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For solvable DAE systems, a general methodology was devel- 
oped wherein the DAE system was modified by a dynamic state 
feedback compensator such that the resulting system was solvable 
and possessed a control invariant state space, thereby allowing the 
derivation of standard state-space realizatiorts. For the feedback- 
modified system, a state-space realization was derived that can be 
used as the basis for controller synthesis. Extension of the proposed 
methodology for nonlinear DAE systems will be explored in future 
work. 
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Adaptive Nonlinear Output-Feedback Schemes 
with Marino-Tomei Controller 

Miroslav KrstiC and Petar V. KokotoviC 

Abs&mt- Three new adaptive nonlinear output-feedback schemes 
are presented. The first scheme employs the tuning functions design. 
The other two employ a novel estimation-based design consisting of a 
strengthened controller-observer pair and observer-based and swapping- 
based identifiers. They remove restrictive growth and matching conditions 
present in the previous output-feedback nonlinear estimation-based de- 
signs and allow a systematic improvement of transient performance. 

I. INTRODUCTION 

In the last few years, adaptive control of nonlinear systems has 
emerged as an exciting research area. Early efforts focused on the 
state-feedback problem and resulted in a systematic design procedure 
called adaptive backstepping [5]. The more challenging output- 
feedback problem was then addressed for systems with nonlinearities 
which depend on the output only. This problem was first solved 
under restrictive structural and growth conditions on the nonlinearities 
[3], [4]. Subsequently, the growth restrictions were removed [6], but 
the structural restriction remained: the output nonlineanties were not 
allowed to precede the control input. 

The removal of this structural restriction by Marino and Tomei 
in [15] was a breakthrough in adaptive nonlinear output-feedback 
control. This was achieved by merging the filtered transformations 
of [13] and [14] with the adaptive backstepping of [5] and using 
a novel compensation of the estimation error effects. An altemative 
approach for the same class of systems was presented in [7]. The 
nonlinear systems considered in [15] and [7] are still the largest class 
for which asymptotic tracking of arbitrary smooth reference signals 
can be achieved. A more general class of systems was considered in 
[16], but only for the set-point regulation problem. 

In [15], the authors view their adaptive scheme as an existence 
result because of its complexity and high-dynamic order which are 
primarily due to the overparameterization inherited from the orig- 
inal adaptive backstepping procedure [ 5 ] .  The overparameterization 
amounts to employing p dfferent update laws for the same parameter 
vector, p being the relative degree of the plant. Another drawback 
of the scheme in 11.51 is that it is restricted to the unnormalized 
gradient update law. Furthermore, in the setting of [15], the passivity 
of the observer error system could not be exploited to design a simple 
observer-based identifier. 

The three new adaptive schemes proposed in this paper remove 
these drawbacks. They acheve minimal parameterization in two 
different ways. The first scheme, presented in Section 111, employs 
the “tuning functions” technique developed in [9]. In this scheme we 
modify the Marin+Tomei controller with terms which compensate 
the mismatch between the actual update law and the tuning functions. 
The other two adaptive schemes avoid overparameterization by using 
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a novel estimation-based approach. They are motivated by our recent 
state-feedback results [lo], [ 111. The "observer-based" scheme in 
Section V has a simple identifier which exploits the passivity of the 
observer error system. This scheme is still restricted to an unnor- 
malized gradient update law, as are [15] and. the tuning functions 
scheme. The "swapping-based" scheme in Section VI removes this 
last restriction and can incorporate any standard update law: gradient, 
least-squares, normadized, or unnormalized. 

Until recently, the estimation-based approach to adaptive nonlinear 
control [18] was unable to guarantee global boundedness without 
restrictive growth or matching conditions. This is now accomplished 
by strengthening the controller-observer pair with nonlinear damping 
including the K-tenms of [8], so that its boundedness properties 
are achieved independently of the identifier. This strengthegng 
guarantees boundedlness of all. closed-loop states whenever 0 is 
bounded, 8 E C,, and either 8 E C, or e E Cz. The identifiers, 
in tum, independently guarantee that 8 E C, and either 8 E C, 
(swapping-based scheme) or 8 E C2 (observer-based scheme). 

