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In the present research work, analytical equations have been developed for design and
optimization of radial axial polarized passive magnetic bearing (PMB) with single layer
for facilitating easy and quick solution, obviating the need of costly software. Seven
design variables: eccentricity, rotor width, stator width, rotor length, stator length, clear-

ance, and mean radius were identified as the main factors affecting the design and were
thus considered in the development of analytical equations. The results obtained from the
developed analytical equations have been validated with the published results. The opti-
mization of the bearing design, with minimization of magnet volume as the objective func-
tion, was carried out to demonstrate the accuracy and usefulness of the developed
equations. [DOI: 10.1115/1.4028488]

Introduction

The contact-free operation, high rotational speeds, zero wear,
and absence of lubricant are the major advantages of bearings
made of rare-earth permanent magnets, making them an ideal con-
tender for being maintenance-free bearing. The PMB employing
rare-earth permanent magnets consists of rotor and a stator made
up of magnetic rings arranged in either repulsive or attractive
mode [1]. The arrangements of these magnets causes separation
(levitation) of the rotor from the stator and introduces the unique
advantages of contact-free operation, high rotational speeds, zero
wear, and absence of lubricant, making them maintenance-free
bearing [2,3].

The PMB is designed to support a given load subjected to the
constraints of length, diameter, etc. Design of such bearings
requires solution of complex equations, which is necessitated due
to the dependence of its performance on a large number of geo-
metric and operational parameters. The design validation of the
PMB is carried out by conducting analysis using finite element
method (FEM) [3.,4], three-dimensional (3D) numerical methods
[5,6], semi-analytical methods [7,8], and analytical methods
[9-11]. Even though the FEM and 3D numerical method give
accurate results as compared to the analytical or semi-analytical
methods, but they involve complex formulation requiring more
computational time and effort. On other hand, use of analytical
equations [9-11], which are incomplete in many ways, is difficult
to justify. The aim of the present research is to propose a simpler,
less complex, faster, and accurate method of predicting the mag-
netic levitation force and stiffness by developing analytical
equations.

Yonnet et al. [9] calculated the magnetic forces using analytical
formulae by accounting the corrective coefficient for curvature
and concluded the necessity of 3D calculations, if bearing length
is either shorter compared to air gap or lesser than the magnet
width. Paden et al. [11] provided analytical 2D expressions for ra-
dial and axial peak load/stiffness for a stacked structure radial
magnetic bearing, assuming the mean radius of the bearing much
greater than width of the magnets. In the study of Paden et al.
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[11], the width of the rotor and stator magnets were considered
equal and axial length of the magnet was much higher than the
combined length of two stacked magnets.

Yonnet et al. [10] provided an analytical expression for calcu-
lating the stiffness of the radial bearing considering radial clear-
ance, mean radius, same width and length (n), radial clearance,
and mean radius as variables. As per Yonnet et al. [10], with the
increase the stiffness by factor “In n,” the volume of the magnet
increases by n”. As per Moser et al. [3] for a given outer radius of
the rotor magnet, the maximum stiffness of bearings occurs at cer-
tain ratio of outer radii of rotor and stator.

Optimum design of magnetic bearing for given load and con-
straints requires simultaneous solution of numerical equations [7],
for maximizing force and stiffness values or by estimating the
maximum stiffness by number of simulation for different values
of parameters using FEM [3].

The use of analytical equations for the optimum design is justi-
fied only when the accuracy of the result is comparable with that
obtained by numerical methods such as FEM. Therefore, an
attempt has been made to develop analytical equations for deter-
mination of magnetic levitation force and stiffness considering
the: (i) eccentricity, (ii) rotor width, (iii) stator width, (iv) rotor
length, (v) stator length, (vi) clearance, and (vii) mean radius that
gives an accuracy matching with that arrived by using numerical
methods. The analytical equations were developed for particular
range of variable values and the result obtained were compared
with that available in literature. The minimum and maximum val-
ues were considered for defining the range of the variables after
conducting survey of literature [4,5,12—14]. Since seven variables
were considered for developing the analytical equations, the order
of the variables for developing the analytical equations were
decided based on their relative significance determined by con-
ducting statistical analysis. A basic equation was proposed and by
analyzing the trend of the variation with respect to the variable,
corrective factor was incorporated. The results obtained by
employing developed analytical equations were compared with
the established results [5,11-13,15]. The computational time esti-
mated for obtaining the solutions was found to be less than 1% of
the time taken in obtaining solution using the numerical methods.

