
Automatic Web Services Deployment

Ang Tan Fong, Ling Teck Chaw, Phang Keat Keong, Por Lip Yee
Department of Computer Systems and Technology

Faculty of Computer Science and Information Technology
University of Malaya, Malaysia

{angtf, tchaw, kkphang, porlip}@um.edu.my

Abstract

As web service has become the emerging paradigm,
the area of web service research has received a lot of
attention in recent years. Most of the web services are
deployed by site administrators. As the number of
request of web services increase tremendously, there is
a need to replicate the services to multiple resources.
Although manual deployment allow the services to be
deployed safely, it is impossible to scale. To solve this
problem, we propose in this paper a new architecture
for automatic web services deployment. Through the
experiment, we proved that automatic deployment
strategy able to handle the increasing number of users’
request in an effective manner.

1. Introduction

Web services technology is playing a major role in
today’s distributed computing. Web services can be
advertised, located and used across the Internet using
the standard protocol like SOAP, WSDL and UDDI.
Due to its interoperability, Web services have been
recognized as the next generation framework for
building distributed applications over the Internet. As
the number of services increase, an architecture called
Service Oriented Architecture (SOA) has been
proposed to organize and manage the services. SOA is
a set of principles that define an architecture that is
loosely coupled and comprised of service providers
and service consumers that interact according to a
negotiated contract or interface [1]. The primary goal
of SOA is to expose application functions in a
standardized way so that they can be leveraged across
multiple domains.

Although SOA has enabled the merging of Grid
and Web services, it provides poor support for resource
matching. SOA provides a powerful framework for
matching services functionalities but lack of QoS

support. SOA selects the resources based on the web
services functionalities without consider the non-
functional properties, such as availability, reliability,
accessibility, cost and accuracy. Another drawback of
SOA is that, searching and mapping is done according
to the registered services. If the number of requests is
more than the primary resources, the request is send to
the waiting queue. There is no solution to deploy the
web services dynamically to the secondary resources.
Further more, whenever users want to deploy a new
service, they need to ask the site administrator to
configure the web server and setup the web service. No
auto deployment is available and it is impossible to
scale.

In order to address the above problem, we propose
in this paper a new architecture for automatic web
services deployment. The architecture will first group
all the relevant web services based on their
functionalities. Then, it will select the most suitable
resources according to the users’ QoS constraints. If all
the resources are fully utilized, the architecture will
automatic deploy the services to the secondary
resources. The adaptive mechanism is used for the
service deployment. This strategy will reduce the
number of tasks waiting in the queue and able to
handle the increasing number of requests efficiently.
Besides automatic deployment, the architecture allows
the services to be stored in repository for future uses.
Experimental results show that the automatic
deployment strategy able to handle the increasing
number of users’ requests in an effective manner.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the related work. In
Section 3, we discuss the deployment architecture.
Section 4 details the prototype implementation and
describes the experiments we have conducted. Finally,
we conclude our work in Section 5.

2. Related Works

2009 World Congress on Computer Science and Information Engineering

978-0-7695-3507-4/08 $25.00 © 2008 IEEE

DOI 10.1109/CSIE.2009.417

315

2009 World Congress on Computer Science and Information Engineering

978-0-7695-3507-4/08 $25.00 © 2008 IEEE

DOI 10.1109/CSIE.2009.417

315

Recently, QoS issues of Web services have
obtained great interest in the research community. In
[2], method to support QoS of web service in the
distributed domain is proposed. The paper describes
various supporting QoS attributes for Web services. By
using agent based approach, the QoS information is
gathered. Then, the service is selected dynamically
based on the consumers’ preferences and providers’
capabilities. In [3], the author defines a new discovery
process that combines the functionality and QoS of
services. The author again uses agent to handle the
QoS measurement, evaluation and QoS information
exchange.

In [4], the issue of QoS driven service selection in
dynamic Web service composition is investigated. The
author extends OWL-S with a lightweight QoS model
to better facilitate service selection process. The results
show that the algorithm is time efficient, while still
achieving satisfying optimal rate. Jingya Zhou et al.
[5] propose an efficient algorithm in selecting the best
resource according to users’ performance
requirements. The algorithm can select the least cost
composite service while satisfying end-to-end QoS
requirements and has greater success rate.

