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Abstract

In this paper we estimate the rest of the approximation of a stationary process by a martingale
in terms of the projections of partial sums. Then, based on this estimate, we obtain almost sure
approximation of partial sums by a martingale with stationary differences. The results are exploited to
further investigate the central limit theorem and its invariance principle started at a point, the almost
sure central limit theorem, as well as the law of the iterated logarithm via almost sure approximation
with a Brownian motion, improving the results available in the literature. The conditions are well
suited for a variety of examples; they are easy to verify, for instance, for linear processes and functions
of Bernoulli shifts.
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1 Introduction and notations

In recent years there has been an intense effort towards a better understanding of the structure and
asymptotic behavior of stochastic processes. For processes with short memory there are two basic
techniques: approximation with independent random variables or with martingales. Each of these
methods have its own strength. On one hand the classes that can be treated by coupling with an
independent sequence exhibit faster rates of convergence in various limit theorems; on the other hand
the class of processes that can be treated by a martingale approximation is larger. There are plenty
of processes that benefit from approximation with a martingale. Examples are: linear processes
with martingale innovations, functions of linear processes, reversible Markov chains, normal Markov
chains, various dynamical systems, discrete Fourier transform of general stationary sequences. A
martingale approximation provides important information about these structures, because martingales
can be embedded into Brownian motion, they satisfy the functional central limit theorem started at
a point, the law of the iterated logarithm, and the almost sure central limit theorem. Moreover,
martingale approximation provides a simple and unified approach to asymptotic results for many
dependence structures. For all these reasons, in recent years martingale approximation, ”coupling with
a martingale”, has gained a prominent role in analyzing dependent data. This is also due to important
developments by Liverani (1996), Maxwell and Woodroofe (2000), Derriennic and Lin (2001-a), Wu
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and Woodroofe (2004) and recent developments by Peligrad and Utev (2005), Peligrad, Utev and Wu
(2007), Merlevède and Peligrad (2006), Peligrad and Wu (2010) among others. Many of these new
results, originally designed for Markov operators, (see Kipnis and Varadhan (1986) and Derriennic
and Lin (2007) for a survey) have made their way into limit theorems for stochastic processes.

So far this method has been shown to be well suited to transport from the martingale to the
stationary process either the conditional central limit theorem or conditional invariance principle in
mean. As a matter of fact, papers by Dedecker-Merlevède-Volný (2006), Volný (2007), Zhao and
Woodroofe (2008-a), Gordin and Peligrad (2010), obtain characterizations of stochastic processes that
can be approximated by martingales in quadratic mean. These results are useful for treating evolutions
in ”annealed” media.

In this paper we address the question of almost sure approximation of partial sums by a martingale.
These results are useful for obtaining almost sure limit theorems for dependent sequences and also
limit theorems started at a point. Limit theorems for stochastic processes that do not start from
equilibrium is timely and motivated by evolutions in quenched random environment. Moreover recent
discoveries by Ouchti and Volný (2008) and Volný and Woodroofe (2010) show that many of the
central limit theorems satisfied by classes of stochastic processes in equilibrium, fail to hold when the
processes are started from a point, so, new sharp sufficient conditions should be pointed out for the
validity of these types of results. Recent steps in this direction are papers by Wu and Woodroofe
(2004), Zhao and Woodroofe (2008-b), Cuny (2009 and 2011), Cuny and Peligrad (2009).

The technical challenge is to estimate the rest of approximation of partial sums by a martingale
which leads to almost sure results, ranging from the almost sure central limit theorems, almost sure
approximation with a Brownian motion and the law of the iterated logarithm.

We shall develop our results in the framework of stationary processes that can be introduced in
several equivalent ways.

We assume that (ξn)n∈Z denotes a stationary Markov chain defined on a probability space (Ω,F ,P)
with values in a measurable space (S,S). Let π denote the marginal distribution of ξ0 and suppose
that there is a regular distribution of ξ1 given ξ0, say Q(x,A) = P(ξ1 ∈ A|ξ0 = x). Next let L2

0(π) be
the set of functions on S such that

∫
f2dπ <∞ and

∫
fdπ = 0, and for a f ∈L2

0(π) denote Xi = f(ξi),

Sn =
n−1∑
i=0

Xi (i.e. S1 = X0, S2 = X0 +X1, ...). In addition Q denotes the operator on L2(π) acting via

(Qf)(x) =
∫
S
f(s)Q(x, ds). Denote by Fk the σ–field generated by ξi with i ≤ k. For any integrable

variable X we denote Ek(X) = E(X|Fk). In our notation E0(X1) = Qf(ξ0) = E(X1|ξ0).
Notice that any stationary sequence (Xk)k∈Z can be viewed as a function of a Markov process

ξk = (Xi; i ≤ k), for the function g(ξk) = Xk.
The stationary stochastic processes may also be introduced in the following alternative way. Let

T : Ω 7→ Ω be a bijective bi-measurable transformation preserving the probability. Let F0 be a
σ-algebra of F satisfying F0 ⊆ T−1(F0). We then define the nondecreasing filtration (Fi)i∈Z by
Fi = T−i(F0). Let X0 be a random variable which is F0-measurable, centered, i.e. E(X0) = 0, and
square integrable E(X2

0 ) < ∞. We then define the stationary sequence (Xi)i∈Z by Xi = X0 ◦ T i. In
this paper we shall use both frameworks.

The following notations will be frequently used. We denote by ‖X‖ the norm in L2(Ω,F ,P), the
space of square integrable functions. We shall also denote by ‖X‖p the norm in Lp(Ω,F ,P). For any
two positive sequences an � bn means that for a certain numerical constant C not depending on n,
we have an ≤ Cbn for all n; [x] denotes the largest integer smaller or equal to x. For the law of the
iterated logarithm we use the notation log2 n = log(log(max(e, n))). The notation a.s. means almost
surely, while ⇒ denotes convergence in distribution.