The optimization of the design for minimization of magnet vol-
ume was carried out. The optimum design, when compared with
the conventional designs, showed a significant reduction in
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Table 1 Range of variables

Tan et al. [5] Samanta and Hirani [15] Muzakkir et al. [12] Fengxiang et al. [13] Minimum-Maximum
Ry (m) 0.01 0.01 0.005 0.0025
R2 (m) 0.019 0.016 0.024 0.0075
R3 (m) 0.021 0.019 0.025 0.0081
R4 (m) 0.03 0.026 0.05 0.0131
L (m) 0.007 0.015 0.03 0.01 0.007-0.03
1 (m) 0.007 0.015 0.032 0.01 0.007-0.032
C (m) 0.002 0.003 0.001 0.0004-0.0006 0.0004-0.003
T (m) 0.009 0.007 0.025 0.005 0.005-0.025
o 1 0.8571 0.76 1 0.76-1
R, (m) 0.02 0.0175 0.0245 0.0078 0.0078-0.0245
b 1 1 1.066 1 1-1.066
£ 0.2-0.99 0.2-0.99 0.2-0.99 0.1-0.4 0.1-0.99
magnet volume. This also substantiated the accuracy and effec- Table 3 Variables values considered for sensitivity
tiveness of the developed analytical equations.

L C T o R b H

Identification of Design Variables 0.006 000035 00045 07 0007 09 0.1

0.006 0.00114  0.01038  0.7875 0.01275 0.95 0.3
0.006 0.00193  0.01625 0.875 0.0185 1 0.5
0.006 0.00271  0.02213  0.9625 0.02425 1.05 0.7

On reviewing the literature, seven variables were identified as
main factors affecting force and stiffness. The ranges and levels
of the identified variables were determined by surveying literature

[5,12,13,15] and the same are listed in Tables 1 and 2, respec- 88(1)225 8883?5 88?338 (l)ggs 8:82425 H 8?
tively. To understand the significance of each variable, fraction 0.01325 0.00114 0.01625 09625 0.03 09 03
factorial table, as shown in Table 3 (each column represents factor 0.01325 0.00193  0.02213  1.05 0.007 095 0.5
and each row represents the level of factor), has been employed. 0.01325 0.00271  0.028 0.7 0.01275 1 0.7

The relative contribution of each variable (Cont;) on stiffness 0.01325  0.0035 0.0045 0.7875 0.0185  1.05 0.9
and force was estimated by computing the sum of squares [16] 0.0205  0.00035 001625  1.05  0.01275 1.05 0.7

0.0205 0.00114  0.02213 0.7 0.0185 1.1 09
0.0205  0.00193  0.028 0.7875 0.02425 09 0.1
0.0205  0.00271  0.0045 0.875  0.03 095 0.3
0.0205  0.0035 0.01038  0.9625 0.007 1 0.5

using Eq. (1). The force and stiffness values for particular set of
variables, specified in the Table 3, were estimated using Egs. (2)
and (5), respectively,

Sum of 0.02775 0.00035  0.02213  0.7875 0.03 109
Cont; = o1 01 SqUATEs; (1 0.02775 0.00114  0.028 0875 0007  1.05 0.1
4 0.02775 0.00193  0.0045 09625 001275 1.1 03

1

Sum of squares 0.02775 0.00271  0.01038  1.05 0.0185 09 05
=1 0.02775 0.0035 0.01625 0.7 0.02425 095 0.7
0.035 0.00035  0.028 0.9625 0.0185 095 0.7

To develop curve fit equations for force and stiffness incorpo- 0.035 0.00114  0.0045 1.05 0.02425 1 0.9
rating all seven identified variables, “one factor at a time”” method 0.035  0.00193  0.01038 0.7 0.03 1.05 0.1
was used. In this method, one variable is varied by keeping other 0.035 0.00271  0.01625  0.7875  0.007 L1 03

0.035 0.0035 0.02213  0.875 0.01275 09 0.5

variables fixed. Sequence of fitting the variables in equation was Mean 00205 0001926 0016252 0875 00185 1 0.5

decided based on the results of Eq. (5). In other words, the first
factor to be fitted needs to have the highest value of “cont” and
factor fitted at the last needs to have the minimum value of
“cont.”

