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Design and Evaluation of 
Frequency Weighted LQG— 
Maximum Entropy Controllers on 
an Experimental Truss Structure 
This paper will discuss the experimental evaluation of a structural control system 
designed using a combination of Frequency Weighted LQG and Maximum Entropy. 
The experimental implementation was performed on an experimental truss structure, 
the Sandia Truss, which is described in the paper. The control design model was 
obtained via experimental system identification using the eigensystem realization 
algorithm with data correlation. The control design used frequency weighting to 
stabilize the unstructured uncertainty of the system due to low signal-to-noise and 
uncertain system dynamics in various frequency ranges. Maximum entropy is used 
to provide robustness for structured uncertain system dynamics within the controller 
bandwidth. The experimental implementation of the controllers designed with this 
approach show the ability to design controllers with a specified bandwidth, gain 
.Uabilization of unstructured uncertainty, and robustness to structured uncertainty 
within the controller bandwidth. 

1 Introduction 
Active control of structural vibrations is attaining increased 

importance in the design and proper operation of manufacturing 
as well as aerospace systems. The design of controllers for 
systems with significant structural flexibility presents a chal
lenge because of the high order uncertain system dynamics 
and the multiple input/multiple output (MIMO) control laws 
required for some applications. There have been many optimal 
robust control methods (Maciejowski, 1989 and Hyland et al., 
1993) developed for the design of MIMO robust control laws; 
however, there appears to be a significant gap between the 
theoretical development and experimental evaluation of control 
and identification methods to address structural control applica
tions. 

The linear quadratic gaussian (LQG) control method was 
developed thirty years ago and is capable of designing MIMO 
control laws. However, LQG controllers designed with white 
disturbance and sensor noises do not produce satisfactory results 
(Doyle, 1978), due to the infinite controller bandwidth and 
sensitivity to control model errors. Augmenting the model of 
the system dynamics with frequency weighting filters for the 
disturbance, sensor noise and control signal was proposed by 
Gupta (1980) to obtain a frequency weighted LQG (FWLQG) 
method. The FWLQG method can be used to design loopshap-
ing controllers which gain stabilize unstructured system uncer
tainty. Safonov (1981) also suggested the use of colored noises 
in LQG design to obtain robustness in the control law. Opde-
nacker et al. (1990) describes the application of FWLQG to a 
one bay truss structure which had three dominant modes in the 
performance output and several less significant modes in the 
system dynamics, which was modeled for control design pur
poses by the finite element method. The experimental study in 
Opdenacker et al. (1990) produced stable but overly conserva
tive control systems which limited the system performance. 

Maximum Entropy (ME) is a method of modeling structured 
parameter uncertainty via a stochastic multiplicative white-
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noise process. This approach allows the performance/ro
bustness trade-off to be determined by a quadratic cost function. 
Maximum Entropy specifically addresses real valued parameter 
uncertainties which are significant in the design of structural 
control systems. Maximum Entropy necessary conditions for 
optimality (Bernstein and Greeley, 1986) result in two Riccati 
and two Lyapunov equations which are coupled by the stochas
tic parameters. Solutions to the coupled Riccati and Lyapunov 
equations can be obtained by homotopy methods (Collins et 
al., 1994). Experimental evaluations of decentralized ME con
trollers are reported in Collins (1991 and 1992). 

The purpose of this paper is to explore the use of Frequency 
Weighted LQG in conjunction with Maximum Entropy for the 
design of disturbance rejection controllers on an experimental 
truss structure. The frequency weighting will allow gain stabili
zation of the system dynamics in frequency ranges where there 
is unstructured uncertainty due to low signal to noise ratio 
(SNR) or high uncertainty in the system dynamics. Maximum 
entropy will be used for enhanced robustness of structured un
certainty due to uncertain system dynamics within the controller 
bandwidth. 

The paper is organized as follows. Section 2 discusses the 
experimental truss structure and describes the control design 
problem. Section 3 discussed the experimental system identifi
cation which was performed to obtain a control design model 
for the system. Section 4 will present an overview of the control 
design methods used in this study; and, Section 5 will present 
the experimental control implementation results. Section 6 will 
summarize results and offer conclusions. 

2 System Description and Control Design Require
ments 

To evaluate and demonstrate the effectiveness of the experi
mental system identification and robust control design tech
niques, we focused on an experimental program which utilized 
the Sandia Truss as a controlled structure test bed. The Sandia 
Truss is shown in Fig. 1, and, an instrumentation schematic is 
shown in Fig. 2. The truss is constructed from 1 in. diameter 
polycarbonate tubing bonded to polycarbonate blocks at the 
truss nodes. The truss is " F " shaped with five vertical bays 

372 / Vol. 119, SEPTEMBER 1997 Transactions of the ASME 

Copyright © 1997 by ASME
Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Fig. 1 The Sandia truss 

providing the length and two horizontal bays at the top. Each 
bay is approximately one foot cube. Bolted to the surfaces of 
two bays are 0.5 in. polycarbonate plates stiffened with 0.5 in. 
thick ribs. The entire truss is cantilevered from a 2000 Ibm 
seismic mass which in turn is supported on air bags to isolate 
the structure from high frequency base vibrations. 

