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ABSTRACT
Monte Carlo ray-tracing schemes are developed for the eval-

uation of radiative heat transfer for problems, in which the par-
ticipating medium is represented by discrete point-masses, such
as the �ow �eld and scalar �elds in PDF Monte Carlo methods
frequently used in combustion modeling. Photon ray tracing in
such cases requires that an optical thickness is assigned to each
of the point-masses. Two approaches are discussed, the Point
Particle Model (PPM), in which the shape of particle is not spec-
i�ed, and the Spherical Particle Model (SPM) in which particles
are assumed to be spheres with constant radiation properties. An-
other issue for ray tracing in particle �elds is the in�uence region
of a ray. Two ways of modeling a ray are proposed. In the �rst,
each ray is treated as a standard volume-less line. In the other ap-
proach, the ray is assigned a small solid angle, and is thus treated
as a cone with a decaying in�uence function away from its center
line. Based on these models, three different interaction schemes
between rays and particles are proposed, i.e., Line-SPM, Cone-
PPM and Cone-SPM methods, and are compared employing sev-
eral test problems.

Nomenclature
A cylindrical shell
I emission intensity; particles enclosed by ray
L thickness of gas slab; side-length of computational do-

main
Qemi total energy emitted from a particle
∗Address all correspondence to this author. 1
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R particle in�uence radius; gas constant
Rc local radius of cone
T temperature
Vo nominal volume of particle
W weight function
m particle mass
p total pressure
q heat �ux
r distance to axis of conical ray
r′ normalized distance to ray axis, r/Rc
s axial distance from emission point
x location vector
Ω particle in�uence region
Ω′ particle in�uence region intercepted by ray
κ linear absorption coefficient
κρ density-based absorption coefficient
η random number
ρo nominal density of particle
�ρ density pro�le in particle in�uence region
τ optical thickness

superscript
′ quantity normalized by local cone radius Rc

subscripts
i particle
j ray
2D, 3D dimension of weight function
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1 Introduction
Among radiative transfer models, Monte Carlo Ray Tracing

(MCRT) has several advantages over other popular models, be-
cause it can be applied to problems of arbitrary difficulty with rel-
ative ease [1]. The MCRT method directly simulates the physi-
cal processes, i.e., emission, absorption, scattering and re�ection,
from which the Radiative Transfer Equation (RTE) is derived. In
the standard Monte Carlo method, a ray carrying a �xed amount
of energy is emitted and its progress is then traced until it is ab-
sorbed at a certain point in the participating medium or on the
wall, or until it escapes from the enclosure. As many researchers
have pointed out [2�6], this method is inefficient when the walls
are highly re�ective and/or the medium is optically thin so that
most photon bundles exit the enclosure without any contribution.
Modest [4, 5] applied the concept of energy partitioning to alle-
viate this problem. In this method the energy carried by a ray
is no longer �xed along the path and absorbed once and for all
at one point, but rather is attenuated gradually along the path
until its depletion or until it leaves the enclosure. The locally
absorbed fraction of the ray's energy contributes to the heat ex-
change rates of sub-volumes along the ray path. This method is
also called �absorption suppression� by Walters and Buckius [6].
A large variety of problems of great complexity can be simulated
with a reasonable efficiency using either standard or energy par-
tition methods in forward Monte Carlo simulations, when the
overall knowledge of the radiation �eld is desired. However,
such scheme can be very inefficient if only the radiative inten-
sity hitting a small spot and/or over a small range of solid angle
is required. The idea of backward tracing, which only traces
the rays that eventually hit the targeted area or solid angle, has
been proposed by several researchers in different topics to handle
this inefficiency. The comprehensive formulation for backward
Monte Carlo simulations in radiative heat transfer can be found
in the literature (Walters and Buckius [6], Modest [7]).

The MCRT method has been applied to all aspects of ra-
diative heat transfer [8, 9]. In applications, in which no par-
ticipating medium is involved, ray tracing is relatively simple.
However, in many high-temperature applications, such as com-
bustion problems, participating media play a key role. A ma-
jor difficulty is the evaluation of the optical thickness that a ray
passes through, since the temperature and concentration �elds
are highly inhomogeneous. In their Monte Carlo modeling of
radiative heat transfer in turbulent �ames, Tessé and cowork-
ers [10, 11] assumed uniform properties of the medium along the
integral length of each coherent turbulence structure crossed by
the ray, in order to determine the optical thickness along the ray's
path. However, in other problems, in which the participating
medium is represented by the �eld of point-masses, such as the
�ow �eld and scalar �elds in PDF Monte Carlo methods [12�15]
frequently used in combustion modeling, the above continuum
model is no longer useful. No work appears to have been done
to date to implement MTRC in discrete particle �elds, which is
2
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the aim of the present work.