In Section VI1 we show analytically that the schemes given in this 
paper can be used for systematically improving transient performance. 

Notation: X ( z )  and X, denote the ith row and the j t h  column of 
matrix X ,  respectively. 

11. MARINO-TOME1 FILTERED TRANSFORMATIONS AND OBSERVER 

Problem Statement: As in [15], we consider SISO nonlinear sys- 
tems transformable into the output-feedback canonical form 

x E R" j :  = A x  + &(y) + @(y)a + b] c(y )u ,  

?J = x 1  (1) 

where a = [al,..,,aqlT E R q , b  = [b,,...,b0IT E R"+l are 
vectors of unknown constant parameters, and 

0 Y0,l 

A = [ O  In-;], 4 =  [ : ] 
@ = [  i ; ] .  (2) 

Yo," . . .  
( P l , l  . . .  ( P q J  

q1,n ' . '  'Pa," 

It is assumed that ( P , , ~ , O  5 j 5 q, 1 5 i 5 n, and n 
are smooth. Geometric conditions which characterize the class of 
nonlinear systems tlhat can be transformed into this form have been 
given in [15]. The class of systems which are globally stabilizable by 
output feedback is not much broader than (1). It was shown in [17] 
that the system hl = x2 ,& = xg + U ,  y = 2 1  cannot be globally 
stabilized by dynamic output feedback for n > 2 .  

Assumption 2.1: The polynomial B(s )  = b,sm + * + b l s  + bo 
is Hurwitz, and a(g)  # OVy E R. The sign of b, is known. 

Assumption 2.2: The reference signal y , ( t )  and its first p deriva- 
tives are known and bounded, and 31:') (t)  is piecewise continuous. 

Filtered Transformations: The filtered transformations employ 
the input filters 

1 1 
U ,  = -- O ( Y ) U ,  ( s  + X)p-, + )I,va+l = 

i = 1 , .  . . , p  - 1 

and the output fi1te:rs 

where AI and Bi are given by 

and the vectors i and 1 are defined via the coefficients of polynomial 
(s + A y - 1  

T 
I = [1, (I"; 1 ) A  ) . . . )  (" n - 2  - 1 ) A n 4 , A - ' ]  

For later use, (4) is rewritten in the compact form 

I; = h p  + e l q .  (9) 

Lemma 2.1 [15]: For (1) and (3)-(6), there exist a vector P ( b )  E 
R" and a matrix S(0)  E R"X[(q+2)(n-1)1 where 

0 =  [b,,D(b)T,aTIT (10) 

such that the parameter-dependent coordinate transformation 

x == z - S(@)[vT,pT,  ET,  col (=)TIT (11) 

takes (1) into the "adaptive observer form" 

= A x  + Z ( W O  + ~ ~ 0 )  

Y =x1 (12) 

where WO and the "regressor" w are given by 

w o = h ( y ) + E 1  (13) 
(14) 

Observer: Once they have brought (1) to the adaptive observer 
form, Marino and Tomei design the observer for the transformed 
state x 

T 
UT = [+l, P > c f ( l ) ( Y )  + E(1)I. 

k = Alj + K0(y - 21) + I(WO + w T e )  

det (SI - A,) = (s + c,)(s + 

(15) 

where KO is chosen so that A,  = A - K,e? satisfies 

(16) 

namely, eT(sI-Ao)-lZ = l/(s+co). The observer error e = x - 2  
is govemed by 

(17) i. = A,& + 1 ~ ~ 8 .  

111. TUNING FUNCTIONS SCHEME 
The tuning function's design [9] is applied to the system consisting 

of the states y, 211, a ,  w p - l .  The design steps are only briefly 
outlined. 