Besides QoS issues, various dynamic service
deployment mechanism have been explored in the area
of distributed systems. Daniel et al. [6] propose
architecture for a system which allows the deployment
of services in a group of computers, connected in a
peer-to-peer fashion. The architecture uses publish and
subscribe approach to detect events and perform self
actions. Another similar approach, Snap [7] deploys
web services over a Distributed Hash Table and creates
replicas of a service on demand. When the demand
reduces, the replicas are deleted. However, the research
assumes all compute nodes are equal and able to
execute any services.

In [8], the authors present architecture to enable on
demand resource provisioning. The project provides a
Universal Factory Service (UFS) that provides a
dynamic Grid service deployment mechanism. The
results show that dynamic deployment can use resource
more efficiently compared to static partitioning. Other
similar approaches are stated in SODA [9], OGSI.NET
[10] and DistAnt [11].

Gabor Kecskemeti et al. [12] propose automatic
service deployment using virtualization. The paper
describes an extension to the Globus Workspace
Service [13]. Service deployment with virtualization
can support both the on-demand deployment and the
self-healing services. The author defines an
infrastructure on which an automated service
deployment solution can build on. However, the
virtualization middleware introduces a visible overhead
in the performance of services. Other similar works in

virtualization include VMPlants [14] and Virtualized
Clustering project [15].

Vanish et al. [16] quantitatively compare manual,
script-based, language-based, and model-based
deployment solutions as a function of scale,
complexity, and susceptibility to change. The research
concludes that if the number of deployed systems is
small or the systems’ configurations rarely change, a
manual solution is the most reasonable approach.
However, in larger environments, the script-based
solutions are well matched for large scale deployments,
language-based for services of large complexity, and
model-based for dynamic changes to the design.

From the findings, we propose to use agent based
approach for QoS collector. The resources will be
ranked based on QoS attributes and the resources are
dynamically selected based on users’ constraint and
requirements. When the number of requests more than
the registered resources, automatic service deployment
will be executed based on modify version of Snap [7]
that consider resources as heterogeneous nodes. As
pilot phase, the research will mainly focus on script-
based solutions. Most of the running task will be the
parametric services. Our work primarily differs from
previous researches in that we will focus on adaptive
mechanism on service selection and service
deployment.

3. Automatic Web Services Deployment
Architecture

We propose automatic web service deployment
architecture to handle the increasing number of users’
request. Figure 1 depicts the architecture of the
automatic web services deployment. As shown in the
figure, the user first logon to the User Interface (UI).
The user can submit a new service or request an
existing service. If it is a new service, UI will register
the service to UDDI server. After that, the user’s
constraints and preferences are submitted to the UDDI
server as XML file according to the OASIS Standard
(WS-BPEL 2.0) [17].

Apart from handling user request, the UI will
monitor the completion of the service. When the
service is completed, the output is stored in the UI
server and the user is notified. UI support both the
synchronous and asynchronous submission from user.
Another feature provided by UI is the security module.
The UI provides an interface for authorization and
authentication. Users need to provide their identity in
order to use the services.

316316

Figure 1. Automatic Web Services

Deployment Architecture

The main functionality of UDDI server is to enable

the publishing and sharing of information about web
services. We modify the UDDI server to select the
most suitable services based on not only the services
functionalities but also the users’ constraints and
preferences. A QoS registry is developed to integrate
with the UDDI server. The QoS registry contains the
QoS attributes for the services and resources. The
service properties will include memory and storage
requirements, subtask dependency in a service,
completion time and communication volumes. When a
new service is registered to the UDDI server, service
profiling module is executed from time to time to
retrieve the service properties. Besides, analogical
benchmarking is performed to measure the service
performances on dynamic resources. The behavior of
the services such as static, linear and exponential can
be analyzed from the benchmark.