The main question addressed is to find sufficient projective conditions such that there is a martin-
gale Mn with stationary differences such that either

Sn −Mn = o(n1/2) a.s. , (1)
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or
Sn −Mn = o((n log2 n)1/2) a.s. (2)

These types of approximations are important to study for instance the limit theorems stated at a
point (quenched) and the law of the iterated logarithm.

The ”so called” quenched CLT, states that for any function f continuous and bounded

E0(f(Sn/
√
n))→ E(f(cN)) a.s. , (3)

where N is a standard normal variable and c is a certain positive constant. By the quenched invariance
principle we understand that for any function f continuous and bounded on D[0, 1] endowed with
uniform topology we have

E0(f(S[nt]/
√
n))→ E(f(cW (t))) a.s. (4)

where W is the standard Brownian motion on [0, 1]. We shall also refer to these types of convergence
also as almost sure convergence in distribution under P0 a.s., where P0(A) = P(A|F0).

This conditional form of the CLT is a stable type of convergence that makes possible the change
of measure with a majorating measure, as discussed in Billingsley (1999), Rootzén (1976), and Hall
and Heyde (1980).

In the Markov chain setting the almost sure convergence in (3) or (4) are presented in a slightly
different terminology. Denote by Px and Ex the regular probability and conditional expectation given
X0 = x. In this context the quenched CLT is known under the name of CLT started at a point i.e.
the CLT or its functional form holds for π−almost all x ∈ S, under the measure Px.

Here is a short history of the quenched CLT under projective criteria. A result in Borodin and
Ibragimov (1994, Ch 4) states that if ‖E0(Sn)‖ is bounded, then the CLT in its functional form started
at a point holds. Later work by Derriennic and Lin (2001-b) improved on this result imposing the
condition ‖E0(Sn)‖ � n1/2−ε with ε > 0 (see also Rassoul-Agha and Seppäläinen, 2008 and 2009).
This condition was improved in Zhao and Woodroofe (2008-a) and further improved by Cuny (2011)
who imposed the condition ‖E0(Sn)‖ � n1/2(log n)−2(log log n)−1−δ with δ > 0. A result in Cuny
and Peligrad (2009) shows that the condition

∑∞
k=1 ‖E0(Xk)‖/k1/2 <∞, is sufficient for (3).

We shall prove here that the condition imposed to ‖E0(Sn)‖ can be improved, by requiring less
restrictive conditions on the regularity of ‖E0(Sn)‖ than the result in Cuny (2011). Then we shall
point out that the condition can be further weakened if we are interested in a result for averages or if
finite moments of order larger than 2 are available.

To prove the law of the iterated logarithm we shall develop sufficient conditions for almost sure
approximation with a Brownian motion; that is we shall redefine Xn, without changing its distribution,
on a richer probability space on which there exists a standard Brownian motion (W (t), t ≥ 0) such
that for a certain positive constant c > 0,

Sn −W (cn) = o((n log2 n)1/2) a.s.

We shall also develop sufficient conditions in terms of ‖E0(Sn)‖ for the validity of the almost sure
central limit theorem, namely: for a certain positive constant c > 0 and any real t,

lim
n→∞

1

log n

n∑
k=1

1

k
1{Sk/

√
k≤t} = P(cN ≤ t) a.s.

Our method of proof is based on martingale approximation that is valid under the Maxwell-
Woodroofe condition:

∆(X0) =

∞∑
k=1

‖E0(Sk)‖
k3/2

<∞ . (5)
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The key tool in obtaining our results is the estimate of the rest of the martingale approximation in
terms of ‖E0(Sk)‖. We shall establish in Section 2 that there is a unique martingale with stationary
and square integrable differences such that

‖Sn −Mn‖
n1/2

�
∑
k≥n

‖E0(Sk)‖
k3/2

. (6)

We then further exploit the estimate (6) to derive almost sure martingale approximations of the
types (1) and (2).

Our paper is organized as follows: In Section 2 we present the martingale approximation and
estimate its rest. In Section 3 we present the almost sure martingale approximation results. Section
4 is dedicated to almost sure limiting results for the stationary processes. Section 5 points out some
examples. Several results involving maximal inequalities and several technical lemmas are presented
in the Appendix.

2 Martingale approximation with rest

Proposition 1 For any stationary sequence (Xk)k∈Z and filtration (Fk)k∈Z described above with
∆(X0) <∞, there is a martingale (Mk)k≥1 with stationary and square integrable differences (Dk)k∈Z
adapted to (Fk+1)k∈Z, Mn =

∑n−1
i=0 Di, satisfying (6).

To prove this proposition we need two preparatory lemmas. It is convenient to use the notation

Y mk =
1

m
Ek(Xk+1 + ...+Xk+m) . (7)

As in Zhao and Woodroofe (2008-b), we shall also use the following semi-norm notation. For a
stationary process (Xk)k∈Z define the semi-norm

‖X0‖2+ = lim sup
n→∞

1

n
E(S2

n) . (8)

Lemma 2 Assume ‖Y m0 ‖+ → 0. Then, there is a martingale (Mk)k≥1 with stationary and square
integrable differences adapted to (Fk+1)k∈Z satisfying

‖Sn −Mn‖
n1/2

� max
1≤k≤n

‖E0(Sk)‖
n1/2

+ ‖Y n0 ‖+ .

Proof of lemma 2. The construction of the martingale decomposition is based on averages. It was
introduced by Wu and Woodroofe (2004; see their definition 6 on the page 1677) and further developed
in Zhao and Woodroofe (2008-b), extending the construction in Heyde (1974) and Gordin and Lifshitz
(1981); see also Theorem 8.1 in Borodin and Ibragimov (1994), and Kipnis and Varadhan (1986). We
give the martingale construction with the estimation of the rest.