2 Ray-Particle Interaction Models
To simulate the radiative transfer process by ray tracing in a

discrete particle �eld, the interaction between in�nitesimal point-
masses and in�nitesimally thin photon rays needs to be modeled.
This can be done by assigning effective volumes to the point-
masses, by assigning an in�uence volume to the ray's trajectory,
or a combination of both. In this section, several particle models
and ray models are developed �rst, followed by photon emission
and absorption algorithms based on these models.

2.1 Modeling Discrete Particles and Photon Rays
Point Particle Model (PPM) In this model, particles are

treated as point-masses, i.e., they carry an amount of mass with-
out a speci�c shape at a certain spatial location as shown in
Fig. 1a which is a 2D particle �eld. The only geometric informa-
tion known about the particles is their position vector. However,
particles do have a nominal volume, which may be calculated
from their thermophysical properties such as pressure and tem-
perature. For example, if the ideal gas assumption is adopted, the
nominal volume may be computed as

Vo,i =
miRTi

pi
, (1)

where mi is the mass carried by particle i, Ti is its temperature, pi
is its total pressure and R is the gas constant. To enforce consis-
tency in the discrete particle representation of the medium, the
overall nominal volume of all particles should be the same as
the actual geometric expanse of the medium. Therefore, we may
regard the nominal volume of a particle as its real volume.

The Point Particle Model only contains the particle informa-
tion that the original discrete particle �eld contains. It does not
employ any other assumption. Therefore, it will not induce any
inconsistency that further assumptions may have. The disadvan-
tage of this model is that it is difficult to interact a photon ray
with a volume without shape.

Spherical Particle Model In this method, each point-mass
mi has a spherical in�uence region Ωi, surrounding it as shown in
Fig. 1b. The mass is distributed to its in�uence region according
to a density pro�le,

�ρi (x) =


ρo,iW3D

( |x−xi|
Ri

)
, |x−xi| < Ri

0, |x−xi| ≥ Ri

, (2)

where xi is the spatial location vector of the point-mass i, Ri is
Copyright c© 2005 by ASME
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Figure 1. (a) PPM representation of a medium; (b) SPM/CDS representation of a sub-region in (a)
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its in�uence radius, ρo,i is the nominal density calculated by

ρo,i =
mi
Vo,i

=
pi

RTi
, (3)

and W3D is a spherically symmetric weight function which de-
cays from the center along radial directions and satis�es the fol-
lowing condition,

∫

Ωi
W3D

( |x−xi|
Ri

)
dx = Vo,i, (4)

so that the total mass in the in�uence region is equal to the point-
mass. In this method, particles are assigned a spherical volume
(in�uence region) with varying density, and overlapping other
particles in the domain. This is called the Spherical Particle
Method (SPM).

One may adjust the size of in�uence region and the mass
distribution of particles by employing different weight functions.
Larger in�uence radii lead to more particle overlap and spatial
gradients may be smoothed out. On the other hand, Smaller in-
�uence radii result in smaller particle volumes, making it more
difficult to interact with rays. The simplest possible weight func-
tion is

W3D

( |x−xi|
Ri

)
= 1, (5)
3
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i.e., the density is constant in the in�uent region and its volume
is the same as the nominal volume of the particle. The particles
can then be regarded as constant density spheres with a radius
determined by their nominal volumes,

Ri =

(3Vo,i
4π

)1/3
. (6)

This model will be termed the Constant Density Sphere (CDS)
model. The overall density at an arbitrary position is the sum
of density contributions from all nearby particles. Some loca-
tions may be in�uenced by more than one particle, while some
other locations may not be in the in�uence region of any particle,
i.e., there is a void in these places. Therefore, this model can-
not recover the continuous density medium as shown in Fig. 1b
and Fig. 2. Figure 1b is a small portion of the CDS represen-
tation of the 2D �eld given in Fig. 1a (if variable density were
employed, the Ri would be larger, resulting in substantial over-
lap, even in this region of few paticles). A location with lots of
void space was chosen for simplicity in Fig. 1b, and in order to
show particle locations in a plane, a 2D rather than 3D particle
�eld is depicted in Fig. 1. Figure 2 shows the density distribution
on a cross-section of a 3D CDS representation of a homogeneous
medium.