Eight feedback sensors are utilized to sense the axial strain 
in the diagonal struts of the bottom two bays of the truss. The 
sensors are made of polyvinyldene fluoride (PVDF) and are 
bonded directly to the tubes. These sensors are capable of de
tecting strains on the order of 10 nanostrain. Charge amplifiers 
are used as signal conditioners. 

The feedback actuators are constructed out of a piezoelectric 
ceramic, lead magnesium niobate (PMN). The PMN actuators 
were fabricated in split rings to allow for the actuators to be 
applied after the construction of the truss. The PMN actuators 
apply an axial strain to the strut. They are driven by high gain/ 
bandwidth amplifiers capable of providing the DC offset neces
sary for the PMN actuators. The use of wide bandwidth ampli
fiers is a major change from a previous study (Allen et al., 
1990) in which the amplifier bandwidth extended to only 120 
Hz. Four actuators are located on the diagonal members of the 
bottom bay of the truss. 

The disturbance actuators are made out of PVDF and are 
identical to the feedback sensors. They are located on the axial 
struts of the second bay. Like the feedback actuators, the distur
bance actuators apply axial strains to the struts. 

The controllers were implemented by a digital controls pro
cessor. The processor is capable of implementing a 32 state 
controller with eight inputs and eight outputs while operating 
at a fixed sampling rate of 50 kHz. The effective tranisport delay 
across the processor, including zero order hold effects, is 35 fi 
seconds. To obtain the minimum delay, the processor imple
ments a block-diagonal state-space form of the controller. The 
principle limitation of this digital processor is that it is incapable 
of directly implementing a controller in state space form which 
requires a through-put matrix. When required, the throughput 
matrix is approximated by including high-frequency real poles 
in the state transition matrix. 

The performances minimized in this study were the x, y, z 
accelerations at the center of the plate on the top outboard Isay. 

The performances are directly measured using high sensitivity 
piezoelectric accelerometers. The performances are used to 
evaluate the effectiveness of the controllers but are not used for 
control feedback. 

The control design objective for this system can be stated as 
follows: 

• Minimize the elastic response of the system at the perfor
mance locations (i.e., x, y, z response of the plate at the 
top outboard bay) in the frequency range of 10-120 Hz, 
while satisfying the following criteria: 

• Maintain system stability and performance in the face 
of high frequency uncertain or unmodelled dynamics. 

• Do not excite the low frequency suspension dynamics 
of the system ( < I 0 Hz) whose dynamics are poorly 
characterized. 

3 Experimental System Identification 
Structural systems provide a significant challenge to system 

identification algorithms due to high order, high modal density, 
widely varying damping factors, and multiple inputs and out
puts. Finite element models (FEM's) have a great difficulty 
producing models which are accurate beyond the first few global 
modes of the system, due to the modelling assumptions that 
must be made by the analyst, and the inability to apriori model 
some phenomena (i.e., joint stiffness and damping). Because 
of the added difficuUy of updating FEM's, this study aimed at 
directly estimating analytical models from test data. The method 
used for estimating the dynamics of the system was the Eigen-
system Realization Algorithm using Data Correlation (ER-
ADC) (Juang, 1988), which extracts a model in a discrete state-
space form. 

For the system identification experiments, the first objective 
was to obtain input/output data from which a model could be 
extracted. ERADC operates on impulse response functions 
which were estimated by taking the inverse Fourier transforms 
of frequency response functions (FRF's). In esfimating the 
FRF's, all eight actuators simultaneously excited the truss with 
uncorrelated burst random excitation. All of the actuator inputs 
and sensor response signals were simultaneously measured. 
FRF's were measured over the bandwidth of 0 to 200 Hz with 
a frequency resolution of 0.125 Hz/spectral line. No weighting 
windows were applied to the data. Additionally, a second FRF 
data set was acquired over the bandwidth of 0 to 25 Hz with a 
resolution of 0.0156 Hz/spectral line. Because of the presence 
of unmeasured external disturbances and the large number of 
inputs, an extremely high number of ensemble averages (200) 
were used in estimating the FRF's. The FRF's were calculated 
using the //„ estimator (Rocklin et al., 1985). 