Step 1: The first component of the state of the error system is the 
tracking error z1 =: y -yr. The first stabilizing function is designed as 

(18) 
A 

011 ( X , t )  = -<(c + d)Zl+ Pi31 = <a, 

A 
where X = (y,k,[ ,S,p,G,<), the quantity 
c = l / b m ,  and 

is an estimate of 

(19) - 
a1 = - 2 2  - WO - U T I  + $* 

= [O, pT, @(l) (Y)  + E(1)I. 

where the truncated regressor is given by 

(20) -T w 

We design the first tuning function as 

T l  = r(ml + TE > 0. (21) 
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U 2 , P  

. . .  0 bm 2 
---C - d 

-6, - c - d ( $ )  l + a z s  . . .  

A, = 0 -1 - 8 2 3  

1 + f l p - l , p  

0 -QP ... -1 - up-l ,p  -e - d (y)' 
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(35) 

Step 2: Introducing z2 = v1 - ol1, the secohd stabilizing function 

consists of 
- doll 

dY 
a2 = -imzl + A V 1  + - ( a 2  + W O  + W T B )  

+ % [ A i  t K,(y - 21) + Z(wo + wT@l 

+ *(Ai[ + Bi4) + ;(&Z + &@) 

doll aa!, . aa1.. + -[ALL + e l w ]  + --yr t -yr 
a P  ay1 ay, 

dX 
dO!l 
az, 

(23) 

and the compensating function 

where the second tuning function is designed as 

Step i ( 3  5 i 5 p )  : Subsequent compohents of the state of 
the error system are defined as zz = u2-1 -  CY-^. The stabilizing 
functions 

. 
At the end of the recursion, the last stabilizing fhnction oP is used 

for the actual control law 
1 

The update laws are designed as 

t = -7, sgn (b,)a,zl 

(32) 
with ye > p/Zdq,  and q, specified in the proof of Theorem 3.1. 

By noting that wT8 = bmvl  + DTQ and 

j l  = 2 2  + WO + W T B  + E 2  (33) 
it is straightforward to verify that the resulting system, called the 
error system, is 

Z = A , ( z , t ) z + W e ( z , t ) ~ ~  +W~(z,t)~i-- bmol,el<, 

z E w p  (34) 
where (35) is shown at the bottom of the page, and 

(361 
T A  T W: =W,(z , t )w - S a c e l e l  

a and p = q + m + 1. We see that 8 is absent from (34). 
Theorem 3.1 (Tuning Functions Scheme): All the signals in the 

closed-loop adaptive system consisting of the plant (I), the filters 
(3k(6), the observer (15), the update laws (31) and (32), and the 
control law (30) are globally uniformly bounded for all t 2 0, and 
global asymptotic tracking is achieved: limtioo [ y ( t )  - y,(t)] = 0. 

Proofi See [12]. 

W. STRENGTHENED OBSERVER AND CONTROLLER 
Observer: We strengthen the Marino-Tomei observer by adding 

the stability enhancing, nonlinear term r;,lw/21(y - i l )  in (15) 

E = A2 + K0(y - 21) + K~(W~~Z(Y - 21) + Z(WO + wT%) (37) 

(38) 

SO that the observer error system becomes 
i = (A ,  - fi.,lw121ey)E + lwTe". 

Lemma 4.1: Suppose in (38) that w and e" are piecewise continu- 

Proofi Since eT(s1-  A,)-'l = l / ( s  + e o )  is SPR, then there 
ous on [ O , t f ) .  If 8 E L,[O,tf), then E E L,[O,tf). 

exist Po = PT > 0 and qo > 0 such that 

AZPo + PoA, 5 - q J ,  Pol = el. (39) 

Therefore, along the solutions of (38) we have 

d 2  2 T  T ~ ( I E I ~ , )  5 - - q o I ~ j 2  - 2nOlwl E Polel E 

+ 2ETP,1WTe"  
= -qo1E12 - 2KoIW12&Z + 2E1WTBx 

i -QolE12 + -101 (40) 
1 - 2  

2 f i O  
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which implies that F E L,[O,tf), whenever e" E Lc,[O,t,). 0 
Assumption 4.1: In addition to sgn b,, a positive constant em is 

known such that lbml 2 em. 
Controller: We only spell out the differences from the tuning 

functions design. The stabilizing functions a, are designed .to render 
the state [ z ~ ,  . . . , z,]' bounded whenever 8 is bounded and 4 is either 
bounded or square-integrable. This is achieved with the nonnegative 
nonlinear damping functions s, 