Line Ray Model In this model, a ray is simply treated as a
volume-less line and energy propagates one-dimensionally along
Copyright c© 2005 by ASME
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Figure 2. Density distribution of a CDS representation for a homoge-
neous medium

the line. This is the standard model for ray tracing in continu-
ous media. Since such rays are not designed to have a speci�c
volume, they are not able to interact with point-masses. There-
fore, this model requires volumetric particle models for radiative
transfer simulations.

Cone Ray Model Physically, a photon bundle consists of
many millions of individual photons, occupying a small solid
angle. Thus, to model the volume of a ray, we assign a small
solid angle to the ray and treat it as a cone. Energy is assumed to
propagate axisymmetrically in two dimensions, with its strength
decaying in the radial direction normal to the cone axis, similar
to the weight function assigned to particle density in Eq. (2) but
in 2D. For a ray emitted at xo into a direction given by a unit
direction vector �s, the intensity at location x in the ray can be
modeled as

I(s,r) = Io(s)W2D(r/Rc(s)), (7)

where s = (x− xo) · �s is the distance from the emission location
to a point on the ray axis, r is the distance from a point on a
plane normal to the ray axis, Io(s) is the intensity at the ray cen-
ter, and Rc(s) is the local in�uence radius of the cross-section as
depicted in Fig. 3. W2D is a normalized two-dimensional center-
4
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symmetric pro�le which satis�es

∫ 1

0
W2D(r′)2r′ dr′ = 1 and r′ = r/Rc. (8)

Again, many weight functions are possible, ranging from W2D =

1 to Gaussian decay. A popular Gaussian-like weight function is
provided here [16] as

W2D(r′) =
60
7



1
3 −4r′2 + 4r′3, 0 ≤ r′ < 1

24
3 (1− r′)3, 1

2 ≤ r′ < 1
0, r′ ≥ 1

. (9)

Since in this model the ray has a speci�c volume, volume-less
particles can be intercepted by the ray, and this model can work
together with the Point Particle Model.

2.2 Emission from a Particle
We now focus on the implementation of Monte Carlo meth-

ods for the simulation of radiative transfer in particle-based me-
dia, i.e., how photon bundles are emitted from the particle �eld,
how they are traced, and how they interact with other particles.

A small gas volume emits energy uniformly into all direc-
tions. In Monte Carlo simulations, the total energy is divided into
a number of photon bundles (rays) which are released in random
directions. In a physical gas volume, the emitted energy comes
from every point in the volume. If the medium is represented
by discrete particles, emission takes place inside these particles.
Thus, depending on the optical thickness of the particle, and the
point and direction of emission, some of the emitted energy may
not escape from the particle due to self-absorption. If the particle
is optically thin, the self-absorption of emission is negligible and
the total emission from particle i is calculated from [1]

Qemi,i = 4κρ,imiσT 4
i , (10)

where κρ,i is the density-based absorption coefficient at particle
temperature Ti, σ is the Stefan-Boltzmann constant, and mi is the
mass. If self-absorption is considered and the particle is assumed
to be a constant density sphere, the total emission from a sphere
is obtained from [1]

Qemi,i = 4πR2
o,iσT 2

i

1− 1
2τ2

o,i

[
1− (1 + 2τo,i)e−2τo,i

] , (11)

where Ro,i =
(3Vo,i/4π

)1/3 is the nominal spherical radius of par-
ticle i and τo,i = ρo,iκρ,iRo,i is the optical thickness of the spherical
Copyright c© 2005 by ASME
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volume based on the nominal radius. In the Point Particle Model,
the shape of a particle is arbitrary, but Eq. (11) is still a good ap-
proximation of total emission from such a particle. If more than
one ray is emitted from a particle, the sum of initial energy car-
ried by all rays must be equal to the total emission calculated
from Eq. (10) or Eq. (11), depending on whether self-absorption
is neglected.

