
1

Shrink – Prescribing Resiliency Solutions for Streaming

Badrish Chandramouli and Jonathan Goldstein

Microsoft Research

{badrishc, jongold}@microsoft.com

ABSTRACT

Streaming query deployments make up a vital part of cloud oriented

applications. They vary widely in their data, logic, and statefulness,

and are typically executed in multi-tenant distributed environments

with varying uptime SLAs. In order to achieve these SLAs, one of

a number of proposed resiliency strategies is employed to protect

against failure. This paper has introduced the first, comprehensive,

cloud friendly comparison between different resiliency techniques

for streaming queries. In this paper, we introduce models which

capture the costs associated with different resiliency strategies, and

through a series of experiments which implement and validate these

models, show that (1) there is no single resiliency strategy which

efficiently handles most streaming scenarios; (2) the optimization

space is too complex for a person to employ a “rules of thumb”

approach; and (3) there exists a clear generalization of periodic

checkpointing that is worth considering in many cases. Finally, the

models presented in this paper can be adapted to fit a wide variety

of resiliency strategies, and likely have important consequences for

cloud services beyond those that are obviously streaming.

 INTRODUCTION
Streaming query deployments make up a vital part of cloud oriented

applications, like online advertising, online analytics, and internet

of things scenarios. They vary widely in their data, logic, and

statefulness, and are typically executed in multi-tenant distributed

environments with varying uptime SLAs (i.e. how often query

response time is impacted by failure). In order to achieve these

SLAs, one of a number of proposed resiliency strategies is

employed to protect against failure.

Unfortunately, the choice of resiliency strategy is highly

challenging, and scenario dependent. For instance, consider the

system described in MillWheel [13]. This system periodically

checkpoints the query state, and optionally allows users to

implement caching, which is highly useful for scenarios like online

advertising. In such scenarios, the event rate is small to moderate

(e.g., tens of thousands of events per second), and there are a very

large number of states (e.g., one for each browsing session) which

are active for a short period of time, then typically expire after a

long holding period. Rather than redundantly store states in RAM,

states are cached in the streaming nodes for a period, then sent to a

key-value store after some time, where they are written in replicated

fashion to cheap storage, and typically expire unaccessed. As a

result, the RAM needed for streaming nodes is small, and may be

checkpointed and recovered cheaply.

This design would, however, be untenable for online gaming,

where the event rate is high (e.g., millions of events per second),

with a large number of active users, and with little locality for a

cache to leverage. The tolerance for recovery latency is very low,

making it impossible to recover a failed node quickly enough.

While many streaming resiliency strategies are discussed in the

literature, along with some modeling work, the state of the art does

not quantify the performance and cost tradeoffs across even basic

strategies in a way which is actionable in today's cloud

environments. For instance, prior efforts (e.g. [11]) do not consider

uptime SLAs and resource reservation costs, leading to analyses

useful for establishing some intuition for the differences between

approaches, but not for selecting strategies in today’s datacenters.

Lacking tools or frameworks sufficient to prescribe resiliency

approaches, practitioners typically choose the technique which is

easiest to implement, or in cases like MillWheel, build systems

tailored to solve particular classes of problems, hoping that these

systems will have high general applicability.

This paper presents an analytical framework based on uptime SLAs

and resource reservation, as well as detailed analyses of a number
of resiliency designs for streaming systems. We show:

 One size doesn’t fit all: There is no resiliency strategy which

efficiently covers most of the streaming query space. Specific

strategies can be vastly better compared to others (by orders

of magnitude!), depending on scenario and environment

characteristics, even when considering only realistic

scenarios. While [11] presented similar results for a limited

spectrum of strategies, we confirm that this holds across a

much broader spectrum of approaches when considering
SLAs and with a resource allocation style of provisioning.

 No actionable “rules of thumb”: While some strategies are

better than others for specific scenarios, the tradeoffs are too

complex for useful “rules of thumb”. Models are needed to
understand the efficacy of specific approaches for scenarios.

 Informative models are tractable: Models are provided in this

paper, and make the alternatives explicit and clear, and,

surprisingly, only depend on a few scenario and infrastructure

parameters. While our models are a major contribution, it is

not necessary that readers understand them in order to use

them, or understand the conclusions in this paper.

 Our models are accurate: Using real data and a real streaming

system running a real query, we show through our distributed

resiliency emulator that the SLAs achieved in practice are

typically within 1% of what our models predict.

 These models are straightforward to develop: They can be

adapted to describe many resiliency strategies: We provide the

precise model modifications for modeling sharded/parallel

streaming queries. We also sketch model modifications for
handling distributed pipelines and Millwheel style caching.

 We introduce active-active periodic checkpointing: While a

generalization of periodic checkpointing, it is not discussed in

the literature, likely because it is considered to be inferior to

active-active on-demand checkpointing. We show that
periodic checkpointing is a better strategy in most situations.

Paper organization: Section 2 describes the modeled resiliency

strategies. Section 3 describes our modeling framework, including

our metrics and parameters, and our modeling assumptions. Section

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357571324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

4 provides models for 5 resiliency strategies. Section 5 validates the

accuracy of our models using a distributed resiliency emulator and

a real query on real data with a real streaming query processor.

Section 6 evaluates the strategies, by applying our models with

varying parameter settings. Section 7 describes extensions to our

models which take into account other kinds of resources, and how

those models could be applied in situations with sharding or

caching. Section 8 gives an overview of related work. Section 9

concludes the paper with lessons learned and future work.

 RESILIENCY STRATEGIES
This section gives an overview of the fundamental resiliency

strategies considered in this paper. Note that these are foundational

approaches, mostly described in the literature, and can be varied to

create derivative solutions like the one used in MillWheel. In

Section 7, we discuss these derivative strategies, and how the

models in this paper can be applied.

These foundational strategies are described visually in Figure 1,

Figure 2, and Figure 3, which show the states that a typical

streaming node goes through for different resiliency approaches.

These figures will be referred to throughout this section. Note that

initially, we do not consider sharded scenarios. We relax this

restriction with precise model modifications in Section 7.

In the figures below, nodes begin by recovering the state of the

failed node which they are replacing. This is the case for all nodes

except for nodes which initially start the query. Similarly, the

lifetimes of almost all streaming nodes end with failure.

Note that in all resiliency approaches described in this paper, we

assume the existence of a resilient store, and further assume that all

input is journaled in this store. Furthermore, for all cases, except

one version of replay based (for explanatory purposes), we assume

that all output must be delivered exactly once in the face of failure.

 Replay Based
These scenarios leverage knowledge of the query’s window size.

For instance, in a 1 minute trailing average, the window size is 1

minute. Note that such information isn’t always available, in which

case these resiliency approaches are not possible.

In the single node version, as described by the timeline in Figure 1,

when the node fails, a new node is created which first consumes a

window of input. During this time, the query falls further behind,

so it subsequently enters a catchup phase until normal operation can

resume. Note that one can either start consuming input from a point

in time which guarantees no loss of output, or choose a moment in

time a bit later which minimizes catch up time.

In active-active replay, all nodes simultaneously run the query.

When a copy fails, it recovers in the same manner as single node

replay. The query is only down when all running copies go down.

Active-active approaches are critical for meeting tough SLAs, but

how many copies should be run for a given scenario and SLA?