To follow the proposed methodology in the present work, a per- Stator Magnet
manent magnet bearing was considered which consists of axially
polarized full ring rotor magnets arranged in repulsive mode (as
shown in Fig. 1). In Fig. 1(a), inner and outer radii of the rotor
magnet are represented as R, and R,, respectively. Similarly, “R5” R
is the inner radius of the stator, “R,” is the outer radius of the sta-
tor, “#” is the width of the rotor magnet (t=R, —R,), “T” is the
width of stator magnet (R4 — R3), “I” is the axial length of rotor,
“L” is the axial length of stator magnets, “R,,” is the mean radius

[TPRL)

of rotor outer radius and stator inner radius (R3 + R)/2, and “e” is

|
|

Rz

Table 2 Range, factors, and levels of the variables

Factors Range Level 1 Level2 Level3 Level4 Level5 ’J Rotor Magnet I

L (m) 0.006-0.035 0.006  0.01325 0.0205 0.02775 0.035 Fig. 1

Radial Magnetic bearing: (a) front view and (b) section
C (m) 0.00035-0.0035 0.00035 0.00114 0.00193 0.00271 0.0035 ! gnett ing: (a) view (b) :

side view
T (m) 0.0045-0.028 0.0045 0.01038 0.01625 0.02213 0.028
o 0.7-1.05 0.7 0.7875 0.875 0.9625 1.05 ..
R,(m)  0.007-0.03 0.007 001275 0.0185 002425 0.03 eccentricity of the rotor magnet from the center of stator magnets.
0.9-1 0.9 0925 095 0.975 1 The direction of arrows shown in Fig. 1(b) indicates the direction
e 0.1-0.9 0.1 0.3 0.5 0.7 0.9 of polarization. Literature was reviewed to decide the range
of dimensions (as listed in Table 1) of the most common
011103-2 / Vol. 137, JANUARY 2015 Transactions of the ASME
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parameters. In Table 1, C (=R; —R,) is radial clearance of the
bearing, € (=e/C) is eccentricity ratio, b (=L/l) is ratio of the
axial lengths of the bearing, and o is the ratio of width of the rotor
to stator magnet (¢/T).

The final ranges of the seven identified variables are listed in
Table 2. The maximum value of eccentricity ratio (¢) is restricted
to 0.9, as even slight contact in magnet asperities causes demag-
netization of magnet. This value of € <0.9 has been decided
based on the experience of authors. The magnetic surfaces are
rough and the manufacturing tolerance zone of the magnet is
*10 um (value obtained from manufacturing company). There-
fore, to be on safer side, € < 0.9 was considered.

To explore the contribution of various parameters (eccentricity,
rotor width, stator width, rotor length, stator length, clearance, and
mean radius) toward the calculation of magnetic force and stiff-
ness, it is necessary to conduct theoretical and/or experimental
study. In the present work, theoretical study (detailed in the sub-
section Numerical Equations for Magnetic Bearing) has been car-
ried out.

|

271 Ry

Numerical Equations for Magnetic Bearing. The radial
forces can be calculated using the following equation [5]:

4
Frad = BrlBr2 Z Zf(ﬁl]) (2)

where Br; and Br, are magnetic remanence of stator and rotor
magnets and po is the permeability of medium between the
stator and rotor; i represents face of rotor (1 or 2) and j represents
face of stator (3 or 4) as shown in Fig. 1(b). The magnetic charges
are distributed on the faces of the magnet; therefore, the total
magnetic force can be calculated by the summing the forces gen-
erated by interaction between the face charges of rotor (faces 1
and 2) and stator (faces 3 and 4). In Eq. (1), f([)’,:/-) represents
the radial force and the functions can be expressed as given in
Eq. (2) [5].

2:
ﬁ[]_

0

!

R3 Ry

where f3;; represents the axial distance between the interacting
surfaces (i.e., f13=0, fou=L—1, f3=1, and f14=L). Code for
Eq. (3) was generated in MATLAB and the results were compared
with the established literature [5,11-13,15].

The radial stiffness of the magnetic bearing can be found by
differentiating the force equation (2) with respect to eccentricity
as given in the below equation:

dF rad

Kia = de

“

The stiffness value can be calculated numerically using the central
difference technique [16]. Radial force value (F,q) was calculated
for different eccentricity ratio (e) and radial stiffness at ith location
was found using Eq. (5). The value of Ae was kept as ¢/100

- Frad,;.
2Ae

F, rad;; |

Kiagi = (5)

Results and Discussion. For analyzing the contribution of dif-
ferent factors, various levels of each factor [14] (listed in Table 3)
are used. The percentage contributions of each factor for force
and stiffness based on the calculated mean square [14] have been
represented in Fig. 2.

40
3s
30
25
T 20
15
10
s
‘o L ] [ T Rm B
® Mean Square. 151 | 179 293 1341 1721 | 2480 38.3§

(@

Ry
J (e + iz cos(0) — r3g cos(0))rarsa

<rf2 +712, + e — 2rarsa cos(0 — ') + 2e(r2 cos(0) — r34 cos(0)) + (ﬁ,-)z)

3 dl‘12d1‘34d9d0/ (3)

From Fig. 2, it can be concluded that the contribution by four
variables toward estimation of force is high (more than 11%) and
three other variables contributing lesser than 9.3%. The variables
o, H, and b significantly affect the stiffness value compared to the
force values.