2.3 Absorption Models
The basic task of simulating the absorption of a photon bun-

dle in a medium described by a point particle �eld is the evalu-
ation of the optical thickness that a ray travels through along its
way. This is achieved by modeling the interaction between the
ray and particles in its path. Based on different models employed
for rays and particles, several schemes for absorption simulation
may be obtained.

Line-SPM Scheme In this scheme, the ray is treated like a
line and the Spherical Particle Model (SPM) is employed for the
particles as shown in Fig. 1b. The contribution of particle i to the
optical thickness that ray j passes through is computed as

∆τi j =

∫

S i j
�ρi (x(s))κρ,i ds, (12)

where s is the ray coordinate as in Eq. (7), S i j is the intersection
of ray j and the in�uence region of particle i, κρ,i is the density-
based absorption coefficient of particle i at its own temperature,
and �ρi is the local density of particle i as indicated in Fig. 1b.
If the Constant Density Sphere (CDS) model is employed, the
mass of particle is distributed uniformly in its in�uence region
and Eq. (12) can be simpli�ed to

∆τi j = 2ρo,iκρ,i
√

R2
i − r2

i j, (13)

where ρo,i is the nominal density de�ned in Eq. (3), Ri is the in-
�uence radius and ri j is the distance from the center of particle i
to ray j. Since Eq. (13) has a very simple form, its implementa-
tion can be very fast.

The total optical thickness that ray j passes through is simply
the summation of the contributions from the individual particles
it interacts with,

τ j =
∑

i∈I j

∆τi j, (14)

where I j denotes all the particles intersected by ray j.
Cone-PPM Scheme If the ray is modeled as a cone, it is

possible to let it interact with point particles. The energy that a
5
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conical ray reduces when it traverses over a small distance ds in
a continuous medium is,

dE =

∫ Rc

0
κdsI(r)2πr dr = κds

∫ Rc

0
I(r)2πr dr, (15)

where κ is the local absorption coefficient, κ(s) is the plane-
averaged absorption coefficient over the cone cross-section at po-
sition s, and Rc(s) is the local radius of the cross-section. From
Eqs. (15) and (7) and (8), the plane-averaged absorption coeffi-
cient can be derived as

κ=

∫ Rc
0 κIr dr
∫ Rc

0 Ir dr
=

∫ 1
0 κIr′ dr′
∫ 1

0 Ir′ dr′
=

∫ 1
0 κW2D2r′ dr′
∫ 1

0 W2D2r′ dr′
=

∫ 1

0
κW2D2r′ dr′

(16)
Therefore, the total optical thickness that the ray passes through
along in its path S is

τ =

∫

S
κ ds =

∫

S

∫ 1

0
κW2D2r′ dr′ ds

=

∫

S

∫ Rc

0

κW2D
πR2

c
2πrdrds =

∫

V

κW2D
πR2

c
dV,

(17)

where V is the volume that the ray covers in its path.
In discrete particle �elds as shown in Fig. 3a, the absorption

coefficient is represented by a set of Delta functions,

κ =
∑

i
κiViδ(x−xi). (18)

Integrating over V yields

τ =
∑

i∈I

κiWiVi
πR2

c,i
=

∑

i∈I

κρ,iWimi

πR2
c,i

, (19)

where I denotes all the particles enclosed by the cone. For point
particles, the particle weight is a point weight in the energy dis-
tribution, i.e.,

Wi = W2D(ri/Rc,i) = W2D(r′i ), (20)

where r′i is the distance from particle i to the cone axis, normal-
ized by the local cone radius Rc,i.

Cone-SPM Scheme In the most advanced scheme, the ray
is treated as a cone, and the particle is given a speci�c shape and a
density distribution may exist in its volume, as shown in Fig. 3b.
Copyright © 2005 by ASME
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Therefore, the weight function and absorption coefficient cannot
be separated from the volume integral in the optical thickness
evaluation. The total optical thickness passed through by a ray is
obtained as

τ =
∑

i∈I
κρ,i

∫

Ω′i
�ρiW2D

(r/Rc(s))
/
πR2

c(s) dx, (21)

where Ω′i is the intersection of the particle in�uence region and
the ray, r is the distance from a location in Ω′i to the cone axis
and Rc(s) is the local cone radius at this location. Since the solid
angle of the ray is small, Rc(s) can be regarded as constant in
a single particle, i.e., the small cone segment interacting with a
particle can be treated as a small cylinder. Then, the local radius
Rc(s) ≡ Rc,i can be separated from the integral,