Note that for all active-active approaches, including replay based,

we assume that there is a primary copy which is responsible for

sending output. Part of handling failure is to seamlessly switch

primaries from one copy to another. As a result, the cost of output

transmission doesn’t vary significantly between strategies.

Replay
Input

Catch
Up

Normal
Operation

Node
Recovers

Node
Fails

Figure 1: Replay Based Node Timeline

Recover
Checkpoint

Catch
Up

Normal
Operation

Node
Recovers

Node
Fails

Take
Checkpoint

Catch
Up

Normal
Operation

Figure 2: Periodic Checkpointing Based Timeline

Normal
Operation

Take
Checkpoint

Catch
Up

Normal
Operation

Recover
Checkpoint

Catch
Up

Normal
Operation

Node
Recovers

Node
Fails

Recover To
Node

Recover From
Node

Figure 3: On Demand Checkpointing Based Timeline

 Periodic Checkpointing Based
These solutions make use of some systems’ ability to checkpoint

the state of a running query. As shown in Figure 2, the running

query periodically checkpoints its state to a resilient store. Upon

failure, the latest checkpoint is read and rehydrated on a new node,

and the input is replayed from the time of the checkpoint. Note that

for checkpointing based strategies, duplicate output is typically

thrown away as part of catching up [5].

While we found no reference to the active-active version, it is a

clear extension of the single node version, where the query is run

on many nodes. One reserved copy periodically checkpoints. When

a copy fails, a new copy is spun up as in the single node version. If

the checkpointing node fails, during the subsequent catchup phase,

all checkpoints are taken at the correct logical times according to

the checkpointing period, as if the node wasn’t recovering.

Checkpointing based solutions are typically chosen when either

replay solutions aren’t possible, or where the checkpoint size is

significantly smaller than the input needed to reproduce it, but how

much smaller does the checkpoint need to be? Are there other

important factors?

 On-demand Checkpointing Based
These are the solutions usually referred to in the literature as active-

active checkpointing. As shown in Figure 3, in this approach,

multiple copies of the computation are run. When a node fails,

another running node stops processing input and takes a

checkpoint, which is used to rehydrate a new running copy. Note

that this approach requires at least 2 running nodes.

This approach never writes checkpoints to storage, checkpoints

only when needed, and catchup times are less. However, an extra

node is needed to jump-start a failed node (i.e., when a node goes

down, two stop processing input), and if all running copies fail, the

3

state is lost. As we will see, in practice, this strategy is mostly

inferior to active-active periodic checkpointing.

 MODELING FOUNDATIONS
In this section we formalize the metrics by which we evaluate

resiliency approaches, and the parameters upon which they depend.

We begin with a general discussion of the challenges of deciding

on the metrics of interest, and conclude the section with a precise

statement of the chosen metrics and parameters.

 Modeling Objectives
Typically, streaming queries are run on one or more nodes in a

datacenter, and incur various costs, including:

 CPU costs to run, recover, and checkpoint the query

 Storage costs to resiliently journal the input and checkpoints

 Networking costs to move input and checkpoints.

 Memory costs associated with maintaining query state

All of these costs are affected by the choice of resiliency strategy,

whose goal is to meet a downtime SLA. This type of SLA allows

the user to specify, for instance, the number of minutes per year

during which the query is “down”. Down, in this context, means

that the results are not being delivered in as timely of a fashion as

they would if failure didn’t occur. For instance, if a query is

catching up after failure and recovery, this is considered downtime

until the query has completely caught up to the arriving input.

In this paper, we specifically model NIC bandwidth costs as a

proxy for overall network costs. This choice captures all network

activity at the edges, regardless of internal topology, including

network capacity to and from storage nodes, compute nodes, and

ingress nodes. Our models capture the complexity present in

modeling other resources, and can be varied to capture the other

resource costs (see Section 7.1).

By only considering NIC costs in the models presented and

evaluated here, we will miss some phenomena. For instance, when

states are hard to compute (i.e. high computational complexity),

checkpointing is typically better than replay. Also, sometimes

memory is a critical cost which can affect the choice of resiliency

strategy, as was the case in MillWheel. Section 7 sketches how our

models can be extended to analyze these cases. Note that making

our models sensitive to these phenomena results in a more complex,

but still tractable, optimization space, which strengthens our

conclusion that an actual model is needed.

In order to compute cost, we take a bandwidth reservation

approach. More specifically, consider the network load profiles of

compute nodes for the three types of resiliency approaches, shown

in Figure 4. For all scenarios, each query on a node begins its life

by recovering a previously failed query’s state.

For replay, once recovery is complete, the load settles down to the

same load that would exist without resiliency. This suggests that

we must find enough bandwidth on the node to recover quickly

enough to meet our SLA, but that we can significantly lower the

bandwidth requirements once recovery is over, leaving room on the

node for other work.

For periodic checkpointing based approaches, there is one node

which periodically checkpoints. For the single node version, if

enough bandwidth isn’t available for either recovery or

checkpointing, we will not be able to meet our SLA. Since

increasing the bandwidth reservation of a node could be heavily

disruptive to other jobs on the node, resulting in SLA failure for

those jobs, we reserve enough capacity to accommodate recovery

initially, and periodic checkpointing until failure, even though there

are periods, after recovery and between checkpoints, where the

network load is lower. This requirement that reservations only

decrease over time is met for all reservation strategies.

For active-active periodic checkpointing, since the checkpointing

node is never used for output, it may fall behind without impacting

the SLA, since other nodes, which aren’t checkpointing, are always

up to date. Rather, the checkpointing node must keep up overall

with a constant reservation for the average needed bandwidth, but

may fall behind for periods of time. We therefore need to only

reserve the average, rather than the peak, load. Note that some

nodes will never need to checkpoint. These nodes have load profiles

like the replay based approach, and we can similarly decrease their

bandwidth reservation once recovery is over.

Recovery

Recovery
Checkpoint
& Catchup

Checkpoint
& Catchup

Recovery

Recovery
Checkpoint
& Catchup

Checkpoint
& Catchup

Checkpoint
& Catchup

Replay

Periodic
Checkpointing

On-demand
Checkpointing

Figure 4: NIC Load for Compute Nodes

For on-demand based approaches, after recovery is over, any node

may, at any time, be used to start a new instance. The load is

therefore characterized by sporadic heavy load associated with

checkpointing. Like single node periodic checkpointing, we

continuously reserve the peak checkpointing load needed to ensure

that the SLA is met.

With this bandwidth reservation approach in mind, the goal of our
model is to answer two questions:

1. How much bandwidth, compared to the input bandwidth, do I
need to reserve initially to recover my query?

2. How costly, in terms of reserved NIC bandwidth, is my

resiliency approach compared to running the query non-
resiliently?

Note that both of the costs mentioned above are in comparison to

the cost of running the query non-resiliently. This is a deeply

important, nonobvious facet of our modeling approach which

greatly simplifies our modeling task.

 Modeling Assumptions
In order to simplify our analysis, we make certain assumptions:

 All network load and other work associated with processing

the query unresiliently is unvarying over time. As a result,

4

these models are useful for capturing “worst cases”. This

assumption is deeply embedded in our approach and cannot be

relaxed without deep changes in our models.

 The output is small compared to the input and is, therefore, not

part of the model. This assumption simplifies our presentation,

and is almost always true for streaming queries. Output

transmission could easily be added to our models.