Agent is installed in all the compute resources that
available in the architecture. The main feature of agent
is to collect the resources performance information
such as processing speed, number of core and number
of concurrent request, throughput and latency,
availability, reliability, accessibility, accuracy. The
agent collects the information periodically from the
resources, summarize it and store it in the UDDI
server.

By using the information above, the UDDI server
can perform the selection operation. The operation
consists of three phases namely matching, numbering
and ranking. During the matching process, all the
services that satisfy the functionalities and users
constraints and preferences are selected. Then, the
value of QoS is normalized to calculate the numerical
result. Finally, the ranking process will rank the

resources using different weight for different QoS
properties. UDDI will select the resource with the best
ranking.

The Web services repository is the main component
that facilitates the automatic deployment. When the
waiting queue of UDDI server reaches certain
threshold, the UDDI server will instruct the web
service repository to perform automatic services
deployment. This is happening when the web server,
cluster and super computer unable to handle the
increasing number of request. Without the automatic
deployment, the administrator need to setup and
register the web service manually. The manual process
can not scale and is time consuming. By using the
automatic deployment, the Web services repository
able to select the requesting service and deploy it to the
secondary resources. The deployment is using the
manager worker model and no web server is required
at each compute elements.

Apart from its main feature, Web services
repository can be considered as the secondary server of
the architecture. It has the latest copy of web services
from UDDI. It can perform analogical benchmarking
to identify the behavior of the service when the
secondary compute elements are idle.

4. Implementation and Experiments

The architecture is currently implemented on .NET
and J2EE environment. Therefore, it can be used for
any web service technologies. Since Web services
manage to solve the interoperability problem, we can
easily deploy the web services on different platforms.
Besides the basic library of .NET and J2EE, the UDDI
.NET SDK version 2 is used to allow the integration
with UDDI server. In addition, we develop a QoS
registry which contains the QoS attributes for the
services and the resources on top of the UDDI server.
Our implementation links the QoS information with
the services functionalities together.

For the automatic deployment module, no web
server is required to install on the compute elements.
Http.sys architecture is used as the low-level HTTP
protocol stacks for the dynamic deployment on
compute elements. It is a kernel-mode component that
offers HTTP services to all applications on the
machine. When http.sys receives a request, it can
forward it directly to the correct worker process.
Http.sys is capable of caching responses directly within
the kernel. This improves the overall throughput and
performance. Figure 2 shows the Http.sys architecture.

317317

Figure 2. Http.sys Architecture

After the implementation, the architecture is tested

with the parametric service. We have conducted a set
of experiment using the static parametric service. Table
1 show the resources use for the experiments. The first
three set of resources are the primary resources while
the last two set are the secondary resources. The
average execution time of each service on different
resources is shown in Table 2.

Table 1. Resources
 Resource Core Unit Type

1
Server with
CPU 2.33GHz 8 5

Primary
resources

2
Server with
CPU 1.86GHz 8 5

Primary
resources

3
Server with
CPU 1.86GhHz 4 5

Primary
resources

4
PC with CPU
2.33GHz 2 20

Secondary
resources

5
PC with CPU
2.0GHz 2 20

Secondary
resources

Table 2. Average Execution Time

 Resource Core
Average Execution

Time (s)

1
Server with
CPU 2.33GHz 8 4.6

2
Server with
CPU 1.86GHz 8 6.2

3
Server with
CPU 1.86GHz 4 14.6

4
PC with CPU
2.33GHz 2 19.1

5
PC with CPU
2.0GHz 2 22.2

Figure 3 illustrate the distribution of the total

execution time of different number of request. M1 is
the standard architecture without the automatic
deployment while M2 is our propose architecture that
dynamically deploy the service to the secondary
resources. When the number of request is small, M1
outperform our architecture since no services waiting

in the queue. However, when the number of request
increase, our propose method is better. Our method can
utilize the secondary resources efficiently and at the
same time reduce the total execution time.