Performances (3 channels) 

Disturbances (3 channi 

Actuators (4 channels] 

DC Power 
Amplifiers 

DC Power 
Amplifiers 
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Charge 
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Fig. 2 Sandia truss instrumentation scliematic 
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Fig. 3 FRF and multiple coherence function 

In the course of estimating FRF's, we also estimated multiple 
coherence functions (Bendat and Piersol, 1986) and autospec-
tra. These functions were useful in assessing the quality of the 
measured FRF's and determining the source of errors. Plotted 
in Fig. 3 are a FRF and a multiple coherence function. The FRF 
is noisy below 15 Hz, which corresponds to the low value of 
the multiple coherence function over this same frequency range. 
The noisy estimate of the FRF over this range is due to the low 
level of response of the structure due to the applied disturbances 
and the relatively high level response of the suspension modes 
due to unmeasured floor vibrations. This observation is further 
substantiated by comparing autospectra of one of the sensors 
with and without the artificial disturbance activated as shown 
in. Fig. 4. Below 15 Hz, the two autospectra have similar ampli
tudes which implies that most of the response over this band is 
due to the unmeasured disturbances. 

Due to the noisy estimate of the FRF's over the low fre
quency band, the resultant models from any system identifica
tion technique would be substantially in error over this band. 
Because of the error in the model and the presence of unmea
sured disturbances the low frequency range provides a challenge 
to the control design. 

One of the challenges of employing system identification 
techniques like ERADC is estimating the order of the system. 
The principle approach is to select the order by observing the 
singular values of the system correlation matrix. Ideally, the 
correct order is determined from a sudden drop in the magnitude 
of the singular value plot. Unfortunately, because of the pres
ence of nonlinearities, residual flexibilities, and marginally ob
servable and controllable modes, the system order is seldom 
readily apparent. The main tool used for order determination in 
this study was the complex mode indicator function (CMIF) 
(Shihet al„ 1989). 

40 60 
Frequency - (Hz) 

Fig. 4 Autospectra with and without artificial disturbance 

Experimental Model 
Analytical Model 

0 50 100 1B0 200 
Frequency (Hz) 

Fig. 5 Comparison of CIVIIF's from measured data and analytical model 

The CMIF's, which are used extensively in robust control 
design, are the singular values of the FRF matrix as a function 
of frequency. The peaks of the CMIF occur at the same frequen
cies as the system resonances. Multiplicity of roots is indicated 
by peaks in the secondary and tertiary CMIF's; therefore, the 
system order can be determined simply by counting the peaks 
in the CMIF's over the bandwidth of interest. Because of the 
first order form of the extracted model, the system order is twice 
the number of peaks in the CMIF's. 

In performing ERADC analysis the correlation matrix size is 
selected to be significantly larger than the estimated system 
order to account for noise, nonlinearities, etc. System order, 
length of time records, and matrix size are varied and conver
gence of parameters is observed. In particular, the eigenvalues 
of the system should correspond to the peaks in the CMIF, and 
the damping ratio values should stabilize with increasing matrix 
size, system order and length of time record. As a single figure 
of merit to determine the accuracy of a derived model, CMIF's 
of the measured FRFs and analytical FRFs, calculated from the 
realized model, can be compared. 

System models were estimated in using the ERADC algo
rithm as coded in the NASA System Identification toolbox (Ju-
ang, 1991). The model was estimated over the frequency range 
of 0 to 200 Hz. Additional analyses were performed for higher 
resolution/signal-to-noise analysis band of 0 to 25 Hz. Shown 
in Fig. 5 is a comparison of the CMIF's for the measured and 
analytical FRF's calculated from the experimentally derived 
model. The CMIF's are in excellent agreement up to approxi
mately 150 Hz. Above 150 Hz the modal density of the structure 
is extremely high principally due to local modes of the individ
ual struts. Additionally, the "rigid-body" modes, less than 5 
Hz, are not well characterized. The principal reason is that 
contribution of these modes to the response matrix is a result 
of external unmeasured inputs and not related to system inputs. 
These modes are marginally observable and controllable and 
are poorly characterized by the all of the system identification 
techniques employed. 

The full order system model contained 54 states. Because of 
instrumentation problems, the final system model consisted of 
seven inputs (four control actuators and three disturbances) and 
ten outputs (three performance measures and seven feedback 
sensors). The dynamics of the truss consist of lightly damped 
(~0.5 percent) modes up to (~120 Hz). The structure has a 
discrete modal nature up to ~ 150 Hz. Above 150 Hz the dynam
ics become very dense and dominated by many localized modes 
of the truss. The suspension modes of the isolation mass are at 
low frequency ( ~ l - 3 Hz). The low frequency range also has 
poor signal to noise characteristics due to the ambient floor 
vibration. 

4 Control Design Methods 
In this section, frequency weighted LQG and Maximum En

tropy will be reviewed. As a prelude to the discussion of fre-
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quency weighted LQG, LQG with cross weighting terms will 
be reviewed to establish definitions and nomenclature. Only the 
main results of LQG will be stated, more complete details can 
be found in Maciejowski (1989). 