 Failure doesn’t occur during recovery. This is an assumption

made to simplify the presentation of our models. In all cases,

this is a second order effect, and only has small impact on the

resulting costs. This assumption could be relaxed by extending
the presented approaches.

 Modeling Metrics and Parameters
With the above two goals in mind, we introduce the following two

metrics which will be computed for each resiliency option, given
application and infrastructure parameters:

 𝑅𝐹 = The recovery NIC bandwidth reservation needed to meet

the SLA, as a factor of input bandwidth. The subscript refers
to the unit (factor).

 𝐶𝐹 = The cost, in terms of total reserved NIC bandwidth, as a

factor of the NIC costs associated with running the query non-
resiliently (factor).

These metrics are computed using these application parameters:

 𝑊𝑇 = windows size, such as 10 minutes in a 10 minute trailing

window (time, e.g. sec).

 𝐶𝑆= Checkpoint size (size, e.g. bytes)

 𝐼𝑅= Input rate (size/time)

 𝑆𝐿𝐴 = Fraction of the time that the system response to input is

unaffected by failure (ratio, e.g. .99999)

We also have the following infrastructure parameters:

 𝐹𝑇 = Mean time between failure for a single node (time)

 𝐾𝐹 = Number of copies in replicated storage (factor)

In addition, there are, for some resiliency strategies, the following
tunable parameters, which we set as part of optimizing for cost:

 𝐶𝑇 = Checkpoint period for periodic checkpointing (time)

 𝑁𝐹 = Number of running copies (factor). This is either
explicitly set, or varied as part of optimizing cost.

Finally, there is, throughout the following analyses, the following
computed value, which is computed from the above parameters:

 𝑆𝑇 =
𝐶𝑆

𝐼𝑅
–= The checkpoint transfer time assuming input rate

bandwidth (time)

 Computing 𝑪𝑭
Figure 5 illustrates the network flows when computation isn’t

resilient to failure. The NIC costs associated with these flows form

the baseline with which all other approaches are compared.

First, note that the data could initially be acquired by the ingress

node with a network flow arriving at the node, although the data

could also be born at this node. Also, there is a network flow

transmitting the input to the compute node, as well as a network

flow to each of the storage nodes on which a copy of the data will

be stored. Note that there is only one path on the ingress node to all

the storage nodes which store the data. This reflects our decision to

capture the costs in common with all implementations of cloud

storage. All implementations must push a copy to each of 𝑘 storage

nodes, but whether internal network communication is reduced

with interesting topologies and/or broadcast networks varies

amongst implementations. These varying costs could easily be

accounted for in all of our models for a particular storage

implementation. Also, note that the storage nodes in our figure are

logical, as a single copy of the data may actually be spread out over

a very large number of nodes in a storage cluster. The aggregate

NIC bandwidth is, however, insensitive to this, so we represent

each of these copies as sent to a single node.

Ingress

Compute1 Storage1

StorageK

C1

C1

C1

C1

C1

...

Figure 5: Network Flow Diagram With No Resiliency

Associated with each network flow are NIC costs at either end (i.e.,

𝐶1), which, in this case, are symmetric. For some strategies,

however, the reservations are not symmetric, and for this reason,

we separately account for the costs at both ends. To compute the

cost of all network flows, we calculate the expected total NIC

reservation costs during a failure period, as a factor of the input

rate. As a result, 𝐶1 = 𝐹𝑇 is used here, since there is an input rate

sized NIC bandwidth reservation for 𝐹𝑇 time units.

When computing 𝐶𝐹, we will not include the cost of acquiring the

data, since it is insensitive to the choice of resiliency strategy, and

the data may be born on the node, in which case there are no

network costs. As a result, the baseline cost, adding up all the

network flow costs at both sender and receiver, is 2 ⋅ 𝐹𝑇 for the

ingress node, 𝐹𝑇 for the compute node, and 𝑘 ⋅ 𝐹𝑇 for the storage

nodes, or (𝑘 + 3) ⋅ 𝐹𝑇 in total. This will be used as the denominator

in every cost calculation throughout the paper.

 RESILIENCY MODELS
We now describe five of our models. Specifically, we model the

single node versions of replay and periodic checkpointing, and the

active-active variants of replay, periodic checkpointing, and on-

demand checkpointing.

 Single Node Replay
There are two versions of single node replay. In the first, we assume

that lost output is acceptable, and that the goal of recovery is to

minimize downtime. This assumption is desirable for dashboards,

where users are frequently uninterested in previous results (e.g. task

manager in windows). We also provide an analysis where all output

is computed. This is desirable when output is logged, or where

visualizations provide the history of a reported metric.

We begin our first analysis by deriving 𝑅𝐹. Note that we are trying

to find the minimal setting for 𝑅𝐹 which meets our SLA over an

arbitrarily long period of time. In particular, to exactly meet our

SLA in the long run, each failure is allowed a downtime budget,

which, on average, is used to fully recover when the query initially

starts. In particular, that budget:

𝐵𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

Observe that for each failure, the recovery time 𝑅𝑇 is:

𝑅𝑇 =
𝑊𝑇
𝑅𝐹

5

This can be seen when one considers that to recover, one must

replay exactly a window’s worth of data. If the bandwidth

reservation is double what is needed to process the input in real

time, recovery can happen in half the window size period of time,

and so on. We can now set 𝑅𝑇 = 𝐵𝑇, and we have:

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴) =
𝑊𝑇
𝑅𝐹
,

𝑅𝐹 =
𝑊𝑇

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

Ingress

Compute1 Storage1

StorageK

C1

C1

C1

C1

C1

...

C2 C2

Figure 6: Network Flow Diagram for Single Node Replay

In computing 𝐶𝐹, first consider Figure 6, which shows the flows

and costs associated with replay. First, note that cost 𝐶1 is the same

as in the non-resilient case. We additionally have cost 𝐶2, which is

associated with the replay flow. This cost is 𝑅𝑇 ⋅ 𝑅𝐹, minus the cost

of the portion of replay which involved receiving data for the first

time from the ingress node, or 𝑅𝑇. Resulting in:

𝐶2 = 𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇

Summing up all the costs:

𝐶𝐹 =
2 ⋅ (𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇) + (𝐾𝐹 + 3) ⋅ 𝐹𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

On the other hand, if we are not allowed to miss output, then

recovery time must start reading input starting from a full window

before failure occurred. Once a full window of data has been read,

we have fallen behind by the time it took to transmit that window’s

worth of data. Once we have caught up by that amount, we have

further fallen behind by a smaller amount, and so on. This leads to

the following infinite series:

𝑅𝑇 =
𝑊𝑇
𝑅𝐹
+
𝑊𝑇

𝑅𝐹
2 +

𝑊𝑇

𝑅𝐹
3 +⋯

Note that, for convenience, we will frequently substitute:

𝑈 =
1

𝑅𝐹

We now have the geometric series:

𝑅𝑇 = 𝑊𝑇 ⋅ 𝑈 ⋅∑𝑈𝑖
∞

𝑖=0

, 𝑈 < 0

Using the closed form for the series, we get:

𝑅𝑇 =
𝑊𝑇 ⋅ 𝑈

(1 − 𝑈)
= 𝐵𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑈 =
𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑊𝑇 + 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑅𝐹 =
𝑊𝑇 + 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

The total cost is more straightforward to calculate, as 𝐶2 is just the

cost of reading a window’s worth of data. Thus:

𝐶𝐹 =
2 ⋅ 𝑊𝑇 + (𝐾𝐹 + 3) ⋅ 𝐹𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

 Single Node Periodic Checkpointing
In this resiliency approach, checkpoints are taken periodically.