τ '
∑

i∈I

κρ,i

πR2
c,i

∫

Ω′i
�ρi(x)W2D

(r/Rc,i
) dx. (22)
6
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For constant-density spherical particles this reduces to

τ =
∑

i∈I

κi
πR2

c,i

∫

Ω′i
W2D(r/Rc,i) dx

=
∑

i∈I

κi
πR2

c,i

∫ rmax

rmin
W2D(r/Rc,i)Ai(r) dr,

=
∑

i∈I

κiRc,i
π

∫ r′max

r′min

W2D(r′)A′i (r′) dr′,

(23)

where r′ = r/Rc,i is the normalized distance from a point in Ω′i to
the cylinder (cone) axis. r′min is the normalized closest distance
and r′max is the farthest. All points of the same distance r′ are
part of a cylindrical shell Ai(r′) around the cone axis, and its
normalized form can be evaluated as

A′i (r′) =
Ai(r′)
R2

c,i
=

{
4r′3/2r′1/2i α1/2E(1/α), r′ ≤ R′i − r′i
8r′3/2r′1/2i

[2E(α)−βK(α)] , r′ > R′i − r′i
,

(24)
where r′i = ri/Rc,i is the normalized distance from the particle
center to the cylinder axis, R′i = Ri/Rc,i is the normalized radius
of particle i, K and E are complete elliptic integrals of the 1st and
2nd kind [17], and

α = [R′2i − (r′− r′i )2]/4r′r′i ,
β = [(r′+ r′i )2−R′2i ]/2r′r′i .

(25)
Copyright c© 2005 by ASME
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If we de�ne

fi =
1
π

∫ r′max

r′min

W2D(r′)A′i (r′) dr′, (26)

Eq. (23) can be rewritten as

τ =
∑

i∈I
κiRc,i fi. (27)

Rather than making costly evaluations during the simulation,
Eq. (26) can easily be tabulated as a function of the two dimen-
sionless parameters r′i and R′i .

3 Sample Calculations
In order to evaluate and compare the performance of the dif-

ferent schemes for Monte Carlo ray tracing in particulate media,
we consider a one-dimensional radiative heat transfer problem,
in which a non-scattering gray gas slab is bounded by two paral-
lel cold black plates which are 10 cm apart. The temperature and
density (or absorption coefficient) may vary in the x-direction.
The resulting radiative heat �ux at the boundary can be evalu-
ated analytically as [1]

q(0) = −2π
∫ τL

0
Ib(τ′)E2(τ′) dτ′

q(τL) = 2π
∫ τL

0
Ib(τ′)E2(τL −τ′) dτ′,

(28)

where E2 is an exponential integral and the optical thickness τ is
a function of x,

τ(x) =

∫ x

0
κ(x) dx and τL =

∫ L

0
κ(x) dx, (29)

and L = 10 cm is the distance between two parallel plates.
The one-dimensional medium in the problem can be simu-

lated by repeating a gas cube, each with equal side-lengths of
10 cm in the other two in�nite dimensions. A single gas cube
is then the computational domain in the Monte Carlo simulation.
The gas in the cube is represented by a number of discrete gas
particles randomly placed inside the cube. The mass of particles
may be equally-sized or have a distribution along the x-direction.
For computational efficiency, the domain is further broken up
into cubic cells, each of which contains a number of gas parti-
cles. Some of the particles are completely inside the cell, and
the others have a part of their volume reside in the neighbor-
ing cell. If the Point Particle Model (PPM) is employed, it can
ownloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of 
Table 1. Pro�les of temperature, absorption coef�cient and particle
mass

Temperature pro�les, K

const T (x) = To

linear T (x) = To + (x/L)(TL −To), TL/To = 2
sine T (x) = To + TA sin(2πx/L), TA/To = 0.5

Absorption coefficient pro�les, cm−1

const κ(x) = 0.1
linear κ(x) = 0.01 + 0.99(x/L)
sine κ(x) = 0.55 + 0.45sin(2πx/L)

Particle mass distributions

uniform m(x) = mo

linear m(x) = mo + (mL −mo)(x/L)

be assumed that all the particles are completely enclosed by the
cell, since the shape of particles is not speci�ed. However, if the
Spherical Particle Model (SPM) or the Constant Density Sphere
(CDS) model is employed, the cell contains not only the particles
with their center in it, but also parts of particles from neighbor-
ing cells. Thus, a scheme must be developed to avoid having the
ray interact with a single particle more than once, since a single
particle may belong to multiple cells.