(41) 

which consist of three terms, each counteracting the effects of 
disturbances E Z ,  e", 0. The nonlinear damping functions appear in the 
modified stabilizing functions' 

(44) 

da,-1 
dX 

Q, = - ( c +  sz)zz + + T K o I U 1 2 z ( y  - kl), 
i = 2 , .  . . , p .  (45) 

Tne term (da,- l /di)r; , lw12Z(y - 21) in (45) accommodates for the 
strengthening in the observer. 

It is straightforward to verify that the resulting error system is 

i =A:( z , t ) z+W, ( z , t )& ,  + W , ' ( ~ , t ) ~ e " + D ( z , t ) j ,  

I E RP (46) 

where 

0 

-bm - ( c + s 2 )  1 ... 
. .  . .  0 -1 . .  
. .  . .  . .  

0 ... 0 -1 - 

0 

1 
- ( c +  .PI 

(47) 

Lemma 4.2 (Input-to-State Properties): Consider the system (l), 
(3)-(6), (37), (30). If e" E L,[O,tf) and either 6 E L,[O,tf) or 

6 E Lz[O,tf), then 2,(, E,p,  U,%, U E L,[O,tf). 
Proof (Outline): Differentiating 4 Iz12 along the solutions of 

(46) and using the: definitions of the nonlinear damping functions 
(41)-(43), by completing squares one can show that 

d 1  
- d t  (--Iz/ ' )  2 12 - C ( Z ~ ~  + 

Since e" E L,[O,tf), by Lemma 4.1, E E Lc,[O,tf). If either a E 
L ,  [O, t f )  or i E &[0, t f ) ,  it is easy to see that z E L,[O, t f ) .  The 
boundedness of yI and z1 implies that y is bounded. Therefore E and 
E are bounded. To ]prove boundedness of 2, let us first rewrite (37) as 

k = A 0 k - t  I(oy + ~ [ K O I W ~ ~ ( Y  - 21) + W O  + wT4] (51) 

and note that the bciundedness of ~1 and y implies that 21 is bounded. 
To prove that the remaining components of 2 are bounded, we employ 
the similarity transformation 

and, from (51), we obtain the system 

li = AVI-  A?ely (53) 

which shows that '7 is independent of the input r;,lw12(y - 21) + 
WO + wT0.  To arrive at the last equation, we have used the identities 

T1 = 0, KO = col - [":'I, TA, = AlT (54) 

which hold for K,, such that A, = A - K,eT satisfies (16) and 
are straightforward to verify. Because of the boundedness of y and 
the Hunvitzness of Al, (53) proves that 7 is bounded. In view of 
the similarity transformation (52), it follows that 2 is bounded. The 

0 boundedness of p, U ,  x, and U is established as in [15]. 

V. OBSERVER-BASED SCHEME 
We choose the parameter update law as 

(55) 

Although not indicated in (55), the standard projection is employed 
with b,(O) sgnb, 2 em only to guarantee that Ibm(t)l 2 em,Vt 2 
0 (no other a priori parameter knowledge is needed). 

Lemma 5.1: If IJ is piecewise continuous on [O, t f ) ,  then (55) 
guarantees that 8,t :  E L,[O,tf) and & , e  E Cz[O,tf). 