Both the downtime experienced during checkpointing, as well as

the downtime experienced during recovery are charged against the

downtime budget.

We start with the downtime experienced during checkpointing:

Every failure period,
𝐹𝑇

𝐶𝑇
 checkpoints are taken, each of which takes

𝑆𝑇 time units to transfer over the network, assuming input rate

bandwidth. In addition, there is a catch up period after each

checkpoint is taken, which is the time it takes for the output to be

produced in as timely a fashion as if a checkpoint had never been

taken. Clearly, the amount of time it takes for the checkpoint to be

transferred is 𝑈 ⋅ 𝑆𝑇.

The catch up time is a bit trickier: during the time it took to take the

checkpoint, the input fell behind by 𝑈 ⋅ 𝑆𝑇 time units. It takes 𝑈 ⋅
𝑈 ⋅ 𝑆𝑇 time to replay this input, at the end of which, we are now

behind by 𝑈 ⋅ 𝑈 ⋅ 𝑈 ⋅ 𝑆𝑇 time units. In other words, the catch up

time can be expressed with the following geometric series: 𝑈 ⋅ 𝑈 ⋅

𝑆𝑇 ⋅ ∑ 𝑈𝑖∞
𝑖=0 . Since the only way we can catch up is if 𝑈 < 1, the

closed form for the series can be used, and the downtime cost of

checkpointing for each failure period, 𝐵1𝑇, can be written as:

𝐵1𝑇 = 𝑈 ⋅ (𝑆𝑇 +
𝑈 ⋅ 𝑆𝑇
1 − 𝑈

) ⋅
𝐹𝑇
𝐶𝑇

Calculating the downtime associated with recovery is a bit more

difficult. Similar to taking a checkpoint, there are two phases: a

checkpoint recovery period, and a catch up period. Unlike taking a

checkpoint, the catch up period depends upon how long ago a

checkpoint was taken.

Take
Checkpoint=

ST

Time since last
checkpoint= t

Node
Fails

Recover
Checkpoint=

ST

Catch
Up

Normal
Operation

Figure 7: Periodic Checkpointing Recovery Timeline

Consider Figure 7, which shows the timeline for checkpointing and

recovery. Observe that on the far left, the last completed checkpoint

begins. 𝑡 time units after the checkpoint is successfully transferred,

failure occurs. At this time, checkpoint recovery begins, and the

checkpoint is transferred. Once the transfer is complete, catch up

commences.

The time to recover the checkpoint after recovery begins is clearly

𝑈 ⋅ 𝑆. The recovery time has two components. The first is a “fixed”

component that doesn’t vary with the amount of time since the last

checkpoint was successfully transferred. Another way to look at

this is that this is the catchup time if 𝑡 = 0. In this case, the total

amount of input which needs to be replayed is the time it took to

transfer the checkpoint when it was taken, plus the time it took to

recover the checkpoint after failure. Thus the total amount of fixed

input time which needs to be recovered is 2 ⋅ 𝑈 ⋅ 𝑆𝑇. Note that we

still have the infinite sum as we replay, so the total budget used for

the fixed replay cost is
2⋅𝑈⋅𝑈⋅𝑆𝑇

1−𝑈
. In addition to this, there is a variable

6

replay amount, 𝑡, which varies from 0 to 𝐶𝑇. We account for this

variable cost by doing an expected value calculation for 𝑡.
Therefore the total replay cost 𝐵2𝑅𝑒𝑝𝑙𝑎𝑦𝑇, is:

𝐵2𝑅𝑒𝑝𝑙𝑎𝑦𝑇 = 𝑈 ⋅ (
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+
∫ 𝑡 ⋅ 𝑑𝑡
𝐶𝑇
0

(1 − 𝑈) ⋅ 𝐶𝑇
)

It follows directly that the total recovery cost, 𝐵2𝑇, which includes

both the cost of restoring the checkpoint, and the replay cost, is:

𝐵2𝑇 = 𝑈 ⋅ (𝑆𝑇 +
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+
∫ 𝑡 ⋅ 𝑑𝑡
𝐶𝑇
0

(1 − 𝑈) ⋅ 𝐶𝑇
)

The total cost per failure, 𝐵𝑇, is therefore:

𝐵𝑇 = 𝐵1𝑇 + 𝐵2𝑇 = 𝑈 ⋅ (𝑆𝑇 +
𝑈 ⋅ 𝑆𝑇
1 − 𝑈

) ⋅
𝐹𝑇
𝐶𝑇
+ 𝑈

⋅ (𝑆𝑇 +
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+
∫ 𝑡 ⋅ 𝑑𝑡
𝐶𝑇
0

(1 − 𝑈) ⋅ 𝐶𝑇
)

Note that really we are interested in maximizing 𝑈, which is

equivalent to solving for 𝑈 when the recovery budget per failure

equals the maximum allowable downtime per failure, or:

(1 − 𝑆𝐿𝐴) ⋅ 𝐹𝑇 = 𝐵𝑇

Throughout our modeling efforts, we are presented with such

equations, and while sometimes it is possible to solve for 𝑈

analytically, in general, we take a numerical approach. For instance,

in this case, we find the zero for:

𝐹(𝑈) = 𝐵𝑇 − (1 − 𝑆𝐿𝐴) ⋅ 𝐹𝑇

Since 𝐹(𝑈) is monotonically increasing, 0 < 𝑈 < 1 , 𝐹(0) < 0,

and 𝑓(1) is an asymptote at infinity, we simply do a binary search

between 0 and 1, avoiding any potential instability issues in a

technique like Newton’s method. Note, though, that we need to find

the zero in the above equation for a setting of 𝐶𝑇 which optimizes

cost. The details of the numerical approach taken to solve this

problem are described in Section 4.6. It is worth pointing out, here

that this numerical problem is solved very efficiently, and with no

numerical stability issues.

Ingress

ComputeN

Storage1

StorageK

C1

C1

C1

C1

C1

...

C2 C2

C4

C3

C3

Figure 8: Network Flow Diagram for Single Node Periodic

Checkpointing

Once we determine 𝑈, we can compute 𝑅𝐹:

𝑅𝐹 =
1

𝑈

In computing 𝐶𝐹, first consider Figure 8, which shows the flows

and costs associated with single node periodic checkpointing. First,

note that cost 𝐶1 is the same as in the non-resilient case, incurring

a cost of:

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

Determining 𝐶2, the network costs associated with recovery, is

similarly straightforward, as it includes the cost of sending or

receiving a checkpoint, and sending or receiving, on average, half

the checkpointing period:

𝐶2 = 𝑆𝑇 +
𝐶𝑇
2

There are two NICs where 𝐶2 cost is incurred, which we will

elaborate on further.

Note that on the checkpointing edge, 𝐶4/𝐶3, the network

reservation on the compute node, and on each storage node, are

different. This is due to our assumption that bandwidth reservations

on compute nodes are only allowed to decrease over time, as

increasing a reservation may not always be possible without

significant disruption of other activity. As a result, not all reserved

capacity is actually consumed. On the other hand, storage systems

are extremely effective at spreading out load, making is possible to

easily adjust to increasing and decreasing bandwidth requirements.