Figure 3. Total Execution Time using two

methods

5. Conclusion

Web services are suitable for implementing in the
distributed and heterogeneous platform. However,
more research is required to discover their potential
benefit. This paper presents an automatic web service
deployment that able to handle the increasing number
of users’ request in an effective manner. The major
contribution of this paper is the efficient usage of
secondary resources. Since most of the research
concentrate on primary resources, our research focus
on the secondary resources. The secondary resources
include those computers in the students’ lab that are
underutilized. In addition, most of these computers
nowadays consist of multiple cores. A partial of these
compute resources can be shared without affect the
resources performance. Experimental results show that
our architecture reduce the number of tasks waiting in
the queue and reduce the overall execution time.

Our future work consists of providing intelligent
scheduling, interface for self healing, and more
advanced security features. In addition, we will test the
architecture using the linear and exponential
parametric services. Besides, we may consider working
on language based and model based solutions
deployment.
6. Acknowledgement
This work is partly financially supported by the
university research grant under no PJP (FS251/2008B).

7. References

318318

[1] Manoj Mansukhani, Service Oriented Architecture White
Paper, HP Inc, June 2005.

[2] Seung-Hyun Lee, Dong-Ryeol Shin, Web Service QoS in
Multi-Domain, In 10th IEEE International Conference on
Advanced Communication Technology (ICACT), 2008.

[3] Mossab A. Al Hunaity, Towards an Efficient Quality
Based Web Service Discovery Framework, IEEE
Congress on Services, 2008.

[4] Yan Yang, et al., An Approach to QoS-aware Service
Selection in Dynamic Web Service Composition, In
IEEE Third International Conference on Networking and
Services (ICNS'07), 2007.

[5] Jingya Zhou, et al., QoS Adaption aware Algorithm for
Grid Service Selection, In 12th IEEE International
Conference Computer Supported Cooperative Work in
Design, 2008.

[6] Daniel Lazaro, et al., An Architecture for Decentralized
Service Deployment, In IEEE International Conference
on Complex, Intelligent and Software Intensive Systems,
2008.

[7] Pairot, C., et al., Deploying Wide-Area Applications Is a
Snap. IEEE Internet Computing, 11 (2) 72-79, 2007.

[8] Eun-Kyu Byun, et al., A Dynamic Grid Services
Deployment Mechanism for On-Demand Resource
Provisioning, In IEEE International Symposium on
Cluster Computing and the Grid, 2005.

[9] X. Jiang and D. Xu, SODA: a Service-On-Demand
Architecture for Application Service Hosting Utility
Platforms, In Proceedings of the IEEE International
Symposium on High Performance Distributed
Computing, 2003.

[10] G. Wasson, et al., OGSI.NET: OGSI-compliance on the
.NET Framework, In Proceedings of the IEEE

International Symposium on Cluster Computing and the
Grid, 2004.

[11] W. Goscinski and D. Abramson, Distributed Ant: A
System to Support Application Deployment in the Grid,
IEEE/ACM International Workshop on Grid
Computing, 2004.

[12] Gabor Kecskemeti, et al., Automatic Service
Deployment Using Virtualisation, In IEEE 16th
Euromicro Conference on Parallel, Distributed and
Network-Based Processing, 2008.

[13] K. Keahey, et al., Virtual workspaces in the grid.
ANL/MCS-P1231-0205, 2005.

[14] I. Krsul, et al., Vmplants: Providing and managing
virtual machine execution environments for grid
computing. In International Conference on High
Performance Computing, Networking and Storage
(SC04), 2004.

[15] Javier Alonso, et al., High-Available Grid Services
through the use of Virtualized Clustering, In 8th IEEE
Grid Computing Conference, 2007.

[16] Vanish Talwar, et al., Comparison of Approaches to
Service Deployment, In Proceedings of the 25th IEEE
International Conference on Distributed Computing
Systems (ICSCS’05), 2005.

[17] OASIS Standard, Web Services Business Process
Execution Language Version 2.0, 11 April 2007.
http://www.oasis-open.org/committees/download.php
/23964/wsbpel-v2.0-primer.htm.

[18], Aaron Skonnard, Run ASMX Without IIS, MSDN
Magazine, December 2004.

319319