Proof (Outline): With (39), and using the standard properties of 
projection [18], [19], [2], along the solutions of (38) and (55) we have 

o = rWF1. 

d 2 - 2  z(lFlr~o + l0lr-L) 5 -qoleI2 - 2K01W12&; 

which proves that ,z, e" are bounded and E ,  are square-integrable. 0 
Theorem 5.1 (Observer-Based Scheme): All the signals in the 

closed-loop adaptive system consisting of the plant (l),  the filters 
(3)-(6), the observer (37), the update law (55), and the control 
law (30) are globally uniformly bounded for all t 2 0, and global 

'Our identifiers will guarantee Ihm(t)l 2 em,Vt 2 0. asymptotic tracking is achieved limt+- [y(t) - yI(t)] = 0. 
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Pro03 Combining Lemmas 4.2 and 5.1, it is straightforward to 
show that all the signals are globally uniformly bounded. To prove 
the tracking, we first rewrite (46) as 

,i = A , ( z , t ) ~ + W ~ ( z , t ) ~ z  +We( t , t )? 'J+D(z , t )8  (57) 

where A: is obtained from A, by replacing b ,  by g,, and We 
( ~ , t ) ~  = WE ( z , t ) w T .  Let us define M ( z , t )  = WE(t,t)(lT/lZ12) 
and consider ( a z - M E  along the solutioris of (57) and (38) 

=Az( + [W,eT - A.? - M ( A ,  - K,lw121eT) + A,M]e + De 
(58)  

where the bracketed expression and D are bounded. It is now 
straghtforward to derive 

d 1 z ( i ~ ~ 2 )  I - C I C I ~  + ;lWzeT - A.?- M ( A ,  - Kolw121eT) 

(59) 
p - 1 1 2  + A z n / f 1 : 1 ~ 1 ~  + -181 . 
29 

Since ~ , 8  E CZ,  it follows by [ l ,  Theorem IV.1.91 that C E &. 
Thus z E CZ. From (57) we can see that i E C, which, along with 
z E C, n L2 by Barbalat's lemma, proves that ~ ( t )  + 0 as t + m. 

0 Since z1 = y - yr, this proves the tracking. 

VI. SWAPPING-BASED SCHEME 
A swapping-based identifier for (38) would seem to require filters 

of dynamic order n ( p  + 1). However, with a special choice of KO in 
A, =A-K,eT suchthatdet ( S I - A , )  = ( ~ + c , ) ( s + X ) " - ~ , w e  
are able to design an identifier of the minimall dynamic order p + 1. 
With this choice of K O ,  (54), and the similanity transformation 

(38) is decomposed into the scalar equation For €1 

(61) 
T "  

i.1 = -(eo + KoIW12)E1 + w 8 + G 
and the (n  - 1)-dimensional uncontrollable exponentially stable part 

C = AzC. (62) 

Now we design a parameter identifier only for (61). We introduce 
the filters 

fi =- (CO + K;,lw12)R + w ,  R E RP (63) 
- A -  n = -(eo + K01W12)E+  W T O ,  R E w (64) 

and the estimation error 

(65) 
TA - E = & 1 + D - R  B .  

Substituting (61), (63), and (64) into (65), wte get 

t = R T B + C  (66) 

where E is governed by 

tL = -(eo + KoIw12)E"+ (;I. 

The parameter update law is either the gradient 

(67) 

or the least squares 

where by allowing U = 0, we encompass unnormalized update laws. 

Lemma 6.1: If C2 i s  piecewise continuous on [0, t f ) ,  then (68) and 
(69) guarantee that 8, t ,8 E Lm[O,tf)  and E & [ O , t f ) .  

Proof (Outline): It is readily shown that 

which proves that R is bounded. For both the gradient and the 
least-squares update laws it can be shown that 

where 9 = PF > 0 satisfies PzAl + AfrPl = - I .  The conclusions 
0 

f i eorem 6.1 (Swapping-Based Scheme): All the signals in the 
closed-loop adaptive system consisting of the plant ( l ) ,  the filters 
(3)<6), the observer (37), the identifier filters (68)-(64), either the 
gradient (68) or the least-squares (69) update law, and the control 
law (30) are globally uniformly bounded for all t 2 0, and global 
asymptotic tracking is achieved limt,, [ y ( t )  - y,(t)]  = 0 .  