We introduce a parameter m ≥ 1 (kept fixed for the moment), and define the stationary sequence
of random variables:

θm0 =
1

m

m∑
i=1

E0(Si), θ
m
k = θm0 ◦ T k .

Set

Dm
k = θmk+1 − Ek(θmk+1) ; Mm

n =

n−1∑
k=0

Dm
k . (9)
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Then, (Dm
k )k∈Z is a sequence of stationary martingale differences such that Dm

k is Fk+1-measurable
and (Mm

n )n≥1 is a martingale. So we have

Xk = Dm
k + θmk − θmk+1 +

1

m
Ek(Sk+m+1 − Sk+1) ,

and therefore

Sk = Mm
k + θm0 − θmk +

∑k

j=1

1

m
Ej−1(Sj+m − Sj) (10)

= Mm
k + θm0 − θmk +R

m

k ,

where we implemented the notation

R
m

k =
∑k

j=1

1

m
Ej−1(Sj+m − Sj) .

Observe that

R
m

k =

k−1∑
j=0

Y mj . (11)

With the notation
Rmk = θm0 − θmk +R

m

k , (12)

we have
Sk = Mm

k +Rmk . (13)

Notice that
‖Sn −Mn

n ‖ ≤ 3 max
1≤i≤n

‖E0(Si)‖ . (14)

Gordin and Peligrad (2009) have shown that if ‖Y m0 ‖+ → 0, then Dn
0 converges in L2 to a martingale

difference we shall denote by D0. Moreover max1≤l≤m ‖E(Sl|F0)‖2/m → 0. Denote Di the limit of

Dn
i and construct the martingale Mn =

∑n−1
j=0 Dj .

Let n and m be two strictly positive integers. By the fact that both Dn
0 and Dm

0 are martingale
differences and using (12) and (13) we deduce

‖Dn
0 −Dm

0 ‖2 =
‖Mn

m −Mm
m ‖2

m

≤ 1

m
‖(θn0 − θnm +R

n

m)− (θm0 − θmm +R
m

m)‖2 .

So for n fixed, by the fact that sup1≤l≤m ‖E(Sl|F0)‖2/m→ 0 we have that

‖Dn
0 −D0‖ = lim

m→∞
‖Dn

0 −Dm
0 ‖ ≤ lim

m→∞

1

m1/2
‖Rnm‖ = ‖Y n0 ‖+ . (15)

We continue the estimate in the following way

‖Sn −Mn‖2

n
≤ 2(

‖Sn −Mn
n ‖2

n
+
‖Mn

n −Mn‖2

n
)

≤ 2(
‖Sn −Mn

n ‖2

n
+ ‖Dn

0 −D0‖2) .

The lemma follows by combining the estimates in (14) and (15). ♦

Next we estimate ‖Y n0 ‖+.
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Lemma 3 Under the conditions of Proposition 1, for every n ≥ 1 and any m ≥ 1, we have

1

n1/2
‖ max
1≤j≤n

|
j−1∑
k=0

Y mk | ‖ �
∞∑

k=m+1

‖E0(Sk)‖
k3/2

, (16)

and

‖Y m0 ‖+ �
∑
k≥m

‖E0(Sk)‖
k3/2

. (17)

Proof of Lemma 3. In order to prove the inequality (16), we apply the maximal inequality in
Peligrad and Utev (2005) to the stationary sequence Y m0 defined by (7), where m ≤ n. Then

‖ max
1≤j≤n

|
j−1∑
k=0

Y mk | ‖ � n1/2(‖Y m0 ‖+ ∆(Y m0 )) ,

where

∆(Y m0 ) :=

∞∑
k=1

1

k3/2
‖E0(Y m0 + ...+ Y mk−1)‖ .

We first notice that ‖Y m0 ‖ ≤ m−1‖E0(Sm)‖. We estimate now ∆(Y m0 ). With this aim, it is convenient
to use the decomposition

∆(Y m0 ) ≤
m∑
k=1

1

k3/2
‖E0(Y m0 + ...+ Y mk−1)‖+

∞∑
k=m+1

1

k3/2
‖E0(Y m0 + ...+ Y mk−1)‖ .

To estimate the first sum notice that, by the properties of the conditional expectation, we have

‖E0(Y m0 + ...+ Y mk−1)‖ ≤ k‖E0(Y m0 )‖ ,

and then, since ‖E0(Y m0 )‖ ≤ ‖E0(Sm)‖/m we have

m∑
k=1

1

k3/2
‖E0(Y m0 + ...+ Y mk−1)‖ ≤ 1

m

m∑
k=1

‖E0(Sm)‖
k1/2

� 1

m1/2
‖E0(Sm)‖ .

To estimate the second sum we also apply the properties of the conditional expectation and write this
time

‖E0(Y m0 + ...+ Y mk−1)‖ ≤ ‖E0(Sk)‖ .
Then,

∞∑
k=m+1

1

k3/2
‖E0(Y m0 + ...+ Y mk−1)‖ ≤

∞∑
k=m+1

‖E0(Sk)‖
k3/2

,

and overall

∆(Y m0 )� 1

m1/2
‖E0(Sm)‖+

∞∑
k=m+1

‖E0(Sk)‖
k3/2

.

We conclude that for any strictly positive integers n and m

1√
n
‖ max
1≤j≤n

|
j−1∑
k=0

Y mk |‖2 �
‖E0(Sm)‖
m1/2

+

∞∑
k=m+1

‖E0(Sk)‖
k3/2

.

The estimate (16) of this lemma follows now by using Lemma 19 from the Appendix with p = 2 and
γ = 1/2. With the notation (8), by passing to the limit in the inequality (16), we obtain (17). ♦

Proof of Proposition 1. Notice that (5) implies ‖Y m0 ‖+ → 0. We combine the estimate in Lemma
2 with the estimate of ‖Y m0 ‖+ in Lemma 3 to obtain the desired result, via Lemma 19 in Appendix
applied with p = 2 and γ = 1/2. ♦
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3 Almost sure martingale approximations

In this section we use the estimate (6) obtained in Proposition 1 to approximate a partial sum by a
martingale in the almost sure sense.