4.1 LQG Theory. The problem addressed by LQG theory 
is the following. Given a system and associated model, Fig. 6 
and Eq. (1) , respectively, design a compensator of the form 
shown in Eq. (2) , where u, v, w, x, x^, y, z are the control 
signal, sensor noise, disturbance, system state, compensator 
state, performance and sensor vectors, respectively. 

X = Ax + B„M + B„w 

y = Cx + D„M + D„w :System Dynamics—Go (1) 

z. = Mx + N„M + N^w + V 

Xc = AcXc + BcZ 
:Compensator—K (2) 

The signals w and v are white zero-mean gaussian sto
chastic processes which have the following covariances 
£{ww''} = V, E= 0 £•(1)1)''} = Vj > 0 £ { W D ' ' } = V , 2 . 

The problem is to find a control law which minimizes the cost 
function shown in Eq. 3, where Ri = R [ a 0, R2 = Rf > 0, 
and R|2 are weighting matrices. 

hm E- {x'^RtX 
Jo 

+ u^RiU + 2y''R,2u)dt\ (3) 

The solution to the LQG problem is prescribed by the separation 
principle, which solves the problem in two uncoupled steps. 

• Obtain an optimal estimate, x, of the state x such that 
E[{x - x) {x - x)] is minimized. The solution to this 
problem is given by Kalman filter theory (LQE). 

• Use the state estimate, i , as if it were an exact measure
ment of the state to solve the deterministic linear quadratic 
regulator (LQR) problem. 

The solution to the LQE and LQR problems each involve 
the solution of an algebraic Riccati equation. The Kalman-filter 
gain matrix F is given by Eq. (4) in which Q is the solution 
of the Riccati Eq. (5) , where A = A - B„V,2V2'M and V, 
= V i - V,2V2^'V[2. 

F = (B„V|2 + Q M T ) V 2 " ' : L Q E Gain (4) 

QA"^ + AQ - QM^Va'MQ + B„V|Bj = 0 

: L Q E Riccati (5) 

The optimal state feedback matrix, G, of the LQR problem is 
given by Eqs. (6) and (7), where, A = A - B„Rj'R|2 and 
Ri = Ri — R12R2 Ri2' 

w-

c 
— • 

(^ 

Go 

K 

( j ^ 

- • Y 

^ z 

-*-z 

Fig. 7 Frequency weighted system scliematic 

G = -R2' '(Ri2 + BJ'P) :LQR Gain (6) 

A'rp -F PA - PB„R2~'BjP -F R, = 0 :LQR Riccati (7) 

The matrices for the compensator designed by the LQG proce
dure which is of the form shown in Eq. (2) are given in Eq. 
(8). 

A, = A -H BuG - F ( M + NuG) 

Be = FM 

Q = G (8) 

The LQG development is based on optimization methods 
with a specified model form. The closed loop system behaves 
well under the following conditions 

• The model is valid for all values of inputs and states and 
the dynamics are well described at all frequencies. 

• The Kalman filter design also assumes that the dynamics 
are known equally well at all frequencies. This may also 
make combination of the Kalman filter and the LQR con
trol law extremely sensitive to errors. 

• The optimality of the Kalman filter is strongly dependent 
on the accuracy of the noise statistics. 

The experience with LQG controllers designed with white 
noises have not been completely satisfactory (Doyle, 1978). 
There are no explicit ways in the technique presented above 
to design a controller with a specified bandwidth or stability 
margins. 

4.2 Frequency Weighted LQG Theory. An effort to 
correct some of the problems associated with LQG theory have 
been implemented through the use of colored noises and fre
quency dependent weighting in LQG formulation. Gupta (1980) 
presented a method of incorporating frequency dependent cost 
functions into basic LQG theory. A formulation for Frequency 
Weighted LQG (FWLQG) which incorporates the methods pre
sented in references Gupta (1980), Safonov (1981) and Opde-
nacker et al. (1990) is presented here. 

Figure 7 shows a schematic of a system which has a control 
signal weighting filter, G„ and noise coloring filters Ga and G, 
appended. Go and K are as defined previously. The state space 
matrices corresponding to the weighting and coloring filters are 
defined below. 

G„—Control Weighting Filter: 
A, 
C„, 

G,—Sensor Noise Coloring Filter: 
As B, 

Cs D, 

Gil—Disturbance Noise Coloring Filter: 
Ad Ba 

Cd D„ 

Fig. 6 System schematic 
The rationale behind the definition of inputs and weightings are 
as follows. 
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• The external disturbance that the control system is to 
reject is the white noise disturbance w colored by Gj. 

• The white noise disturbance w„ is used to enhance stability 
margin at the input. The intensity of this noise can be 
physically interpreted as uncertainty in the actuator. 