Proof: With Lemmas 4.2 and 6.1, we establish the global 
uniform boundedness of all the signals. To prove the tracking, we 
first show that E is square-integrable. Let us consider T/I a W - RT8 
which satisfies 

(72) 

of the lemma are immediate from (71) and (70). 

?j = -(eo + fiolw12)$ - nT8. 
It can easily be seen that 

(73) 

Since RT8 E &, then by [ 1, Theorem IV. 1.91, 4 E LZ . In view of 
the fact that E = SI+$,  this proves that E I  E C2. From (60) it follows 
that E = le1 + which proves that E E CZ. Following the 
same arguments as in the proof of Theorem 5.1, [cf. (57)-(59)], we 
show that t E L2. The tracking is deduced via Barbalat's lemma. U 

The flexibility to incorporate any of the standard parameter update 
laws in the swapping-based scheme is achieved at the expense of 
additional filters for the identifier. 

W. TRANSIENT PERFORMANCE ANALYSIS 

We first derive &-bounds for estimation-based schemes. To 
simplify the analysis, we let r = y I ,  as well as c, = c and K ,  = K .  

For the same reason, we implement gl(0) = y(0) to get ~ 1 ( 0 )  = 0. 
Theorem 7.1 (Observer-Based Scheme): In the adaptive system 

(I), (3t(6), (37), (55), (30), the following inequality holds: 

(74) ~ z ( t ) l  I L(MI~(o)I + N I ~ ( O ) I )  + Iz(0)le-ct/2 f i  
where M and N are nonincreasing functions of c, d, K ,  9. 

Pro03 First, we note from (61) that 

Combining (50) an (75) we compute 
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and, since the second term in the parentheses is zero, it is straight- 
forward to obtain 

we obtain 

(90) 2 1 - 2  1 2  I l S l l l m  I ~ 1 1 @ 1 I m  + ~ l lG l l cu .  
Iz(t)l I g[~l lEzl lL + ;(1+ ;)l1611L 

t -II(~IIL] Y2 + Iz(O)le-ct/2 
1/2  Recalling that E? := ( n  - 1)X.l + cl, using (79) and (90), we get 

2 ( n -  1)2X2  llBlIL + (1 + - c : ) 2 X 2 )  
(77) 

where we have used al(0) = 0. Now we determine bounds on 
1 1 ~ 2 1 1 ~ ,  Ilell, and IIGll,. First, from (62) we have 

C K Q  

C K  
I IEz l lm I 

- 

(91) 
A(R) ’ .- 
\ I D \  I40)l” 

f i ( l 1 )  

(78) 
From (68) we write 

p 1 2 2  

which implies that Il(lll2 I [~/X(PZ)]I((O)~$~. Since ~ i ( 0 )  = 0, 
then ((0) = TE(O) = [O,In-l]&(0) and it follows that: 

le12 I y:! 
- (1 + vln12)2 

(79) I Y:! IlflllL ll4L X(R) 
11c111L 5 -I.(O)l” A ( 8 )  

Along the solutions of (61), (62), and (55) we have and by substituting (66) obtain 

which yields From (70), using R(0) = 0, it follows: 

To obtain a bound on 11Z11,, along (67) and (62) we consider 

To obtain a bound on lla11,, from (60) we recall that E Z  = 
(n - 1)A.l + C1 which, by virtue of (79) and (82), shows that 

which yields 

Substituting (79), (81), and (83) into (77), we arrive at (74) with 
By substituting (88) into (90) and also (88), (94), and (96) into (93), 
and then the two results, along with (88) into (87), we arrive at (86) 
with (84) 

Now we consider the swapping-based scheme. For simplicity, we 
initialize n(0) = -el (0) = 0 and R(0) = 0 to set E“(0), R(0) to zero. 

Theorem 7.2 (Swapping-Based Scheme): In the adaptive system 
(l), (3)-(6), (37), (63)-(64), (68), (30), the following inequality holds: 

0 
Although the initial states z2 (0) , . . . , zp (0) may depend on c and 

d, this dependence can be removed by setting z ( 0 )  = 0 with the 
standard trajectory or reference model initialization explained in [lo]. 
From (74) and (86) it is evident that the ,&,-performance bounds in 
both the observer-based scheme and the swapping-based scheme can 
be made as small as desired by initializing z (0) = 0 and increasing c. 