Analytical Expressions for Force and Stiffness

The analytical expression for stiffness by Yonnet et al. [10] has
been given in the following equation:

2
Br;Br, (2T + C)*c? [(T +0)’+ Lz]
K =—1P2p

210 (T +¢)* [(2T +0) + LZ} (C?+12)

6)

In this expression of stiffness, 7 is width, L is axial length, C is
clearance, and R, is mean radius. Equation (6) is applicable if
thickness and length of rotor are equal to those of stator. For dif-
ferent lengths/thickness, Eq. (6) cannot be used. In addition, the
most important variable “€” is completely missing from Eq. (6).
There is need to modify Eq (6) to incorporate all important varia-
bles. In the present work, the analytical expression has been
developed which not only incorporates the variables provided in
Yonnet et al. [10] equation but also incorporates the most impor-
tant variable € and other variables o and b.

40
35
30
25

-
e

® Mean Square 7. 60 792 9. 28 ll 01 12 93 16 41 34 74

(b)

Fig.2 Percentage mean square values: (a) force and (b) stiffness

Journal of Tribology

JANUARY 2015, Vol. 137 / 011103-3

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



The initial modified equations for radial force (F,) and radial stiffness (K,) incorporating all the seven variables have been represented

[T}

in Egs. (7) and (8) by including variables “o

(ratio of stator to rotor width), “¢” (eccentricity ratio), and “b” (ratio of rotor to stator

length). Since these variables are dimensionless, they were multiplied to the variables to retain the dimension

g BB o (2Ta+ B)*B[(To + B)(T + B) + b -
o [(Toc BY(T + BY[2T e+ BT + ) + L2 (B + bL2)
K, =20Pp (2o + B)°BI(To+ B)(T + B) + bL)
L= mln ®)
2po (To+ B)*(T + B)*[(2Tec+ B)(2T + B) + L] (B* + bL?)

where f=C(1 —¢). To develop the correct equations, the results
obtained from Egs. (7) and (8) were compared with the corre-
sponding results obtained from numerical method. Subsequent to
that, least square method was employed to obtain the correction
coefficients to minimize the deviation in the stiffness and force
values.

Determination of Corrective Coefficients. Since the eccen-
tricity ratio “e” is the most contributing variable, the correction
coefficient for § was established first. The results were obtained
from numerical equation (5) and the analytical equation (8) by
varying only eccentricity value and maintaining the mean values
of remaining variables (as given in Table 4) and presented in Fig.
3(a). It can be deduced from Fig. 3(a) that K, values obtained
using numerical method and Eq. (8) match at lower eccentricity
ratio, but the error between the K, values obtained from Egs. (5)
and (8) increases with increase in €. To minimize the error, f was
modified as C(1—Ae®). The value of the coefficients A and B can
be estimated by using Eq. (9) for different eccentricity ratios vary-
ing from 0.1 to 0.9 with the interval of 0.02 and keeping the mean
values of other variables. The number of discrete points has been

Table 4 Comparison between experimental and numerical
results of Tan et al. [5]

Tan et al. [5]

H Experimental (N) Theoretical (N) Error (%)
0.4 38 20 45.71
0.55 42 28 34.28
0.7 48 37 20.47
0.8 53 45 15.52
0.9 57 53 8.94
60
551 ——Numerical Eqgn. (3)
—+—Analytical Eqn. (5)
50 L
£
z 45
&<
z 401
2
E 35¢
2
301
25
20 ; ; ; ;
0.2 0.4 0.6 0.8
Eccentricity Ratio

©)

increased from 5 to 41 points in order to get the best curve fit
solution

1 - F,’X — Jilx

where E(x) is an error function, which is to be minimized using
iterative Levenberg—Marquardt Algorithm [16], F(x) is the radial
stiffness value estimated from numerical equation, f(x) is the
radial stiffness value estimated using Eq. (8), and “n” is number
of discrete points considered for curve fitting.

The values of coefficients were found as A =0.2 and B =2. The
modified expression for C is given below:

B=C(1-02¢) (10)

The above procedure used for variable “e” was repeated for the
next significant variable, i.e., mean radius (R,,). Figure 4(a) indi-
cates close matching in the results obtained from Egs. (5) and (8)
for Ry, varying from 0.013m to 0.03 m with interval of 0.001 m
and maintaining the mean values of remaining variables. Hence,
there is no need of corrective coefficient related to variable R,.
Though the range of R, listed in Table 3 is 0.007 m to 0.03m,
x-axis of Fig. 4(a) shows variation in R,;, from 0.013 m to 0.03 m.
To check the validity at lower values of R,,, one example with the
value of Tau+C/2<0.007 was considered and corresponding
results are shown in Fig. 4(b), keeping other variables at the low-
est values. This figure indicates the close matching for all values
of R,.