• The measurement noise v is colored by G, to simulate 
physical sensor noise or possible model uncertainty. 

• The filtered control signal, /u, can be used to penalize 
control effort outside the frequency range of interest. 

The augmented system equations are shown below. The out
puts in Eq. (10), y and fi are the performances to be minimized 
and frequency weighted control signal respectively, which are 
in the cost function for FWLQG, Eq. (12). The signals w, w„, 
and V axe white zero-mean gaussian stochastic process with 

Eiww^ =W s^O E w„wl} = U > 0 E{ V > 0 

X 

X,i 

J^jJ^ 

= 

B„Cd 
Ad 
0 
0 

0 
0 
As 
0 

0 
0 
0 
A„ 

X 

X,i 

X,, 

/ i _ 

-1-

Bu 
0 
0 

LBJ 
BwDd 

Bd 
0 
0 

Bu 
0 
0 
0 

0" 
0 
Bs 
0 

r- -1 
W 

w,. 
V 

(9) 

C 0 0 0 

0 0 0 C„ 

Z = [M 0 Cs 0] 

D,. 

X,i 

X, 

_x^ 

u + 
0 

0 0] 

0 oj 

w 
Wu 

V 

(10) 

+ [N„]M 

-H [N„ N„ D,] 
w 

V 

(11) 

For this design method the cost function to be minimized is 
shown in Eq. (12). The two terms that are included in the cost 
function are y (the performance to be minimized) and pi, (the 
frequency weighted control signal). Where Q = Q^ s: 0 and 
R = R^ > 0 are weighting matrices. 

il J = hm E\ iy'Qy + i/-RiJL)dt (12) 

The augmented system matrices and the following weighting 
matrices can be used with the basic LQG solution shown pre
viously. 

R, 

C^QC 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 ClRC„ 

V, 

R, = DJRD„ 

W O O 
0 U 0 
0 0 V 

R|2 — 

Vj, = V 

0 
0 

V] V,2 = 
0 
0 
V 

(13) 

(14) 

4.3 Maximum Entropy. Maximum entropy permits the 
design of robust controllers with respect to structured parametric 
uncertainty to be determined by the quadratic cost functional. 
Given a nominal linear system modeled in state space form 
(e.g., Ao, Bo, Co, Do), the parametric uncertainty can be mod
eled with a set of parameter uncertainty matrices (e.g., AA, 
AC, AM, . . . etc.). For example, assuming the parametric 
error is associated with modal frequency or damping, the only 
parametric error matrices necessary are for A (i.e., AA); how
ever, if these errors are independent or arise from different 
sources, parametric error matrices can be defined for each 
source of uncertainty, AAj. The uncertain dynamics of the sys
tem can be expressed as shown in Eq. 15, where «,(?) is a 
zero-mean multiplicative white noise process with n uncorre-
lated error sources. 

A = Ao + X a,(OAAi (15) 

With the addition of the multiplicative white noise, the first 
order state space form of the system dynamics, Eq. (1), become 
as shown in Eq. (16). 

(Ao + X a,(r)AAi)A- + B„M -I- B„ (16) 

Once the system dynamics are represented with stochastic 
differential equations, as shown in Eqs. (17) and (18) the neces
sary conditions for optimality can be derived (Bernstein and 
Greeley, 1986). The resulting necessary conditions take the 
form of two Riccati equations and two Lyapunov equations, 
coupled by the stochastic parameters. The separation principle 
which is a foundation of LQG design is invalid in the presence 
of the parametric uncertainty expressed by maximum entropy. 

dx = (Asdt + X dai(t))x + B„M + B„w (17) 

As = Ao -f ^ X AAi (18) 

The coupled set of two Riccati and two Lyapunov equations 
can be solved using homotopy methods. Homotopy methods 
are used to solve problems of the form: Given sets 0 and <& 
contained in !)t" and a mapping F: @ => $, find solutions to 
F(@) = 0. Homotopy methods embed F ( 0 ) = 0 in larger 
problem H(&(k), \) = Q for \e[0, 1], in which / f ( 0 ( l ) , 1) 
= F ( 0 ) and / / (0 (O) , 0) = 0. The homotopy method is an 
algorithm to compute the curve ( 0 ( \ ) , X) such that a known 
initial solution 0 (0 ) is transformed to a desired solution 0 ( 1) 
which satisfies F ( 0 ( 1)) = 0. A Matlab toolbox (Collins et al , 
1994) has been developed to implement the homotopy solution 
methods for Maximum Entropy robust control design of LQG 
controllers. 

5 Sandia Truss Experimental Control Implementa
tion 

5.1 Control Design Modelling and Analysis. The model 
of the Sandia Truss used for control design was a 32 state 
truncated version of the 54 state ERADC model described in 
Section 3 in which the very uncertain high frequency dynamics 
above 150 Hz have been truncated. Figure 8 shows a compari
son of the actuator—sensor channels for the two models. The 
low frequency dynamics of the suspension were retained in the 
control design model even though they are very uncertain and 
are in a region of low SNR. 