As a result, 𝐶1 + 𝐶4 + 𝐶2 = 𝑅𝐹 ⋅ 𝐹𝑇.

𝐶3, on the other hand, is the actual cost of checkpointing, which,

similar to active-active checkpointing, is:

𝐶3 =
𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

We are now ready to write the total cost:

𝐶𝐹 =
(𝐾𝐹 + 2) ⋅ 𝐹𝑇 + (𝑐1 + 𝑐4 + 𝑐2) + 𝑐2 + 𝐾𝐹 ⋅ 𝐶3

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

=
(𝐾𝐹 + 2 + 𝑅𝐹) ⋅ 𝐹𝑇 + 𝑆𝑇 +

𝐶𝑇
2
+
𝐾𝐹 ⋅ 𝑆𝑇 ⋅ 𝐹𝑇

𝐶𝑇
(𝐾𝐹 + 3) ⋅ 𝐹𝑇

 Active-Active Periodic Checkpointing
Recall that with this resiliency approach, multiple copies of the

streaming computation are running, and one of these copies is

reserved for periodic checkpointing. When one of the copies goes

down, recovery from the last successful checkpoint is initiated. As

long as at least one non-checkpointing copy remains, there is no

downtime. If, after a time, all copies go down, the remaining

recovery time is charged against the SLA budget for that failure.

We begin our analysis by describing our failure model for nodes

used in active-active approaches. Specifically, assume that the

distribution for the amount of time it takes for a node to fail is

captured by the exponential distribution [22]. We determine the

resiliency cost associated with all running copies failing before

recovery is complete, as follows:

Let the random variables 𝑋𝑖 = the time for node 𝑖 to fail given 𝜆 =
1

𝐹𝑇
. The PDF and CDF for 𝑥𝑖 , 𝑓(𝑡) and 𝐹(𝑡) respectively, are:

𝑓(𝑡) = 𝑃(𝑋𝑖 = 𝑡) = 𝜆𝑒
−𝜆𝑡

𝐹(𝑡) = 𝑃(𝑋𝑖 ≤ 𝑡) = 1 − 𝑒
−𝜆𝑡

7

Let 𝑌 = the time for the 𝑘 = 𝑁𝐹 − 2 remaining nodes to fail. The

PDF and CDF for 𝑌, 𝑔(𝑡) and 𝐺(𝑡) respectively, are:

𝐺(𝑡) = 𝑃(𝑌 ≤ 𝑡) = ∏𝑃(𝑋𝑖 ≤ 𝑡) =

𝑘

𝑖=1

(1 − 𝑒−𝜆𝑡)𝑘

𝑔(𝑡) =
𝑑(𝐺(𝑡))

𝑑𝑡
=
𝑑((1 − 𝑒−𝜆𝑡)𝑘)

𝑑𝑡

Each time a node fails, its state must by recovered and the node

must be caught up to the latest input. If all other nodes fail before

recovery is complete, then the user will experience downtime,

which will be charged against the downtime budget.

We now consider the impact to our resiliency budget in 3 cases. In

all these cases, t is the time until all running nodes fail after one

begins recovery. Recovery involves both a fixed sized cost, which

includes the time to recover the checkpoint, and an input catch up

cost which is twice the time it takes to take a checkpoint (time to

take the checkpoint and time to restore the checkpoint), plus an

additional variable sized input catch up cost, which depends on how

far back the last checkpoint completed.

4.3.1 Case 1: 𝑡 < 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
)

In this case, failure occurs before the fixed portion of the recovery

cost is complete. This includes the time to restore a checkpoint of

time length 𝑆𝑇, plus the time length of input which arrived while

the used checkpoint was taken (i.e. 𝑈 ⋅ 𝑆𝑇), plus an equal amount

of input which arrived while the checkpoint was restored.

Consider a variable 0 < 𝑝 < 𝐶𝑇, which represents, at the time of

initial failure, the amount of time which passed since the last
checkpoint completed. For a given t, the budget used is:

𝑏1𝑇(𝑡) = ∫
𝑈 ⋅ (𝑆𝑇 + (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝑝) ⋅ ∑ 𝑈𝑖∞

𝑖=0) − 𝑡

𝐶𝑇

𝐶𝑇

0

𝑑𝑝

= ∫
𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+
𝑝

1 − 𝑈
) − 𝑡

𝐶𝑇

𝐶𝑇

0

𝑑𝑝

Note that in the above, 𝑈 ⋅ 𝑆𝑇 is the portion of recovery associated

with rehydrating the checkpoint, while 𝑈 ⋅ (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝑝) ⋅
∑ 𝑈𝑖∞
𝑖=0 is the time needed to catch up, depending on how long it’s

been since the last checkpoint completed. The 2 ⋅ 𝑈2 ⋅ 𝑆𝑇 portion

of this reflects the time to catch up associated with both taking and

restoring the checkpoint.

Integrating over the relevant times for this case, the overall impact
on our recovery budget is:

𝐵1𝑇 = ∫ 𝑔(𝑡) ⋅ 𝑏1𝑇(𝑡) ⋅ 𝑑𝑡
𝑈⋅(𝑆𝑇+

2⋅𝑈⋅𝑆𝑇
1−𝑈

)

0

4.3.2 Case 2:

U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

) < t < U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

+ CT ⋅∑Ui)

∞

i=0

Or equivalently:

U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

) < t < U ⋅ ST +
U ⋅ (2 ⋅ U ⋅ ST + CT)

1 − U

In this case, failure happens after all fixed recovery costs, but we

cannot conclude that recovery completes in all cases before total

failure occurs. For each value of 𝑡 in this range, there are some sub-

cases where total failure occurs before catch-up is complete, which

incurs a cost against our resiliency budget, but there are also some

sub-cases where total failure occurs after catch-up is complete,

incurring no penalty.

In particular, in the above upper bound, 𝑈 ⋅ 𝑆𝑇 represents the time

to rehydrate the checkpoint, while the second term,
𝑈⋅(2⋅𝑈⋅𝑆𝑇+𝐶𝑇)

1−𝑈
,

represents the portion of the recovery time to catch-up, by as much

as 𝑈 ⋅ (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝐶𝑇) after checkpoint rehydration is complete.