When the Cone Ray Model is adopted for ray tracing, the
opening angle (the angle between the cone axis and the lateral
surface) needs to be chosen. Larger opening angles result in more
particles caught by the ray, requiring more CPU time per ray
but providing better accuracy. It was found that, for this one-
dimensional problem, one degree was an optimal opening angle,
which can achieve high accuracy as well as high CPU efficiency.
Therefore, for all the simulations in this paper, the opening angle
is chosen to be one degree, whenever the Cone Ray Model is
employed.

Several combinations of temperature pro�les and absorption
coefficient pro�les have been tested as listed in Table 1, with dif-
ferent cases numbered in Table 2. For each of the nine cases,
two different particle mass distributions as given in Table 1 were
tested. In the uniform distribution, the particles are equally-sized
and their random positions in the computational domain can be
readily generated as

x = ηxL, y = ηyL, z = ηzL, (30)

where ηx, ηy and ηz are three independent random numbers uni-
formly distributed in [0,1). For the linear distribution of particle
mass, the random number relation for the x-coordinate of particle
positions is no longer linear. Instead, the probability distribution
7 Copyright c© 2005 by ASME
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Table 2. Case numbering

Case (1) (2) (3) (4) (5) (6) (7) (8) (9)

T const const const linear linear linear sine sine sine
κ const linear sine const linear sine const linear sine
a

P(x) associated with particle mass distribution m(x) is inversely
proportional to m(x), i.e., P(x) ∼ 1/m(x). Therefore, the follow-
ing random number relation holds,

ηx =

∫ x

0
P(x) dx

∫ L

0
P(x) dx

=

∫ x

0
1/m(x) dx

∫ L

0
1/m(x) dx

=

∫ x

0
[mo + (mL −mo)(x/L)]−1 dx

∫ L

0
[mo + (mL −mo)(x/L)]−1 dx

.

(31)

After carrying out the integrations and rearranging, one obtains

x =
(mL/mo)ηx −1
(mL/mo)−1 L, (32)

where (mL/mo) is the mass ratio of particles at x = L to parti-
cles at x = 0. Figure 4 shows a CDS representation with a linear
particle mass distribution for a homogeneous medium.

The three absorption schemes discussed in Section 2 have
been implemented for the 1D problem and compared with the
exact solution for boundary �uxes, Eq. (28), for all nine cases.
Table 3 shows the corresponding root-mean-square (RMS) rela-
tive error of 50 simulations in each case, in which the gas cube
is represented by 10,000 equally-sized random particles each of
which emits all its energy in a single ray into a random direction.
Similarly, Table 4 gives the results for the linear particle mass
distribution. In both tables, the computational domain is divided
into 4 cells in each dimension, 64 cells in total. For all nine
cases, the same random number sequence is used in the particle
position generation as well as in the emission direction genera-
tion. As shown in the two tables, the three absorption schemes
all achieve the same level of accuracy. Comparing Table 4 to
Table 3, it is observed that the difference caused by varying the
particle masses is fairly small considering that the mass ratio is
as large as 1,000.

From the above comparisons, one may conclude that the
three absorption schemes are essentially equivalent in terms
of simulation accuracy. Therefore, in the following accuracy-
related discussions, we choose only one scheme, the Line-CDS
scheme, to show the results.
8
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Figure 4. CDS representation with linear mass distribution for a homo-
geneous medium

Table 3. Percentage RMS errors of radiative �uxes at boundaries;
10,000 particles; 1 ray/particle; 64 cells; uniform particle mass

Case Line-CDS Cone-PPM Cone-CDS
No. x = 0 x = L x = 0 x = L x = 0 x = L

(1) 1.457 1.508 1.845 1.940 1.485 1.572

(2) 1.274 1.555 1.288 1.665 1.282 1.586

(3) 1.673 1.593 1.820 1.592 1.676 1.592

(4) 2.144 1.890 3.353 1.862 1.635 1.993

(5) 1.612 2.028 1.674 1.999 1.624 2.104

(6) 1.883 1.711 3.433 1.673 2.302 1.696

(7) 1.957 2.159 1.985 3.131 2.016 1.990

(8) 1.718 1.792 1.686 2.223 1.714 1.749

(9) 2.084 2.087 2.012 2.072 2.109 2.150
Copyright c© 2005 by ASME
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Table 4. Percentage RMS errors of radiative �uxes at boundaries;
10,000 particles; 1 ray/particle; 64 cells; mass ratio: mL/mo = 1,000