The structured singular value, )i, was used in the control 
design process to analytically evaluate the robust stability of 
different control designs. Maciejowski (1989) provides a brief 
overview of the structured singular value, p, and its properties. 
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32 State Model 
Wadd 
Wio 

• 54 State Model 

Table 1 Frequency weighted LQG design summary 

Frequsncv - (Hz) 

Fig. 3 IVIaximum singular value of the actuator—sensor channels of the 
54 state and the 32 state control design model 

In the definition of fj., there is an underlying structure. A, which 
for robust stability analysis depends on the uncertainty model 
of the system. The uncertainty model of the system. A, is in a 
feedback loop with the system dynamics. Go, and may have 
structure which correspond to different forms of uncertainty 
(i.e. additive uncertainty due to unmodelled dynamics or multi
plicative uncertainty in the modeshapes at the sensor or actua
tors, etc.). Robust stability is achieved if stability is guaranteed 
for all allowable A's. Alternatively, the //oo norm could be used 
via the small gain theorem as a measure of robust stability; 
however, if A has structure this approach can be quite conserva
tive. The structured singular value, /i, takes the structure of 
the perturbation into account and provides a less conservative 
measure of robust stability. The structured singular value which 
is a matrix function is defined for a complex matrix, MeC""" 
by Eq. (19). The stability boundary is at ^ = 1. 

M ( M ) ^ 
1 

min {a(A);(det (I - MA) = 0)] 
(19) 

The uncertainty model. A, used in the robust stability analysis 
of the Sandia Truss consisted of three blocks: additive uncer
tainty, input, and output multiplicative uncertainty. The additive 
uncertainty weight, Wadd, which is shown in Fig. 8, envelops 
the unmodelled dynamics of the system. The input and output 
multiplicative uncertainty, Wi„, was modeled as a frequency 
dependent weight with 50 percent uncertainty for frequencies 
<3 Hz and 5 percent uncertainty for high frequency as shown 
in Fig. 8. Therefore, the uncertainty model. A, used in the robust 
stability analysis has structure; and, A consists of 3 blocks (i.e. 
additive uncertainty, input multiplicative, output multiplica
tive). 

5.2 Frequency Weighted LQG (FWLQG) Controllers. 
A series of FWLQG controllers of increasing control authority 
were designed for the initial phase of the study. The purpose 

Name 
nomi 
nom2 
nom24 
nom27 
nom27me2 

Design Information 

w„ 
note 1 
note 1 
note 1 
note I 
note 1 

Q 

Q«2 
Q*2.4 
Q*2.7 
Q*2.7 

ME 
none 
none 
none 
none 
note 2 

Robust Stability - n 

Kso 
0.47 
0.87 
1.08 
1.13 
0.58 

^32 
0.48 
0.92 
1.09 
1.10 
0.63 

Comments 
K stability 
stable 
stable 
stable 
unstable 
stable 

System stability^ 
stable 
unstable 
unstable 

stable 
note !; See Figure 9. 
note 2: 2% frequency uncerlainty in 10-150 Hz modes, 
note 3; experimental assessment of stability 

of this series of designs were to find the limits of system stability 
and performance. The control signal weight, G„, was a diagonal 
4-input/4-output, 48 state frequency dependent matrix which is 
appended to the control design model. The diagonal entries in 
the control signal weight, G„, was a band-stop butterworth filter 
shown in Fig. 9. The high frequency break point of G„ was 
chosen to gain stabilize the high frequency unmodelled dynam
ics of the system (>150 Hz). G„ was shaped to reduce the 
system loop gain rapidly in the frequency range 120-150 Hz 
while the system dynamics are still discrete and reasonably well 
modelled. The low frequency break point was chosen to stabi
lize the poorly characterized suspension modes and prevent the 
propagation of noise in the control loop due to the poor SNR 
in the low frequency range (<10 Hz). Previous control design 
studies on this system indicated that coloring of disturbance, 
G,i, and sensor, G„ noises was difficult to use in addressing 
uncertainty without significant loss of system performance. 
Therefore, the disturbance, w, and actuator, w„, noises were 
white with covariances of 3 and 0.5. The sensor noise, i;, was 
chosen to have a covariance 0.01 of the sensor covariance due 
to w and w„. 

Table 1 summarizes the four frequency weighted LQG de
signs (Noml, Nom2, Nom24, Nom27) with increasing control 
authority which are denoted in table 1 by multiplication of the 
state weighting matrix, 2 , by a scalar of increasing magnitude 
(e.g. Q*2). The robust stability fi for these designs are shown 
in the table. Reduced order 32 state controllers suitable for 
implementation were obtained by a balanced truncation of the 
80 state full order controller, (Moore, 1981). The response of 
the 120 Hz mode was most affected by controller reduction. 