Proposition 4 Assume (bn)n≥1 is any nondecreasing positive, slowly varying sequence such that∑
n≥1

bn
n

(∑
k≥n

‖E0(Sk)‖
k3/2

)2
<∞ . (18)

Then, there is a martingale (Mk)k≥1 with stationary and square integrable differences adapted to
(Fk+1)k∈Z satisfying

Sn −Mn√
nb∗n

→ 0 a.s. (19)

where b∗n :=
∑n
k=1(kbk)−1.

As an immediate consequence of this proposition we formulate the following corollary:

Corollary 5 Assume that for a certain sequence of positive numbers (bn)n≥1 that is slowly vary-
ing, nondecreasing and satisfies

∑
n≥1(nbn)−1 < ∞, the condition (18) is satisfied. Then there is a

martingale (Mk)k≥1 with stationary and square integrable differences adapted to (Fk+1)k∈Z satisfying:

Sn −Mn√
n

→ 0 a.s. (20)

Example: In Corollary 5 the sequence (bn)n≥3 can be taken for instance bn = (log n)(log2 n)γ , for
some γ > 1.

Selecting in Proposition 4 the sequence bn = log n, we obtain:

Corollary 6 Assume that ∑
n≥1

log n

n

(∑
k≥n

‖E0(Sk)‖
k3/2

)2
<∞ . (21)

Then there is a martingale (Mk)k≥1 with stationary and square integrable differences adapted to
(Fk+1)k∈Z satisfying:

Sn −Mn

(n log2 n)1/2
→ 0 a.s. (22)

Proof of Proposition 4. By Corollary 4.2 in Cuny (2011), given in Appendix for the convenience
of the reader (see Proposition 20), in order to show that (19) holds, we have to verify that

∑
n≥1

bn‖Sn −Mn‖2

n2
<∞ .

By Proposition 1 we know that

‖Sn −Mn‖
n1/2

�
∑
k≥n

‖E0(Sk)‖
k3/2

.

Therefore the condition (18) implies the desired martingale approximation. ♦
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Remark. Notice that our condition (18) is implied by the condition in Corollary 5.8 in Cuny (2011).
He assumed for the same result ‖E0(Sn)‖ � n1/2(log n)−2(log2)−1−δ with δ > 0, that clearly implies
(18). Also (21) is implied by the result in Corollary 5.7 in Cuny (2011) who obtained the same result
under the condition ‖E0(Sn)‖ � n1/2(log n)−2(log2 n)−τ with τ > 1/2.

In the next two subsections we propose two ways to improve on the rate of convergence to 0 of
‖E0(Sk)‖/

√
k that assure an almost sure martingale approximation in some sense.

3.1 Averaging

In the next proposition we study a Cesàro-type almost sure martingale approximation.

Proposition 7 Assume that ∑
n≥1

1

n

(∑
k≥n

‖E0(Sk)‖
k3/2

)2
<∞ . (23)

Then there is a martingale (Mk)k≥1 with stationary and square integrable differences adapted to
(Fk+1)k∈Z satisfying:

1

n

n∑
k=1

|Sk −Mk|
k1/2

→ 0 a.s. (24)

Before proving this proposition we shall formulate the condition (23) in an equivalent form that is
due to monotonicity: ∑

r≥0

( ∑
`≥2r

‖E0(S`)‖
`3/2

)2
<∞ . (25)

Proof of Proposition 7. We notice that the condition (23) implies by Proposition 1 the existence
of a martingale (Mn)n≥1 with stationary differences such that∑

n≥1

‖Sn −Mn‖2

n2
<∞ , (26)

that further implies ∑
n≥1

(Sn −Mn)2

n2
<∞ a.s.

Whence, by Kronecker lemma,

1

n

n∑
k=1

(Sk −Mk)2

k
→ 0 a.s.

and then, by Cauchy-Schwarz inequality

n∑
k=1

|Sk −Mk|
k1/2

≤
(
n

n∑
k=1

(Sk −Mk)2

k

)1/2
.

Therefore
1

n

n∑
k=1

|Sk −Mk|
k1/2

→ 0 a.s.

♦

We can also formulate the following result:
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Proposition 8 Assume that ∑
n≥1

1

n log n

(∑
k≥n

‖E0(Sk)‖
k3/2

)2
<∞ . (27)

Then there is a martingale (Mk)k≥1 with stationary and square integrable differences adapted to
(Fk+1)k∈Z satisfying:

1

log n

n∑
k=1

|Sk −Mk|
k3/2

→ 0 a.s. (28)

Proof of Proposition 8. The condition (27) implies by Proposition 1 the existence of a martingale
(Mn)n≥1 with stationary differences such that∑

n≥1

(Sn −Mn)2

n2 log n
<∞ a.s. , (29)

which, by Kronecker lemma, implies

1

log n

n∑
k=1

(Sk −Mk)2

k2
→ 0 a.s.

and then (28), by Cauchy-Schwarz inequality. ♦

This idea of considering the average approximation can be also applied to Markov chains with
normal operators (i.e. QQ∗ = Q∗Q on L2(π)). For this case we can replace our Proposition 1 by a
result stated in Cuny (2011) for normal Markov chains, namely

‖Sn −Mn‖2

n
� 1

n

∑
k≤n

‖E0(Sk)‖2

k
+
∑
k>n

‖E0(Sk)‖2

k2
. (30)

Then we can replace in the proof of Propositions 7 and 8, the inequality given in our Proposition 1
by the inequality (30). We can then formulate:

Proposition 9 Let (ξn)n∈Z be a Markov chain with normal operator and stationary distribution π.
Let f ∈ L2

0(π) and X0 = f(ξ0). If the condition∑
n≥2

log n‖E0(Sn)‖2

n2
<∞ , (31)

is satisfied, then (24) holds. If the condition∑
n≥2

log2 n‖E0(Sn)‖2

n2
<∞ , (32)

is satisfied, then (28) holds.