Consider a variable 𝑡𝑝 = 𝑡 − 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
), which represents

how much time we had after the fixed portion of the recovery, to

catch up before total failure. Furthermore, consider a scaled version

of 𝑝, called 𝑝𝑐, which is the amount of variable catch-up time

needed given a particular value of 𝑝. Note that:

𝑝𝑐 =
𝑈 ⋅ 𝑝

1 − 𝑈

Consider Figure 9, which illustrates the entire range of possibilities

for the current case. For each time 𝑡𝑝, we have enumerated the

space of possibilities, which is to say, that 𝑝 could range anywhere

from 0 to 𝐶𝑇, resulting in:

0 ≤ 𝑝𝑐 ≤
𝑈 ⋅ 𝐶𝑇
1 − 𝑈

Now consider the diagonal where 𝑡𝑝 = 𝑝𝑐. This is the case where

the new node exactly catches up when the last running node fails,

resulting in 0 downtime. For the lower right triangle, the new node

has been fully caught up before the other nodes fail, also resulting

in 0 downtime. There are also contour lines, parallel to and above

the diagonal, which represent constant and increasing amounts of

time between catch-up and failure. We now define a new variable

𝑥 = 𝑝𝑐 − 𝑡𝑝. In order to calculate the contribution of these

scenarios to the cost of resiliency, we calculate:

𝐵2𝑇 = ∫ 𝑥 ⋅ 𝑃(𝑋 = 𝑥)

𝑈⋅𝐶𝑇
1−𝑈

0

𝑑𝑥

0

0 U · CT

1 - U

U · CT

1 - U

tp

pc

Figure 9: Case 2 variables and integration limits

In other words, we sum the various cost contour lines, where each

contour is multiplied by the likelihood of occurrence for that

contour. In order to calculate the likelihood, we integrate across the

relevant range of 𝑡𝑝, summing the probabilities of all points along

the contour line. We are aided here by the assumption that when

failure occurs, there is a uniform probability distribution (between

0 and 𝐶𝑇) for how far back the last checkpoint completed. Thus:

𝑃(𝑋 = 𝑥) = ∫ 𝑔 (𝑡𝑝 +𝑈 ⋅ (𝑆𝑇 +
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (
1

(
𝑈 ⋅ 𝐶𝑇
1 − 𝑈

)
)

𝑈⋅𝐶𝑇
1−𝑈−𝑥

𝑡𝑝=0

𝑑𝑡𝑝

8

= ∫

(

𝑔(𝑡𝑝 +𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (1 − 𝑈)

𝑈 ⋅ 𝐶𝑇

)

𝑈⋅𝐶𝑇
1−𝑈−𝑥

𝑡𝑝=0

𝑑𝑡𝑝

A few notes:

 The 𝑡𝑝 in 𝑔 (𝑡𝑝 + 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
)) comes from the outer

integral. We add the fixed costs of recovery to t because we

are picking probabilities for total failure times which occur

after these costs are incurred (i.e. we are converting from 𝑡𝑝 to

𝑡). We divide the resulting probability to spread it out

uniformly amongst all the cases for that total failure time.

 The upper bound on the definite integral decreases as 𝑥

increases because we only integrate the portion of the contour

line below 𝑝𝑐 =
𝑈⋅𝐶𝑇

1−𝑈
 . As we increase 𝑥, the portion of the

contour line we integrate over therefore gets shorter.

Thus, the total contribution of this case to our resiliency budget is:

𝐵2𝑇 = ∫ 𝑥 ⋅

(

∫

(

𝑔(𝑡𝑝 + 𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (1 − 𝑈)

𝑈 ⋅ 𝐶𝑇

)

𝑈⋅𝐶𝑇
1−𝑈

−𝑥

𝑡𝑝=0

𝑑𝑡𝑝

)

⋅ 𝑑𝑥

𝑈⋅𝐶𝑇
1−𝑈

0

4.3.3 Case 3: 𝑡 > 𝑈 ⋅ 𝑆𝑇 +
𝑈⋅(2⋅𝑈⋅𝑆𝑇+𝐶𝑇)

1−𝑈

In this case failure is guaranteed to occur after recovery is complete,
and there is no impact on our resiliency budget. Therefore:

𝐵3𝑇 = 0

Considering all cases, the overall resiliency cost per failure is:

𝐵𝑇 = 𝐵1𝑇 + 𝐵2𝑇 + 𝐵3𝑇

Our goal is to solve for 𝑈 in:

(1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹
= 𝐵𝑇

First, note the use of 𝑁𝐹 in calculating our per failure budget. Our

budget is adjusted thus because failure is more common by a factor

of 𝑁𝐹, reducing the per failure budget. As in the single node

periodic checkpointing case, we take a numerical approach.

Specifically, we find the zero for:

𝐹(𝑈) = 𝐵𝑇 − (1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹

Again, since 𝐹(𝑈) is monotonically increasing, 0 < 𝑈 < 1 ,
𝐹(0) < 0, and 𝑓(1) is an asymptote at infinity, we simply do a

binary search between 0 and 1, avoiding any potential instability

issues in a technique like Newton’s method. Note that in practice,

we must solve the above equation with values chosen for 𝐶𝑇 and

𝑁𝐹 which optimize cost. Since 𝑁𝐹 has a small number of finite

values worth considering, we optimize cost for each distinct value

of 𝑁𝐹, each of these optimization problems are solved in a manner

similar to single node checkpointing, with the specific numerical

approach described in Section 4.6.

Once we determine 𝑈, we can compute 𝑅𝐹:

𝑅𝐹 =
1

𝑈

In computing 𝐶𝐹, first consider Figure 10, which shows the flows

and costs associated with active-active periodic checkpointing.

First, note that cost 𝐶1 is the same as in the non-resilient case,

although there are additional flows with these costs due to the
active-active nature of this solution, incurring costs of:

(𝐾𝐹 + 1 + 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇

Ingress

Compute1

ComputeN

Storage1

StorageK

C1

C1C1

C1

C1

C1

C1

...

...

C2

C2

C2

C2

C3

C3

C3

Figure 10: Network Flow Diagram for Active-Active Periodic

Checkpointing

We additionally have cost 𝐶2, which is associated with the recovery

flow, and occurs, on average, 𝑁𝐹 times during 𝐹𝑇. This flow

consists of sending and receiving a checkpoint, followed by

catching up to the point of failure by replaying stored input. Since

the expected time since the last checkpoint is 𝐶𝑇/2, the total costs

associated with 𝐶𝑇 are:

𝑁𝐹 ⋅ (2 ⋅ (𝑆𝑇 +
𝐶𝑇
2
))

𝐶3, the network costs of taking a checkpoint, like 𝐶2, involves

sending and receiving checkpoints, except that there is no replay

component, it occurs 𝐹𝑇/𝐶𝑇 times during the failure interval, and is

sent to 𝐾𝐹 storage nodes, leading to a cost of:

(𝐾𝐹 + 1) ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

Summing all the components of 𝐶𝐹 leads us to the following:

𝐶𝐹 =
(𝐾𝐹 + 1+ 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇 + 𝑁𝐹 ⋅ 2 ⋅ (𝑆𝑇 +

𝐶𝑇
2
) +

(𝐾𝐹 + 1) ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

 Active-Active On-Demand

Checkpointing

4.4.1 Analysis I
In this approach, during normal operation, the query is redundantly

executed 𝑁𝐹 times. When a copy goes down, one of the remaining

copies is used to spin up a new copy while all other copies continue.

The new copy is created as in the previous on demand

checkpointing scenario. This results in reduced time to recover,

compared to periodic checkpointing, and eliminates the overhead

associated with periodic checkpointing. Note, however, that there

is one less redundant node available during recovery since one node

is reserved for spinning up another copy. This makes it more likely

that all nodes will go down before the first node recovers, incurring

more frequent charges to the SLA budget.

When a node fails, another node takes a checkpoint, and sends the

checkpoint to a new node, which rehydrates the checkpoint. Since

all operations can be pipelined, the time taken to simultaneously

transfer and receive the checkpoint is 𝑈 ⋅ 𝑆𝑇. During this time, both

nodes will fall behind and will need to catch up. As a result, the

total amount of recovery time is:

𝑅𝑇 = 𝑈 ⋅ (𝑆𝑇 +
𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)

Similar to active-active with replay, given the recovery time, the

impact on the resiliency budget is:

9

𝐵𝑇 = ∫ 𝑔(𝑡) ⋅ (𝑈 ⋅ (𝑆𝑇 +
𝑈 ⋅ 𝑆𝑇
1 − 𝑈

) − 𝑡) ⋅ 𝑑𝑡
𝑈⋅(𝑆𝑇+

𝑈⋅𝑆𝑇
1−𝑈

)

0

One disadvantage of this approach is that the function 𝑔(𝑡) is

calculated based upon 𝑁𝐹 − 2 nodes that must all fail instead of

𝑁𝐹 − 1, as used in other active-active approaches.