To obtain a similar C,-bound for the tuning functions scheme, the 
design has to be augmented with nonlinear damping terms. Unlike 
for the estimation-base schemes, for the tuning functions scheme one 
can also derive an &bound 

where M and N are nonincreasing functions of c,  d, K ,  g. 
Proof: We derive an ,!&-bound on z using (50) rewritten as 

Noting that (61) yields 
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VIII. CONCLUSIONS 
The adaptive schemes proposed in this paper advance the state-of- 

the-art of adaptive nonlinear output-feedback control in several direc- 
tions. They remove the main drawbacks of the original MarineTomei 
design. Only the minimal number of parameters is updated, and 
any standard update law can be incorporated in the swapping-based 
scheme. The estimation-based approach can now be used for adaptive 
nonlinear output-feedback control without any growth restrictions. 
The modifications made in the Marino-Tomei controller make it 
possible to systematically improve the transient performance by 
increasing certain design parameters. 
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Adaptive Control of a Class of Decentralized 
Nonlinear Systems 

Jeffrey T. Spooner and Kevin M. Passino 

Abs&act--Within this brief paper, a stable indirect adaptive controller 
is presented for a class of interconnected nonlinear sysdems. The feedback 
and adaptation mechanisms for each subsystem depend only upon local 
measurements to provide asymptotic tracking of a reference trajectory. 
In addition, each subsystem is able to adaptively compensate for distur- 
bances and interconnections with unknown bounds. The adaptive scheme 
is illustrated through the longitudinal control of a string of vehicles within 
an antomated highway system (AHS). 

’ 

I. INTRODUCTION 
Decentralized control systems often arise from either the physical 

inability for subsystem information exchange or the lack of computing 
capabilities required for a single central controller. Furthermore, dif- 
ficulty and uncertainty in measuring parameter values within a large- 
scale system may call for adaptive techniques. Since these restrictions 
encompass a large group of applications, a variety of decentralized 
adaptive techniques have been developed. Model reference adaptive 
control (MRAC)-based designs for decentralized systems have been 
studied in [I]-[4] for the continuous time case and in [5] and 
[6] for the discrete time case. These approaches, however, are 
limited to decentralized systems with linear subsystems and possibly 
nonlinear interconnections. Decentralized adaptive controllers for 
robotic manipulators were presented in [7]-[9], while a scheme for 
nonlinear subsystems with a special class of interconnections was 
presented in [lo]. 

Our objective is to present adaptive controllers for a class of 
decentntntntntntntntntntntntntntntntntnized systems with nonlinear subsystems, unknown nonlinear 
interconnections, and disturbances with unknown bounds. This paper 
is organized as follows: In Section 11, the details of the problem 
statement for the decentralized system are presented. The adaptive 
algorithms for each subsystem using only local information are 
presented, and composite system stability is established in Section 111. 
An illustrative example is then used in Section IV to demonstrate the 
effectiveness of the decentralized adaptive technique. 

11. PROBLEM STATEMENT 
Our objective is to design an adaptive control system for each 

subsystem which will cause the output, yp,, of a relative degree 
T ,  subsystem, S,, to track a desired output trajectory, ymt ,  in the 
presence of interconnections, I,, , and unknown disturbances using 
only local measurements (see Fig. 1). The desired output trajectory, 
ym,. may be defined by a signal external to the control system so 
that the first T~ derivatives of the ith subsystem’s reference signal ym, 
may be measured or by a reference model with relative degree greater 
than or equal to T~ which characterizes the desired performance. It 
is thus assumed that the desired output trajectory and its derivatives 
ym, , . . . , y k )  for the ith subsystem, S,, are measurable and bounded 
(let y$;) denote the r,th derivative of ym, with respect to time). 
Within this paper an ‘butput error indirect adaptive controller” is 
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