We point out that the condition (31) by itself does not imply (20) so the averaging is needed. As
a matter of fact, Cuny and Peligrad (2009) commented that there is a stationary and ergodic normal
Markov chain and a function f such that∑

n≥2

log n log2 n‖E0(Sn)‖2

n2
<∞ ,

and such that (20) fails.
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3.2 Higher moments

Another way to improve on the rate of convergence to 0 of ‖E0(Sk)‖/k1/2, in order to establish limit
theorems started at a point, is to consider the existence of moments larger than 2.

Proposition 10 Assume that for some δ > 0, E(|X0|2+δ) < ∞, and that the condition (23) is
satisfied. Then, there is a martingale (Mk)k≥1 with stationary and square integrable differences adapted
to (Fk+1)k∈Z satisfying for every ε > 0∑

n≥1

1

n
P(max

j≤n
|Sj −Mj | ≥ ε

√
n) <∞ , (33)

and therefore Sn −Mn = o(n1/2) a.s.

Proof of Proposition 10. The sequence (maxj≤n |Sj −Mj |)n≥1 being nondecreasing, the property
(33) is equivalent to: for every ε > 0,∑

N≥1

P( max
1≤j≤2N

|Sj −Mj | ≥ ε2N/2) <∞ ,

which implies that Sn − Mn = o(n1/2) almost surely. It remains to prove (33). By assumption
(23) it follows that

∑
j≥1 j

−3/2‖E0(Sj)‖ < ∞. Therefore, according to Proposition 1, there exists a
martingale (Mk)k≥1 with stationary and square integrable differences (Dk)k∈Z adapted to (Fk+1)k∈Z
such that (6) is satisfied. Applying then Corollary 18 with ϕ(x) = x2, p = 2, Yi = Xi−1, Zi = Di−1
and Gi = Fi, and taking into account (6), we get that for every x > 0 and any α ∈ [0, 1),

P(max
j≤n
|Sj −Mj | ≥ 4x)� n

x2

(∑
j≥n

1

j3/2
‖E0(Sj)‖

)2
+
n

x
E
(
|X0|1{|X0|≥xn−α}

)
(34)

+
n

x2

( ∑
k≥[nα]+1

‖E0(Sk)‖
k3/2

)2
.

Choosing now α = δ/(2 + 2δ) and x = ε
√
n, we get by using Fubini theorem that∑

n≥1

1

n1/2
E
(
|X0|1{|X0|≥εn1/2−α}

)
� 1

ε1+δ
E(|X0|2+δ) . (35)

Therefore, starting from (34) and using (35), we infer that (33) holds provided that∑
n≥1

1

n

( ∑
j≥[nδ/(2+2δ)]

‖E0(Sj)‖
j3/2

)2
<∞ . (36)

Now, by the usual comparison between the series and the integrals, we notice that for any nonincreasing
and positive function h on R+ and any positive γ,∑

n≥1

n−1h(nγ) <∞ if and only if
∑
n≥1

n−1h(n) <∞. (37)

Applying this result with h(y) =
(∑

j≥[y] j
−3/2‖E0(Sj)‖

)2
, it follows that the conditions (23) and

(36) are equivalent. This ends the proof of the theorem. ♦

Next proposition will be useful to transport from the martingale to the stationary sequence the
law of iterated logarithm.
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Proposition 11 Assume that E(|X0|2+δ) <∞ for some δ > 0, and that∑
n≥3

1

n log2 n

(∑
j≥n

‖E0(Sj)‖
j3/2

)2
<∞ . (38)

Then there is a martingale (Mk)k≥1 with stationary and square integrable differences adapted to
(Fk+1)k∈Z satisfying for every ε > 0∑

n≥1

1

n
P(max

j≤n
|Sj −Mj | ≥ ε(n log2 n)1/2) <∞ ,

and therefore Sn −Mn = o((n log2 n)1/2) a.s.

Proof of Proposition 11. We follow the lines of Proposition 10 with the difference that we select

in (34) x = ε(n log2 n)1/2 and apply (37) with h(y) =
(
(log2 y)−1/2

∑
j≥[y] j

−3/2‖E0(Sj)‖
)2

. ♦

We shall point now two sets of conditions that satisfy the conditions of these last two propositions.
Assume that ‖E0(Sn)‖ � n1/2(log n)−3/2(log2 n)β for a certain β > 1/2. Then condition (23) is
satisfied. If ‖E0(Sn)‖ � n1/2(log n)−3/2(log2 n)−γ for a γ > 0, then the condition (38) is satisfied.

4 Applications to almost sure limit theorems

We shall formulate here a few applications of the almost sure martingale approximations to quenched
functional CLT, LIL and almost sure CLT. For simplicity we assume in this section that the stationary
sequence is ergodic to avoid random normalizers.

Theorem 12 Assume that the stationary sequence is ergodic and the conditions of Corollary 5 or
Proposition 10 hold. Then

S[nt]/
√
n⇒ σW (t) under P0 a.s. ,

where σ = ‖D0‖ and D0 is defined by (9).

Proof of Theorem 12. The conditions of Corollary 5 or Proposition 10 imply that for every ε > 0

P0( max
1≤k≤n

|Sk −Mk| > ε
√
n)→ 0 a.s.

that further implies
P0( sup

0≤t≤1
|S[nt] −M[nt]| > ε

√
n)→ 0 a.s.