𝑈 may now be numerically calculated, as in other approaches, and:

𝑅𝐹 =
1

𝑈

Ingress

Compute1 ComputeN
Storage1

StorageK

C1

C1C1

C1 C1 C1

C1

C2 C2

...

...

...

Figure 11: Network Flow Diagram for Active-Active On-

Demand Checkpointing

In computing 𝐶𝐹, first consider Figure 11, which shows the flows

and costs associated with active-active on-demand checkpointing.

Note that all networking costs for compute nodes are captured by

making use of 𝑅𝐹. To this we add the remaining 𝐶1 costs, yielding:

𝐶𝐹 =
(𝐾𝐹 + 1 + 𝑁𝐹) ⋅ 𝐹𝑇 +𝑁𝐹 ⋅ 𝑅𝐹 ⋅ 𝐹𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

4.4.2 Analysis II
Note that the first analysis assumes that neither the recovering node

nor the recovered node fail during recovery. This avoids the

catastrophic case that all nodes fail during recovery, which results

in a complete loss of state. Therefore, in this analysis, we determine

the level of provisioning required to ensure that the expected time

for complete failure is equal to some controlled amount (e.g. 10

years).

Similar to previous cases, we use the same definitions for 𝐺(𝑡) and

𝑔(𝑡), since we are interested in the likelihood that all nodes fail

within the recovery period. In other words, we are interest in

𝐺(𝑅𝑇). Note that we know 𝑅𝑇 from Analysis I:

𝐺(𝑅𝑇) = (1 − 𝑒
−
𝑈⋅(𝑆𝑇+

𝑈⋅𝑆𝑇
1−𝑈

)

𝐹𝑇)

𝑘

Therefore, for each failure, there is a 𝐺(𝑅𝑇) chance that all nodes

will fail before recovery of this failure is complete. Considering

each failure as a Bernoulli trial, we can use the negative binomial

distribution, which is the discrete probability distribution for the

number of successes in a sequence of independent and identically

distributed Bernoulli trials before 𝑟 failures occur. Using 𝑟 = 1, we

use the formula for the expected value of the negative binomial

distribution and get the expected number of failures before total

failure occurs 𝑇𝑁:

𝑇𝑁(𝑈) =
𝑝𝑟

1 − 𝑝
=

1 − 𝐺(𝑅𝑇)

1 − (1 − 𝐺(𝑅𝑇))
=
1 − 𝐺(𝑅𝑇)

𝐺(𝑅𝑇)

Note that since the number of failures in a given period time

increases linearly with 𝑘, the expected time until total failure 𝑇𝑇 is:

𝑇𝑇(𝑈) =
𝑇𝑁 ⋅ 𝐹𝑇
𝑘

We can now determine U by setting 𝑇𝑇 to the desired expected time

till total failure, and, as in other cases, numerically find the zero of

the resulting equation.

Unfortunately, for this model, the expected value is not sufficient

to be useful. When 𝑟 = 1, the negative binomial distribution has

very high variance. For instance, 0 successes is frequently within 1

standard deviation of the mean, even when the mean is large.

What is frequently of more interest is the likelihood that the first

failure occurs within the first 𝐶 successes:

𝐹𝑎𝑖𝑙(𝑈, 𝐶) = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝐷𝐹(𝑈, 𝐶)
In other words, for any particular level of overprovisioning, the

above function computes the likelihood that the first failure occurs

before the 𝐶th success. We can now choose a probability of failure

𝑓𝑎𝑖𝑙𝑝 within some period of time 𝐶 (e.g. .00001% within 5 years),

and then numerically find the zero of:

𝐹(𝑈) = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙𝐶𝐷𝐹(𝑈, 𝐶) − 𝑓𝑎𝑖𝑙𝑝

Note that we must choose the minimum 𝑈 from analyses I and II:

𝑈 = min(𝑈𝐼 , 𝑈𝐼𝐼)

Other techniques don't require a similar analysis since they rely on

persistent storage, which has very high data durability, to recover

state.

 Active-Active Replay
In this strategy, each time a node fails, its state must by recovered

by replaying a window of data. If all other nodes fail before the first

failed node recovers, then the user will experience downtime,

which will be charged against the downtime budget.

The analysis presented here assumes output may be lost during

downtime, similar to the first analysis in Section 4.1. A slightly

more complex analysis may be done to disallow the loss of output

if desired.

Using the recovery time 𝑅𝑇, and the function g(t) from Section 4.3,

we can calculate, for any number of replicas, the expected time

charged per failure against the SLA, called 𝐵𝑇:

𝐵𝑇 = ∫ (𝑅𝑇 − 𝑡) ⋅ 𝑔(𝑡)𝑑𝑡
𝑅𝑇

0

Note that when using replay as a strategy, and the window size is

𝑊𝑇:

𝑅𝑇 = 𝑊𝑇 ⋅ 𝑈

Therefore:

𝐵𝑇 = ∫ (𝑊𝑇 ⋅ 𝑈 − 𝑡) ⋅ 𝑔(𝑡)𝑑𝑡
𝑅𝑇

0

Similar to active-active periodic checkpointing, our goal is to solve

for 𝑈 in:

(1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹
= 𝐵𝑇

Similarly, we find the zero for:

10

𝐹(𝑈) = 𝐵𝑇 − (1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹

Again, we use a numerical technique to solve for 𝑈. This becomes

particularly critical for 𝑁𝐹 > 2, where solving directly for 𝑈 is very

challenging. Unlike the periodic checkpointing case, there is no

asymptote at 1, although 𝑓(𝑈) is still monotonically increasing and

guaranteed to be negative at 0. Therefore as long as we do our

binary search in the range of 0 to 1, we will still find the correct

answer in all cases. Note that technically, since we are allowed to

miss output, very permissive SLAs allow 𝑅𝐹 greater than 1,

although, in practice, we don’t exploit this in our implementation

of this resiliency model, placing an upper bound of 1 on 𝑅𝐹.

Note that this approach generalizes to any number of actives,

although a tool like Mathematica is, in practice, needed to derive

𝐵𝑇.

Once we determine 𝑈, we can compute 𝑅𝐹:

𝑅𝐹 =
1

𝑈

Ingress

Compute1

ComputeN

Storage1

StorageK

C1

C1C1

C1

C1

C1

C1

...

...

C2

C2

C2

C2

Figure 12: Network Flow Diagram for Active-Active Replay

To compute 𝐶𝐹, consider Figure 12, which shows the flows and

costs associated with active-active with replay. First, note that cost

𝐶1 is the same as in active-active with periodic checkpointing:

(𝐾𝐹 + 1 + 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇.