Similar approach was carried out for other variables. It was
found that variables 7, C, and L do not require any correction fac-
tor, hence no need to introduce correction coefficients correspond-
ing to these three variables. In the case of variable o and b,
correction factors are required. Figure 5(a) shows the comparison

—Numerical Eqn (3)
—#=Analytical Eq (4)

- --Numerical Eqn (1) g
35  —+—Analytical Eq (5) g
Z »
:30 6%
25 53
- . o
a 20 Stiffness 4%
)
15 23 <
10 n3

5 21

0 20

0.1 0.3 0.5 0.7 0.9
Eccentricity Ratio

(b)

Fig. 3 Comparison of numerical and analytical equations for e: (a) f=C(1—¢) and (b)

B=C(1-0.2¢?)
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——Numerical Eqn (1)

12 50
—— Numerical Eqn (1) 45

10 ~—&— Analytical Eqn 4
= = -Numerical Eqn (3) 40

—&— Analytical Equ (5) 35z
308
252
203
152
102
54

Force (N)
a

) &

>
=]
(wy

0.01 0.015 0.02

Mean Radius (Rm) (m)
(b)

0.025 0.03

Fig. 4 Comparison of numerical and analytical methods for R,,: (a) mean value and (b) lowest

40 —a— Analytical Eqn (4) 5 g
= =Numerical Eqn (3) 305
35 —+— Analytical Eqn (5) ;
230 -
Ed
g 20 2
s z
£ 15 o
20 2
10 <
5 s
10 ° o Lo
0.01 0.015 0.02 0.025 0.03
Mean Radius (Rm) (m)
(a)
value
27
——Equation (7(b))
26.51 | —— Coulombian Eqn
E 26
%’ 25.5
]
g 25
%
= 245
2
g 24
235
0.7 0.8 0.9 1
o

(@

Force (N)

25 26 E:U
45 5.5g
25 B
u us%
235 u g
23 — Numerical Eqn (1) 2354
—&- Analytical Eqn 8(a) 23 ;
= = Numerical Eqn (3) Z
25 —+— Analytical Eqn 8(b) ns53
2 2~
0.7 0.75 0.8 085 0.9 095 1 1.05
a
(b)

Fig. 5 Comparison of numerical and analytical equation for «: (a) comparison for « and

(b) comparison for 0.9 T7'%* (1-0.01117'-54)

in the results obtained from the numerical and analytical equations
for o varying from 0.7 to 1.05 and maintaining mean values of
variable C, T, L, €, b, and R ,,. From Fig. 5(a), it may be concluded
that the values of “K,” obtained from numerical and analytical
equations match well for «=0.7 to 0.85, but for o > 0.85 the val-

ues starts to diverge. The K, curve related to numerical equation is
concave downward, which indicates the need of a corrective coef-
ficient for o. The general form of algebraic equation was defined
by Da”(1+GT”). The modified equation for force and stiffness is
given in Eq. (11) and obtained values are plotted in Fig. 5(b).

(1.8To%4 (1 — 0.01110754) + B)* B [(0.9T04 (1 — 0.0111a54) + B) (T + f) + bL*]*

Br,B
Fo= 2020 0R n
2y

(0.9To04(1 — 0.01112-54) + B)*(T + B)*[(1.8T®4(1 — 0.0111-54) + B)(2T + B) + L2](f* + bL2)> (o

(1.8To%4 (1 = 0.01110754) + B)F2[(0.9T04 (1 — 0.0111a54) + B)(T + f) + bL*]?

The variations in the radial stiffness using numerical and analyti-
cal equations for different values of “b” (0.9 to 1.1) have been
plotted in Fig. 6(a). From this figure, it can be concluded that the
analytical equation must be modified to account the parabolic var-
iation in the stiffness values predicted by numerical method. The
next observation is that the effect of variation of “b” is dependent
on variables “C” and “L.” From Fig. 6(a), it is observed that on
decreasing clearance and increasing L, the value of stiffness
increases. To account for this variation, a modified expression for
b in the form of parabolic equation incorporating the variables
“L” and “C” was derived. The generic parabolic equation

Journal of Tribology

m In (11b)
((O.9Tc¢0'4(l —0.01110754) + )X (T + B)*[(1.8To%4(1 — 0.01110-54) + B)(2T + ) + L2] (B + bL2)>

A, = (1—A(b—1)?) was considered so that the factor (1—A (b—1)%)
become 1 when b =1. The stiffness value is maximum at b=1
and reduces with increase and decrease in value of “b.” The final
form of the equation A, obtained from curve fit is given as
Ay =1-26(L/C)""(b—1)*. The modified final equation is
expressed in Eq. (10). In Fig. 6(b), the comparison between the
results obtained from the numerical and analytical equations is
provided.