According to Theorem 3.1 in Billingsley (1999), the limiting distribution of S[nt]|/
√
n is the same as

of M[nt]/
√
n under P0 a.s. It was shown in Derriennic and Lin (2001-a) in details that

M[nt]/
√
n⇒ σW (t) under P0 a.s. ,

and the result follows. ♦

Theorem 13 Assume that the stationary sequence is ergodic and the conditions of Proposition 7 are
satisfied. Then we have

1

n

n∑
k=1

Sk
k1/2

⇒
√

2

3
σN under P0 a.s. , (39)

where σ = ‖D0‖ and D0 is defined by (9).
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Proof of Theorem 13. Under the condition (23) we know there is an ergodic martingale (Mn) with
stationary and square integrable differences (Dn) satisfying

1

n

n∑
k=1

|Sk −Mk|
k1/2

→ 0 a.s.

Then, by Theorem 3.1 in Billingsley (1999), the limiting distribution of

1

n

n∑
k=1

Sk
k1/2

coincides to the limiting distribution of
1

n

n∑
k=1

Mk

k1/2
under P0 a.s.

By changing the order of summation we can rewrite
∑n
k=1Mk/k

1/2 as

n−1∑
i=0

( n∑
k=i+1

1

k1/2

)
Di ,

and, according to the Raikov method for proving the central limit theorem for martingales, we have
to study the limit of the sum of squares. We first write that

4

n2

n∑
i=1

(
√
n+ 1−

√
i)2D2

i ≤
1

n2

n−1∑
i=0

( n∑
k=i+1

1

k1/2

)2
D2
i ≤

4

n2

n−1∑
i=0

(
√
n−
√
i)2D2

i . (40)

Then, by the Birkhoff ergodic theorem, we have

1

n

n−1∑
i=0

D2
i → E(D2

0) = σ2 a.s. and in L1 .

Hence, applying the generalized Toeplitz lemma (see Lemma 21) to the both sides of the inequality
(40) with xi = D2

i and ci =
√
i and then with ci = i, we get that

1

n2

n−1∑
i=0

(

n∑
k=i+1

1

k1/2
)2D2

i →
2

3
σ2 a.s. and in L1.

Then, by Theorem 3.6 in Hall and Heyde (1980) we easily obtain the convergence in (39). ♦

Theorem 14 Assume that either the conditions of Corollary 6 or of Proposition 11 hold and in
addition the sequence is ergodic. Then we can redefine (Xn)n∈Z, without changing its distribution, on
a richer probability space on which there exists a standard Brownian motion (W (t), t ≥ 0) such that

Sn −W (n‖D0‖2) = o((n log2 n)1/2) a.s.

Therefore, the LIL holds:

lim sup
n→∞

± Sn
(2n log2 n)1/2

= ‖D0‖ a.s.

Proof of Theorem 14. Since by Corollary 6 or by Proposition 11 we have Sn−Mn = o((n log2 n)1/2)
a.s. the result follows by the almost sure invariance principle for stationary, ergodic and square inte-
grable martingales (see Strassen, 1967). ♦
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Theorem 15 Assume that the stationary sequence is ergodic and Condition (27) is satisfied. Then,
for any real t,

lim
n→∞

1

log n

n∑
k=1

1

k
1{Sk/

√
k≤t} = P(σN ≤ t) a.s. , (41)

where σ = ‖D0‖ and D0 is defined by (9).

Proof of Theorem 15. According to the step (a) of the proof of Theorem 1 in Lacey and Philipp
(1990), (41) is equivalent to: for any Lipschitz and bounded function f from R to R,

lim
n→∞

1

log n

n∑
k=1

1

k
f(Sk/

√
k) = E(f(σN)) a.s. (42)

Next, by Proposition 8, if the condition (27) is satisfied, there is a martingale (Mk)k≥1 with stationary
and square integrable differences satisfying (28). Therefore, for any Lipschitz function f ,

lim
n→∞

1

log n

n∑
k=1

1

k

∣∣∣f(Sk/
√
k)− f(Mk/

√
k)
∣∣∣ = 0 a.s.

Notice now that (Mk)k≥1 is ergodic since (Xk)k∈Z is. The proof is then completed by the fact that
(42) holds with Mk replacing Sk (see Lifshits (2002)). ♦

5 Examples

We shall mention two examples for which the quantity ‖E0(Sn)‖ is estimated. Then, these estimates
introduced in our results will provide new asymptotic results started at a point and LIL, that improve
the previous results in the literature.

1. Linear processes.

Let (εn)n∈Z be a sequence of ergodic martingale differences and consider the linear process

Xk =
∑
i≥1

aiεk−i ,

where (ai)i≥1 is a sequence of real constants such that
∑
i≥1 a

2
i <∞. We define

Sn =

n∑
i=1

Xi .

Denote by
bnj = aj+1 + . . .+ aj+n .

Then
‖E0(Sn)‖2 =

∑
j≥0

b2nj .

For the particular case an � 1/(nL(n)), where L(·) is a positive, nondecreasing, slowly varying
function, computations in Zhao and Woodroofe (2008-a) show that ‖E0(Sn)‖ �

√
n/L(n).
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2. Functions of Bernoulli shifts.

Let (εk)k∈Z be an i.i.d. sequence of Bernoulli variables, that is P(ε1 = 0) = 1/2 = P(ε1 = 1) and
let

Yn =

∞∑
k=0

2−k−1εn−k, Xn = g(Yn)−
∫ 1

0

g(x)dx, and Sn =

n∑
k=1

Xk ,

where g ∈ L2(0, 1), (0, 1) being equipped with the Lebesgue measure. The transform Yj is usually
referred to as the Bernoulli shift of the i.i.d. sequence (εk)k∈Z. Then, following Maxwell and Woodroofe
(2000), as in Peligrad, Utev and Wu (2007),

‖E(g(Yk)|Y0)‖2 ≤ 2k
∫ 1

0

∫ 1

0

1{|x−y|≤2−k}|g(x)− g(y)|2dydx ,

and then ‖E(Sn|Y0)‖ ≤
∑n
k=1 ‖E(g(Yk)|Y0)‖.

