositive. Altogether, see equation (2.22),

fur f? Lv = det (D*f) VuD?fVu' VuyD?fVub (ﬁ) .



References

[BL| B. Bennewitz and J. Lewis, On the dimension of p-harmonic measure, Ann. Acad. Sci. Fenn. Math.,
30 (2005), no. 2, 459-505.

[HKM] J. Heinonen, T. Kilpeldinen, and O. Martio, Nonlinear potential theory of degenerate
elliptic equations, Oxford University Press, 1993.

[L] J. Lewis, Note on p harmonic measure, Computational Methods in Function Theory 6
(2006), No.1, 109-144.

[LNP] J. Lewis, K. Nystrom, and P. Poggi Corradini, p harmonic measure in simply connected
domains, Ann. Inst. Fourier Grenoble 61 2 (2011), 689-715.

[M] N. Makarov, Distortion of boundary sets under conformal mapping, Proc. London Math.
Soc. 51 (1985), 369-384.