The final radial magnetic force analytical equation for a full
ring magnet with all the correction factors is given in below
equation:

JANUARY 2015, Vol. 137 / 011103-5

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



35

i

Stiffness (kN/m)
8

-
o

—&— 1=0.0205, C=0.0035
—4— 1=0.0205, C=0.000965

30t L=%05, €=0.000965

L=0.0205, C=0.001926 1=0.035, C=0.001926

Stiffness (KN/m)

L=0.006, C=0.001926

—— Numerical Eqn. (3)
—— Analytical Eqn 9 (b)

L=0.0205, C=0.0035

10 —¢— 1. =0.035, C=0.001926
—— L=0.006, C=0.001926 1 . N
0.9 0.95 1 1.05 11 3.9 0.95 1.05 11

(@)

1
b
(b)

Fig. 6 Comparison of numerical and proposed equations for b: (a) Numerical equation (3) and

(b) analytical equation (9b)

Br,Br, L\ 5
F, = —26(=) (h—1)*|eCR,
! 2p ( <C) ( ) o

(1.8To%4 (1 = 0.01110754) + B)*F[(0.9704 (1 — 0.0111a54) + B) (T + f) + bL*]?

x In (12a)
((O.9Ta0-4(1 —0.0111a754) + B)(T + C,) (B> + bL2) [(1.8T04(1 — 0.01110=54) + B)(2T + f) + L2}>

0.7
K =208 (o 6(EY (b 1) |
2 C

(1.8To%4 (1 — 0.0111734) + B)* F[(0.9704 (1 — 0.0111a>4) + B) (T + f) + bL*]?

x In (12b)
((0.9T9¢0»4(1 —0.01110-54) + B)(T + C,) (B + bL?) [(1.8To04(1 — 0.01112-54) + B)(2T + f) + L2]>

Validation of the Proposed Analytical Equations

The developed analytical equations for force (Eq. 12a) and stiff-
ness (Eq. 12b) must be validated against the published literatures
[5,11-13,15]. The bearing dimensions considered for validation are
listed in Table 1. Four cases have been considered for verifying the
force expression (12a) and one case has been accounted to verify the
stiffness expression (12b). To provide much more meaningful results,
the dimensional eccentricity value provided in literature are repre-
sented as nondimensional eccentricity, i.e., eccentricity ratio ().

Case Study 1: Tan et al. [5] carried out experimental and theo-
retical studies on magnetic bearing for developing a hybrid hydro-
dynamic 4+ magnetic bearing. Tan et al. [S] have used numerical
equation to predict the load carrying capacity of the magnetic
bearing. Tan et al. [5] provided experimental as well as theoretical
results, as listed in Table 4. On comparing these results (third/fourth
column of Table 4), considerable deviation at lower eccentricity is
observed. Deviation in theoretical results from experimental observa-
tions decreases with increase in eccentricity ratio. As per Mukhopad-
hyay et al. [4] reason for differences in theoretical and experimental
results may be due to: (i) the direct use of the coercive force values
specified by the manufacturer and (ii) more possibility of error in
measuring small distance compared to measuring large displacement.
As in the present work, all material and geometric values have been
opted from Tan et al. [5], it was decided to compare the results of
proposed formulation with that of theoretical results provided by Tan
et al. [5]. Table 5 provides such comparison. From this table, it can
be inferred that the predicted analytical results are matching well
with the numerical results by Tan et al. [5].

Case Study 2: In the second case study, Samanta and Hirani
[15] estimated the theoretical load carrying capacity of the bearing
to be 3.2 N for the eccentricity of 22.5 um. The predicted value of
radial force using the numerical equation (2) is 3 N and by pro-
posed equation (12a) it is 3.32 N.

Case Study 3: Fengxiang et al. [13] carried out 3D FEM based
analysis to find the radial load carrying capacity for three
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difference clearance (C = 0.0004 m, 0.0006 m, and 0.0008 m) with
L=001m, b=1, T=0.005m, =1, and R4 =0.0262 mm. The
eccentricity of the shaft was varied from 0 to 0.0003 m and the 3D
FEM results along with the numerical equation and proposed
equation have been tabulated in Table 6.