The design Noml yielded a stable compensator, K, which 
also produced a stable closed loop system on experimental im
plementation. As control authority was increased, the closed 
loop system was unstable experimentally. The highest authority 
controller, Nom27, also had an unstable compensator, K. 

Figure 10 shows that robust stability degrades (i.e., fj, in
creases) as control authority is increased for the FWLQG de
signs. /Lt for the Noml controller is well below 1 at all frequen
cies; however, /j, for the Nom27 controller is > 1 for two fre
quencies in the controller bandwidth, which indicates that the 

Fig. 9 Control signal frequency dependent weighting, G„ 
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Fig. 10 Robust stability n for 32 state LQG controllers using frequency 
welgiiting and maximum entropy 
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Nom27CFull order) 
Nom27(reduced order) 
Nom27me2(reduced order) 
Noml(Full order) 

Freauencv • fHzl 
100 120 140 

Frequency - (Hz) 

Fig. 11 Maximum singular value plots for LQG controllers, K, using Fig. 13 Comparison of FWLQG and FWLQG/ME experimental closed-
frequency weighting and maximum entropy loop performance with a perturbed control design model 

boundary of stability has been crossed. Figure 11 shows a maxi
mum singular value plot for several of the controllers, K, dis
cussed. This figure shows that controller reduction of Nom27 
reduced the roll-off at low and high frequency with little effect 
in the control bandwidth. Due to the nature of the frequency 
weights used in the FWLQG designs, the controllers have a 
bandpass nature. 

5.3 Frequency Weighted LQG With Maximum Entropy 
(FWLQG/ME) Designs. Several formulations of maximum 
entropy were studied and designed; however, the controller re
ported here is Nom27me2. This controller used the same control 
signal frequency dependent weighting and authority as Nom27; 
however, frequency uncertainty for the in-band modes from 10 
to 120 Hz was incorporated in the ME design. The FWLQG/ 
ME controllers were calculated with homotopy algorithms using 
the FWLQG designs with no uncertainty for the in-band dynam
ics as the starting point. The ME controller Nom27me2 is stable; 
and, the closed loop system was stable with better performance 
than Noml. Maximum entropy produced a more robust and 
stable controller than the FWLQG controller without ME. 

Also, ME had the effect of lowering the in-band gain, reduced 
the roll-off rate at low and high frequency, and produced a 
stable controller as well as a stable system. Analytically 
Nom27me2 also has better robust stability properties than 
Nom27, Fig. 10. The gain of Nom27me2 is greater than Noml 
and produced significantly better performance. Figure 12 shows 
the closed loop experimental performance for the Noml and 
Nom27me2 controllers. 

5.4 Structured Uncertainty Experiment. In order to ex
perimentally study the effect of maximum entropy on structured 
uncertainties, the frequency of the 45.9 Hz mode in the control 
design model was perturbed. This produced a mismatch in the 
system dynamics at 45.9 Hz between the model used to perform 

100 120 
Frequency - (Hz) 

180 200 

Fig. 12 Disturbance-performance maximum singular value plots for 
LQG controllers using frequency weighting and maximum entropy 

control design and the actual system dynamics. Then a FWLQG 
controller was designed using the same weighting's as the 
Nom27 controller which was analytically stable. The magnitude 
of the frequency perturbation was increased until the closed 
loop system was unstable. 

Figure 13 shows the experimental closed loop performance 
for the FWLQG controller (P30) with the maximum frequency 
perturbation which still produced an experimentally stable 
closed loop system. Figure 13 shows that the 45.9 Hz mode is 
destabilized. 

Now a FWLQG/ME controller (P30me) was designed which 
incorporated frequency uncertainty for the 45.9 Hz mode into 
the control design. Figure 13 shows the experimental closed 
loop performance for the FWLQG/ME controller, which stabi
lized the 45.9 Hz mode and improved system performance. 

6 Summary and Conclusions 
This study evaluated the abilities of system identification 

using the eigensystem realization algorithm with data correla
tion (ERADC) and control design using frequency weighted 
LQG (FWLQG) and maximum entropy (ME). 

A full order (54 state) control design model was identified 
using ERADC. The control design model was quite accurate in 
the frequency range of 10-150 Hz. However, above 150 Hz 
the system dynamics became quite dense due to localized dy
namics of the truss. Below 10 Hz the dynamics were poorly 
identified due to significant unmeasured disturbances during the 
measurement of the system frequency response functions. 