Case Line-CDS Cone-PPM Cone-CDS
No. x = 0 x = L x = 0 x = L x = 0 x = L

(1) 1.896 3.378 2.231 3.776 1.956 3.113

(2) 2.795 3.671 2.823 3.772 2.776 3.633

(3) 1.863 2.234 1.989 2.243 1.816 2.089

(4) 4.050 4.332 5.138 4.403 3.606 4.501

(5) 4.584 4.740 4.700 4.803 4.510 4.863

(6) 3.748 3.990 5.274 3.926 4.181 3.930

(7) 2.174 4.412 2.062 5.574 2.217 2.723

(8) 2.398 3.647 2.400 4.131 2.385 2.945

(9) 2.377 2.487 2.217 2.566 2.335 2.361

Table 5. CPU time (in s) of a single Monte Carlo simulation; 1
ray/particle; Case (1)

Particle amount 2,000 5,000 10,000 50,000 100,000
Number of cells 23 33 43 73 83

Line-CDS 0.115 0.417 1.29 48.7 183.2
Cone-PPM 0.230 0.742 1.98 56.4 215.7
Cone-CDS 0.231 0.752 2.07 58.1 214.9

The errors of �uxes at the two boundaries are averaged and
plotted in Fig. 5 against the number of particles by which the
medium in the gas cube is represented. The particles are all of
the same size and only the result of Case (1) is provided for sim-
plicity. It is seen that the error is approximately inversely pro-
portional to the square root of the number of particles. Similarly,
Fig. 6 shows the relation of error and the number of rays that
each particle emits during the Monte Carlo simulation, given the
number of particles. Once again, the accuracy follows an inverse
square root relation.

All three absorption models achieve not only the same level
of accuracy, but also similar CPU efficiency for this 1D problem,
as shown in Table 5. The Line-CDS scheme is a little bit faster
than the other two, since a line ray interacts with fewer particles
than a cone ray, but due to the small opening angle of the Cone
Ray Model, the time difference is not very big.

4 Conclusions
For radiative heat transfer simulations using Monte Carlo

ray tracing in media represented by discrete particle �elds it is
9
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Figure 5. Averaged boundary �ux error vs. number of particles in com-
putation domain; Line-CDS scheme with one ray per particle; uniform
particle mass; Case (1)
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Figure 6. Averaged boundary �ux error vs. number of rays per particle;
Line-CDS scheme; 10,000 particles; uniform particle mass; Case (1)

important to �nd a way to model the interaction between point-
masses and photon rays. In the Point Particle Model (PPM) the
shape of particles is not presumed in order to avoid any incon-
sistency with the original particle �eld. As a result, it is lim-
ited to applications in which the ray has a shape and volume. In
the Spherical Particle Model (SPM), particles are assumed to be
spheres. As a special case, in the Constant Density Sphere (CDS)
Copyright c© 2005 by ASME
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model, the density is assumed to be constant across the entire par-
ticle volume. Although it is easy to interact spheres with a ray,
this model introduces some inconsistencies. For example, it can-
not recover continuous medium properties due to the existence
of particle overlaps and void.

In the Line Ray Model for a photon bundle, the ray is sim-
ply treated as a volume-less line and energy propagates one-
dimensionally along that line. In the Cone Ray Model, the ray
is assigned a small solid angle, and is thus treated as a cone;
energy propagates two-dimensionally. The strength of the ray
may vary across the cross-section of the cone through a given
weight function. Since the ray has a volume, it is possible to
have the ray interact with volume-less particles directly. Thus,
three schemes for the interaction between ray and particles, i.e.,
Line-CDS, Cone-PPM and Cone-CDS schemes, have been pro-
posed and examined in a one-dimensional radiative heat transfer
problem with various temperature and absorption coefficient pro-
�les. It was shown that all three schemes achieved comparable
levels of accuracy and CPU-time efficiency.
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