Case Study 4: Muzakkir et al. [12] carried out theoretical study
using 3D numerical equation for predicting the radial load carry-
ing capacity for the magnetic bearing. The theoretical results are
tabulated in Table 7.

Case Study 5: In this case study, radial stiffness of the bearing
has been compared with established literature by Yonnet et al.
[10]. The dimensions of the bearing are C=0.001m,
L=T=0.005m, R, =0.0255m, =1, and Bry =Br, =1T. The
value of the radial stiffness estimated by Yonnet et al.
[11] =24.2 kN/m, by numerical equation (1) =24.5kN/m, and by
proposed equation (10b) is 24.3.

From above five case studies, it can be concluded that the
results obtained by employing the proposed analytical equations
are comparable with the established results and the 3D numerical
equation results.

Table 5 Comparison of Tan et al. [5], numerical, and proposed
equations

Tan et al. [5] Numerical Proposed
€ theoretical (N) Eq. (1) (N) Eq. (10a) (N)
0.08 20 20.44 20.63
0.105 28 27.56 27.6
0.14 37 37.57 38.17
0.16 45 44.5 44.77
0.18 53 51.27 51.9

Br;=125T,Br,=125T,R,=0.02m, T=0.09 m, L=0.007 m, a=1,
b=1,C=0.002 m, and eccentricity varying from 0.008 m to 0.0018 m)
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Table 6 Comparison of Fengxiang et al. [13], numerical, and proposed equations

Fengxiang et al. [13]

Numerical Eq. (1) Proposed Eq. (10a)

0.0004 0.0006 0.0008 0.0004 0.0006 0.0008 0.0004 0.0006 0.0008
Eccentricity (m) N) ™) ™N) N) ™) N) N) N) N)
0.0001 0.9 0.8 0.8 0.92 0.93 0.98 0.92 0.9 0.95
0.0002 1.8 1.5 1.5 1.92 1.58 1.63 1.88 1.569 1.59
0.0003 2.75 2.5 2.3 291 2.61 242 2.83 2.54 2.35

Table 7 Comparison of Muzakkir et al. [12], numerical, and pro-
posed equations

Muzakkir Numerical Proposed
€ etal. [12] (N) Eq. (1) (N) Eq. (10a) (N)
0.18 52 53.03 51.2
0.4 41 42.05 42.32
0.6 31 31.15 32
0.8 20 20.82 21

R, =0.0245 m, T=0.03 m, b=1.066, o =0.76, C =0.002 m, Br; =0.8
T,and Br,=1T

Optimization

The objective function in a magnetic bearing is either maximiz-
ing the load carrying capacity for the given volume or minimizing
the volume for the given applied load. Since the proposed equa-
tion (12) is fully analytical and simple, optimizing magnetic bear-
ing design will be relatively fast and accurate.

In the present work, optimization of three magnetic bearings,
dimensions of which have been published in literature [5,12,15],
have been carried out. The optimum solutions were achieved by
minimizing the volume of the magnets for the given load with
dimensional nonlinear multivariable constrains. The constraints
considered were: shaft radius (inner radius of rotor magnet) and

Ri—Ru+Ch+Tu=0
Ry—Rn—CHh—-T=0

Br,Br» AN )
Fr — —26(=) (h—1)7?*]eCR
K 2t ( <C> ( ) o

(1.8To%4 (1 — 0.0111754) + B)2[(0.9To24(1 — 0.0111054) + ) (T + ) + bL2]*

casing radius (outer diameter of the stator magnet) of the magnetic
bearing along with the require load applied on the bearing. The
bounds for the different variables were decided based on the limi-
tation of manufacturing of magnets.

The objective function is defined by the below equation:

min(Vol) = n(L(R; —R3) +(R3 —R?)) (13)

The variable Ry, R,, R3, and R4 can be defined in terms of 7, ¢, C,
and R, as given in the below equation:

Ry =Rum—Ch—1
Fo = o = (14)
Ry = Ry + C/2

Ri=Ru+Ch+T

Based on the Egs. (13) and (14), objective functions can be rewrit-
ten as

min (Vol) = n(LT(T + 2Ry + C) + It(2Ry — C — 1)) (15)

The equality constraints considering the inner radius of the
rotor magnet, outer radius of the stator magnet, and the applied
load are given in the below equation:

xIn ((0.9Toc0-4(1 —0.01110754) + B)(T + B)[(1.8To04(1 — 0.0111-54) + B)(2T + f) + L] (B* + bL?)