FWLQG was shown to be capable of control design with a 
specified bandwidth and gain stabilization of additive uncer
tainty due to unmodeled dynamics. However, FWLQG was 
shown to be sensitive to structured uncertainty of in-band sys
tem dynamics. Maximum entropy provided increased ro
bustness properties for the controller. Maximum entropy re
duced the gain and roll-off rate of the controller as well as 
producing a high performance stabilizing controller. An experi
mental demonstration of the ability of maximum entropy to 
stabilize a structured (frequency) uncertainty in the system dy
namics was performed. 

In order to achieve specified constraints, the LQG method 
with frequency weighting and maximum entropy is not explicit 
and requires iterative design. Homotopy methods were neces
sary to calculate the maximum entropy controllers; however the 
computational burden was not prohibitive. 

Acknowledgments 
This work was performed at Sandia National Laboratories 

and was supported by the U.S. Department of Energy under 
Contract Number DE-AC04-94AL85000 via the Laboratory Di
rected Research and Development program. The authors would 
like to thank the reviewers for their helpful comments. 

378 / Vol. 119, SEPTEMBER 1997 Transactions of the ASME 

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



References 
Allen, J. ]., Lauffer, J. P., Marek, E. L., 1990, "The Sandia Structural Control 

Experiments," Proceedings of the First Joint U.S./Japan Conference on Adaptive 
Structures, Maui, HI, Nov. 

Bendat, I S., and Piersol, A. G., 1986, Random Data, Wiley-Interscience, New 
York. 

Bernstein, D. S., and Greeley, S. W., 1986, "Robust Controller Synthesis Using 
the Maxiinum Entropy Design Equations," IEEE Transactions on Automatic 
Control, Vol. AC-31, Apr., pp. 362-364. 

ColHns, E. G., Jr., Phillips, D. J., and Hyland, D. C , 1991, "Robust Decentral
ized Control Laws for the ACES Structure," IEEE Control Systems, Apr., pp. 
62-70. 

Collins, E.G., Davis, L. D., Richter, S., 1994, "Homotopy Algorithms for 
Maximum Entropy Design," Journal of Giddance, Control and Dynamics, Vol. 
17, No. 2, Mar.-Apr., pp. 311-321. • 

Collins, E.G., King, .1. A., Phillips, D. J., and Hyland, D. C , 1992, "High 
Performance, Accelerometer-Based Control of the Mini-MAST Structure," Jour
nal of Guidance, Control and Dynamics, Vol. 15, No. 4, July-Aug., pp. 885-
892. 

Doyle, J. C , "Guaranteed Margins for LQG regulators," 1978, IEEE Transac
tions on Automatic Control, Vol. AC-23, No. 4, Aug., pp. 756-757. 

Gupta, N. K., 1980, "Frequency-Shaped Cost Functionals: Extension of Linear-
Quadratic-Gaussian Design Methods," J. Guidance, Control and Dynamics, Vol. 
3, No. 6, Nov.-Dec. 

Hyland, D. C , Junkins, J. L., Longman, R. W., 1993, "Active Control Technol
ogy for Large Space Structures," Journal of Guidance, Control and Dynamics, 
Vol. 16, No. 5, Sept.-Oct. 

Juang, J. N., Cooper, J. E., and Wright, J. R., 1988, "An Eigensystem Realiza
tion Algorithm Using Data Correlations (ERA/DC) for Modal Parameter Identi
fication," Journal of Control Theory and Advanced Technology, Vol. 4, No. 1, 
Mar., pp. 5-14. 

Juang, J. N., Horta, L. G., Phan, M. Lew, J. S. Chen, C. W., 1991, "Observer/ 
System Realization ToolBox," NASA Langley Research Center, Aug. 21. 

Maciejowski, J. M., 1989, Multivariable Feedback Design, Addison-Wesley. 
Moore, B., 1981, "Principal Component Analysis in Linear Systems: Controlla

bility, Observability, and Model Reduction," EEE Trans. Automat. Contr., AC-
26, Feb. 

Opdenacker, Ph. C , et al., 1990, "Reduced-Order Compensator Design for a 
Flexible Structure," J. Guidance and Control, Vol. 13, No. 1, Jan.-Feb. 

Rocklin, G., Crowley, J., Void, H., 1985, "A Comparison of HI, H2, and 
Hv Frequency Response Function," Proceedings of the 3rd International Modal 
Analysis Conference, Orlando, Florida, Jan. 

Safonov, M. G., 1981, "Feedback Properties of Multivariable Systems: The 
Role and Use of the Return Difference Matrix," IEEE Trans. Automat. Contr., 
AC-26, no. 1, Feb., pp. 47-65. 

Shih, C. Y., Tsuei, Y. G., AUemang, R. J., and Brown, D. I., 1989, "Complex 
Mode Indication Function and its Applications," Proceedings of the 7th Interna
tional Modal Analysis Conference, Las Vegas, Nevada, pp. 533-540. 

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 1997, Vol. 1 1 9 / 3 7 9 

Downloaded From: https://dynamicsystems.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use