6 Appendix

6.1 Maximal inequalities

Following the idea of proof of the maximal inequality given in Proposition 5 of Merlevède and Peligrad
(2010), we shall prove the following result:

Proposition 16 Let (Yi)1≤i≤2r be real random variables where r is a positive integer. Assume that
the random variables are adapted to an increasing filtration (Gi)1≤i≤2r . Let (Zi)1≤i≤2r be real random
variables adapted to (Gi)1≤i≤2r and such that for every i, E(Zi|Gi−1) = 0 a.s. Let Sn = Y1 + · · ·+ Yn
and Tn = Z1 + · · ·+Zn. Let ϕ be a nondecreasing, non negative, convex and even function. Then for
any positive real x, any real p ≥ 1 and any integer u ∈ [0, r − 1], the following inequality holds:

P( max
1≤i≤2r

|Si − Ti| ≥ 4x) ≤ 1

ϕ(x)
E(ϕ(S2r − T2r )) +

1

x

2r∑
i=1

E(|Yi|1{|Yi|≥x/2u})

+
1

xp

( r−1∑
l=u

( 2r−l−1∑
k=1

‖E(S(k+1)2l − Sk2l |Gk2l)‖pp
)1/p)p

.

Remark 17 When the sequence (Yn)n∈Z is stationary as well as the filtration (Gn)n∈Z, the inequality
has the following form:

P( max
1≤i≤2r

|Si − Ti| ≥ 4x) ≤ 1

ϕ(x)
E(ϕ(S2r − T2r )) +

2r

x
E(|Y1|1{|Y1|≥x/2u})

+
2r

xp

( r−1∑
l=u

1

2l/p
‖E(S2l |G0)‖p

)p
.

Notice now that for any integer n ∈ [2r−1, 2r), where r is a positive integer, E(ϕ(S2r − T2r )) ≤
maxn<k<2n E(ϕ(Sk − Tk)). In addition, due to stationarity and the subadditivity of the sequence(
‖E(Sn|G0)‖p

)
n≥1, we have that

2k‖E(S2k |G0)‖p ≤ 2

2k∑
j=1

‖E(Sj |G0)‖p ,
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implying that for any integer n ∈ [2r−1, 2r), where r is a positive integer, and any integer u ∈ [0, r−1],

r−1∑
i=u

1

2i/p
‖E(S2i |G0)‖p ≤ 2

2r−1∑
j=1

‖E(Sj |G0)‖p
∑

i:2i≥j∨2u

1

2i(1+1/p)
,

and then that

r−1∑
i=u

1

2i/p
‖E(S2i |G0)‖p ≤

22+1/p

21+1/p − 1

( 1

2u(1+1/p)

2u−1∑
k=1

‖E(Sk|G0)‖p +

n∑
k=2u

‖E(Sk|G0)‖p
k1+1/p

)
.

It remains to apply Lemma 19 below (with γ = 1/p) to obtain the following corollary:

Corollary 18 Let (Yi)i∈Z be a stationary sequence of real random variables. Assume that the random
variables are adapted to an increasing and stationary filtration (Gi)i∈Z. Let (Zi)i∈Z be a sequence of real
random variables adapted to (Gi)i∈Z and such that for all i, E(Zi|Gi−1) = 0 a.s. Let Sn = Y1 + · · ·+Yn
and Tn = Z1 + · · · + Zn. Let ϕ be a nondecreasing, non negative, convex and even function. Then
for any positive real x, any positive integer n, any real p ≥ 1 and any real α ∈ [0, 1], the following
inequality holds:

P( max
1≤i≤n

|Si − Ti| ≥ 4x) ≤ 1

ϕ(x)
max

n<k<2n
E(ϕ(Sk − Tk)) +

2n

x
E(|Y1|1{|Y1|≥x/nα})

+
cpn

xp

( ∞∑
k=[nα]+1

‖E(Sk|G0)‖p
k1+1/p

)p
,

where cp is a positive constant depending only on p.

Proof of Proposition 16.

Using the fact that E(Tn − Tk|Gk) = 0 for 0 ≤ k ≤ n, we get, for any m ∈ [0, 2r − 1], that

S2r−m − T2r−m = E(S2r − T2r |G2r−m)− E(S2r − S2r−m|G2r−m) .

So,

max
1≤i≤2r

|Si − Ti| ≤ max
0≤m≤2r−1

|E(S2r − T2r |G2r−m)|+ max
0≤m≤2r−1

|E(S2r − S2r−m|G2r−m)| . (43)

Since (E(S2r − T2r |Gk))k≥1 is a martingale, we shall use Doob’s maximal inequality (see Theorem 2.1
in Hall and Heyde, 1980) to deal with the first term in the right hand side of (43). Hence, since ϕ is
a nondecreasing, non negative, convex and even function, we get that

P
(

max
0≤m≤2r−1

|E(S2r − T2r |G2r−m)| ≥ x
)
≤ 1

ϕ(x)
E(ϕ(S2r − T2r )) . (44)

Write now m in basis 2 as follows:

m =

r−1∑
i=0

bi(m)2i, where bi(m) = 0 or bi(m) = 1 .

Set ml =
∑r−1
i=l bi(m)2i. With this notation m0 = m. Let 0 ≤ u ≤ r − 1 and write that

|E(S2r − S2r−m|G2r−m)| ≤ |E(S2r−mu − S2r−m|G2r−m)|+ |E(S2r − S2r−mu |G2r−m)| .
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Notice first that

P
(

max
0≤m≤2r−1

|E(S2r−mu − S2r−m|G2r−m)| ≥ 2x
)

≤ P
(

max
0≤m≤2r−1

2r−mu∑
j=2r−m+1

|E(Yj |G2r−m)| ≥ 2x
)
.