where R, R44, and Fy are the given inner radius of the rotor mag-
net, outer radius of the stator magnet, and the applied load consid-
ered in different literatures. The lower bounds for the variables
(t, T, and L) were considered as 1 mm due to the manufacturing,
limitations, the lower bound for the clearance were considered to
be 100 um since the surface roughness of magnets is 50 yum. The
load carrying capacity in different literatures was considered at
eccentricity ratio of 0.9. The lower and upper bounds considered
in the present case are given in the below equation:

0.001 <t
0.001 <T
0.001 <L
09<bH<I1.1
0.0001 < C
<09

a7

Journal of Tribology

) =0 (16)
|

The dimensions of the three published work [5,12,15] have been
considered for the same load carrying capacity, inner radius of
rotor, and outer radius of stator. In the present work, MATLAB has
been used for obtaining the optimum solution. In MATLAB, the
optimization has been carried out using minimization function
(fmin) and “interior trust region” method for Eq. (15). The results
obtained after optimization along with percentage reduction of
volume have been tabulated in Table 8. From Table 8, following
observation can be made: Case Study I: Tan et al. [5], not much
reduction in the volume is observed. It appears that they selected
near optimum dimensions. This can be explained by plotting the
force as a function of axial length (Fig. 7). From Fig. 7, it can be
inferred that force increases with increase in length up to axial
length = 0.008 m and thereafter increase is negligible. Selection of
axial length equal to 0.007 m by Tan et al. [5] was a good choice.
Case Study 2: similarly in the case of Muzakkir et al. [12], force
as a function of L has been plotted in Fig. 8. From this figure, it
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Table 8 Comparison of volume

Case Study 1

Case Study 2

Case Study 3

Parameters Tan et al. [5] Proposed dimension Muzakkir et al. [12] Proposed dimension Samanta and Hirani [15] Proposed dimension
C (m) 0.002 0.0026 0.001 0.0022 0.003 0.003

t (m) 0.009 0.0094 0.019 0.0130 0.007 0.0072

T (m) 0.009 0.0080 0.025 0.0298 0.006 0.0058
R, (m) 0.02 0.0193 0.0245 0.0191 0.0175 0.0173

L (m) 0.007 0.0065 0.03 0.0172 0.015 0.006

b 1 1 1.067 1 1 1

o 1 0.85 0.76 0.43 1.1667 1.24
Force (N) 51 51 48 48 3.2 32
Volume (m?) 1.583x10°° 1417 x107° 232x10°* 1292x10°* 2219%x107° 8.752x 10°°
% Reduction in Volume 10.5 443 60.6

Force (N)

1 1 1 L 1 1 1 1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Axial Length (m)
Fig. 7 Force versus L for dimensions provided in Ref. [5]
60 T T T T T
ok
40 =
)
2 30t
s
=
20t
100
% 0.005 0.01 0.015 0.02 0.025 0.03
Axial Length (m)

Fig. 8 Force versus L for dimensions provided in Ref. [12]

can be inferred that the increase in force is negligible for
L >0.015m, but the value of L selected by Muzakkir et al. [12]
was 0.03 m, hence large reduction in the volume is observed. Case
Study 3: In the case of Samanta and Hirani [15], optimum value of
L is found to be 0.006 m (Fig. 9) but they used L=0.015m. In
this case also, larger reduction in volume was noticed. Note that
this optimization was carried out by constraining the inner radius
of rotor and outer radius of stator. The results may change if the
constrains are changed and different results may be obtained.
Hence, it can be concluded that using the optimization technique a
better solution with a reduced volume was obtained.

011103-8 / Vol. 137, JANUARY 2015

Force (N)
~

0.004 0.006 0.008 0.01

Axial Length (m)

0 I
0 0.002 0.012

Fig. 9 Force versus L for bearing described in Ref. [15]

Conclusion

Analytical equations for the determination of magnetic force
and radial stiffness of PMB with a single layer of magnets have
been developed. The analytical equations include seven variables
(eccentricity, rotor width, stator width, rotor length, stator length,
clearance, and mean radius) which are commonly used for defin-
ing a magnetic bearing. Systematic procedures for finding contri-
bution by each variables and curve fit method were adopted to
obtain the analytical expressions. The developed analytical equa-
tions were validated against the numerical methods described in
literature. Due to analytical nature of the developed equations,
magnetic bearing can easily be optimized. Three magnetic bear-
ings were optimized and appreciable saving of magnet volume
was indicated. It can be concluded that with the use of the pro-
posed analytical equations magnetic radial bearings can easily be
designed with much lesser efforts. In other words, the developed
analytical equations will be an aid to designers.
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