Therefore, by using the fact that m−mu ≤ 2u implies

2r−mu∑
j=2r−m+1

|Yj | ≤ x+

2r−mu∑
j=2r−m+1

|Yj |1{|Yj |≥x/2u} ,

we derive that

P
(

max
0≤m≤2r−1

|E(S2r−mu − S2r−m|G2r−m)| ≥ 2x
)

≤ P
(

max
0≤m≤2r−1

2r−mu∑
j=2r−m+1

E(|Yj |1{|Yj |≥x/2u}|G2r−m) ≥ x
)

≤ P
(

max
0≤m≤2r−1

2r∑
j=1

E(|Yj |1{|Yj |≥x/2u}|G2r−m) ≥ x
)
.

Noticing then that
(∑2r

j=1 E(|Yj |1{|Yj |≥x/2u}|Gk)
)
k≥1 is a martingale, Doob’s maximal inequality im-

plies that

P
(

max
0≤m≤2r−1

|E(S2r−mu − S2r−m|G2r−m)| ≥ 2x
)
≤ x−1

2r∑
i=1

E(|Yi|1{|Yi|≥x/2u}) , (45)

On the other hand, following the proof of Proposition 5 in Merlevède and Peligrad (2010), for any
m ∈ {0, . . . , 2r − 1} and any p ≥ 1, we get that

E(S2r − S2r−mu |G2r−m)|p ≤
r−1∑
l=u

λ1−pl |E(Ar,l|G2r−m)|p , (46)

where

λl =
αl∑r−1
l=u αl

with αl =
( 2r−l−1∑

k=1

‖E(S(k+1)2l − Sk2l |Gk2l)‖pp
)1/p

,

and
Ar,l = max

1≤k≤2r−l,k odd
|E(S2r−(k−1)2l − S2r−k2l |G2r−k2l)| .

Notice now that by Jensen’s inequality, |E(Ar,l|G2r−m)|p ≤ E(Apr,l|G2r−m). Hence starting from (46),
we get that for any p ≥ 1,

P
(

max
0≤m≤2r−1

|E(S2r − S2r−mu |G2r−m)| ≥ x
)

≤ P
(

max
0≤m≤2r−1

r−1∑
l=u

λ1−pl E(Apr,l|G2r−m) ≥ xp
)
.
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Next, since
(∑r−1

l=u λ
1−p
l E(Apr,l|Gk)

)
k≥1 is a martingale, Doob’s maximal inequality entails that

P
(

max
0≤m≤2r−1

|E(S2r − S2r−mu |G2r−m)| ≥ x
)
≤ x−p

r−1∑
l=u

λ1−pl E(Apr,l) .

Taking into account the fact that E(Apr,l) ≤ αpl together with the definition of αl and λl, we then
derive that for any p ≥ 1,

P
(

max
0≤m≤2r−1

|E(S2r − S2r−mu |G2r−m)| ≥ x
)

≤ x−p
( r−1∑
l=u

( 2r−l−1∑
k=1

‖E(S(k+1)2l − Sk2l |Gk2l)‖pp
)1/p)p

. (47)

Starting from (43) and considering the bounds (44), (45) and (47), the proposition follows. ♦

6.2 Technical results

Lemma 19 In the context of stationary sequences, for every γ > 0, n ≥ 1 and p ≥ 1,

1

nγ
max

1≤k≤n
‖E0(Sk)‖p ≤ cγ

6n∑
k=n+1

1

kγ+1
‖E0(Sk)‖p ,

where cγ = 23γ+3.

Proof of lemma 19. Let k be a positive integer and notice first that

|E0(Sn)| ≤ |E0(Sk+n)|+ |E0(Sk+n − Sn)| .

Then, by the properties of the conditional expectation and stationarity,

‖E0(Sn)‖p ≤ ‖E0(Sk+n)‖p + ‖E0(Sk)‖p .

So, for any n ≥ 1,

1

nγ
‖E0(Sn)‖p =

1

nγ+1
‖E0(Sn)‖p(

2n∑
k=n+1

1) ≤ 2γ+1‖E0(Sn)‖p
2n∑

k=n+1

1

kγ+1

≤ 2γ+1
2n∑

k=n+1

1

kγ+1
‖E0(Sk+n)‖p + 2γ+1

2n∑
k=n+1

1

kγ+1
‖E0(Sk)‖p

≤ 22γ+2
2n∑

k=n+1

1

(k + n)γ+1
‖E0(Sk+n)‖p + 2γ+1

2n∑
k=n+1

1

kγ+1
‖E0(Sk)‖p .

Therefore
1

nγ
‖E0(Sn)‖p ≤ 22γ+2

3n∑
l=n+1

1

lγ+1 ‖E0(Sl)‖p . (48)

By writing now, for any positive integer k,

|E0(Sk)| ≤ |E0(Sk+n)|+ |E0(Sk+n − Sk)| ,
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and by using stationarity we obtain

max
1≤k≤n

‖E0(Sk)‖p ≤ max
n≤k≤2n

‖E0(Sk)‖p + ‖E0(Sn)‖p ≤ 2 max
n≤k≤2n

‖E0(Sk)‖p ,

and the result follows by the inequality (48) applied for each k, n ≤ k ≤ 2n. ♦

Next result we formulate is Corollary 4.2 in Cuny (2011).

Proposition 20 Assume (Xn)n∈Z is a stationary sequence of square integrable random variables and
(bn)n≥1 a positive nondecreasing slowly varying sequence. Assume

∑
n≥1

bn‖Sn‖2

n2
<∞ .

Then
Sn√
nb∗n
→ 0 a.s.

where b∗n :=
∑n
k=1(kbk)−1.

We give here a generalized Toeplitz lemma, which is Lemma 5 in M. Peligrad and C. Peligrad
(2011).

Lemma 21 Assume (xi)i≥1 and (ci)i≥1 are sequences of real numbers such that

1

n

n∑
i=1

xi → L , ncn →∞ and
c1 + ...+ cn

ncn
→ C < 1 .

Then, ∑n
i=1 cixi∑n
i=1 ci

→ L .
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