The replay costs (i.e. 𝐶2) are clearly similar to the costs associated

with single node replay, except that replay is more common. More

specifically, on average, it occurs 𝑁𝐹 times every 𝐹𝑇, incurring a

cost of:

2 ⋅ 𝑁𝐹 ⋅ (𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇)

Combining these components allows us to conclude:

𝐶𝐹 =
(𝐾𝐹 + 1 + 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇 + 2 ⋅ 𝑁𝐹 ⋅ (𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇)

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

 Numerical Approaches
We now describe, in more detail, the numerical techniques used to

find zeros of functions, needed to compute 𝑅𝐹 in many cases, and

also the numerical techniques used to optimize cost for solutions

which employ periodic checkpointing.

4.6.1 Computing 𝑹𝑭
All models presented in this paper, except for single node replay,

compute 𝑅𝐹 by finding the zero for some 𝐹(𝑈) where 𝑈 =
1

𝑅𝐹
.

More specifically, these functions have the form:

𝐹(𝑈) = 𝐶(𝑈) − 𝐵𝑆𝐿𝐴

where 𝐶(𝑈) is the resiliency cost as a function of 𝑈, and 𝐵𝑆𝐿𝐴 is the

allotted downtime budget for a particular 𝑆𝐿𝐴.

For all cases involving checkpointing, 𝐶(𝑈) has the desirable

property that it is 0 for 𝑈 = 0, since infinite bandwidth means no

budget is actually used to checkpoint or recover, and is ∞ at 𝑈 = 1,

since without extra budget, catchup is not possible. Furthermore, it

is clear that 𝐶(𝑈) increases monotonically with 𝑈 since more

bandwidth means less resiliency cost. These properties allow us, for

any particular setting of parameters, to perform a binary search for

the zero in 𝐹(𝑈) without running into stability issues.

For replay based solutions, since we are not requiring that all output

be produced, there is no asymptote at 𝑈 = 1. Consider the case

where the resiliency budget is so lax, that even if we replay from

current input at the time the node comes up, we still have unused

resiliency budget. Technically, we could, in this case, use

bandwidth lower than the input rate. Note that 𝐶(𝑈) goes to ∞ as 𝑈

goes to infinity. So we can still perform a binary search once we

find a value of 𝑈 s.t. 𝐹(𝑈) > 0. We can then perform a binary

search as in the previous case. Finding such a value isn’t difficult

since 𝐶(𝑈) and 𝐹(𝑈) still both monotonically increase with 𝑈.

4.6.2 Optimizing 𝑪𝑭
For both single node and active-active periodic checkpointing, in

computing 𝐶𝐹, we need to determine the setting for checkpointing

frequency (i.e. 𝐶𝑇), which optimizes 𝐶𝐹. Fortunately 𝐶𝐹(𝐶𝑇) has a

straightforward shape in both cases, which allows us to approach

this in a straightforward manner.

Recall that the function for 𝐶𝐹 for single node and active-active

periodic checkpointing are, respectively:

𝐶𝐹 =
(𝐾𝐹 + 3+ 𝑅𝐹) ⋅ 𝐹𝑇 + 𝑆𝑇 +

𝐶𝑇
2
+
𝐾𝐹 ⋅ 𝑆𝑇 ⋅ 𝐹𝑇

𝐶𝑇
(𝐾𝐹 + 3) ⋅ 𝐹𝑇

𝐶𝐹 =
(𝐾𝐹 + 1+ 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇 + 𝑁𝐹 ⋅ 2 ⋅ (𝑆𝑇 +

𝐶𝑇
2
) +

(𝐾𝐹 + 1) ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

Rewriting these functions in terms of values which depend on 𝐶𝑇,

they are, respectively:

𝐶𝐹 = 𝑎1 + 𝑎2𝑅𝐹 + 𝑎3𝐶𝑇 +
𝑎4
𝐶𝑇

𝐶𝐹 = 𝑏1 + 𝑏2𝐶𝑇 +
𝑏3
𝐶𝑇

where 𝑎1. . 𝑎4, 𝑏1. . 𝑏3 are positive constants

Considering active-active first, it is not hard to see that this curve

has a single minimum, which is approached, as 𝐶𝑇 increases, for as

along as
𝑏3

𝐶𝑇
 reduces faster than 𝑏2𝐶𝑇 increases resulting in a graph

like the one shown in Figure 13.

Such minima can be easily found using an approach similar to

binary search, over a region that’s known to contain the minima.

One simply samples two equidistant points in the middle, and

removes either the leftmost or rightmost third, ensuring that the

11

resulting region still contains the minimum. Like binary search, this

approach doesn’t suffer from numerical stability issues.

Figure 13: Plot of 𝒇(𝒙) = 𝒙 +
𝟏

𝒙

For single node periodic checkpointing, the shape of 𝑅𝐹 as a

function of 𝐶𝑇 is very similar to Figure 13. Initially, there is

significant savings in transmitting checkpoints less frequently.

Eventually, though, the added cost of replay dominates the benefit

of infrequent checkpointing, leading to an optimal setting for 𝐶𝑇.

𝐶𝐹, for this case, ends up being the sum of two functions with

monotonically increasing derivative, where both derivatives start

negative and become positive. As a result, there can be only one

point where the sum of these two derivatives is 0, where the

minimum cost occurs. As a result, the overall shape of the cost

function is similar to Figure 13, and the same technique may be

used for optimizing cost.

 MODEL VALIDATION
This section validates the accuracy of the models presented in this

paper by comparing the predicted results of applying the model to

actual results achieved using a distributed systems emulator that

runs an actual streaming query using a real streaming data

processor over real advertising data. By executing a real query with

real checkpoints, these experiments also show the effect of

dropping the first assumption in Section 3.2 with respect to

checkpoint size, as well as dropping the third assumption of no

failures during recovery. We show that our models achieve an

actual SLA typically within 1% of the target.

 The Shrink Emulator
In order to evaluate our models, we built a distributed system

emulator which executes a real query over real data using the Trill

streaming query processor [20]. The input to an emulator run

consists of the input to our models, except for the 𝑆𝐿𝐴, as well as

the output of applying our models, including the bandwidth

overprovisioning factor 𝑅𝐹, and the optimized checkpointing

frequency 𝐶𝑇 where appropriate.

Our system is an emulator in the sense that we have a virtual global

clock which ingresses data into the streaming engine/s in

accordance with an input bandwidth rate. Failures for all running

copies are also randomly generated and scheduled according to an

exponential distribution with the mean time to failure 𝐹𝑇. Where

appropriate, actual query checkpoints are taken in Trill according

to the schedule specified by 𝐶𝑇.

Upon both checkpointing and failure, 𝑅𝐹 is used to determine the

length of time until normal processing resumes based on both the

actual last successful checkpoint (size and virtual time), and the

amount of input needed to be processed in order to catch up. The

observed virtual downtime is then measured for each run, and

compared to the SLA target used to generate 𝑅𝐹 and 𝐶𝑇.

In other words, we are emulating the network, and removing CPU

and storage as potential bottlenecks, since the models presented so

far do not consider these. Note that Section 7.1 contains a complete

description of how the models presented in this paper can easily be

extended to handle these other resources.

 Experiments
These experiments consist of a series of paired model and emulator

runs. For each run, parameter settings were chosen, including an

uptime SLA, and a checkpoint size, which was measured in Trill

using the tested query on the first part of the dataset. These

parameter settings were then run through each of our models, which

in turn compute 𝑅𝐹 and, in some cases, 𝐶𝑇. All of these parameters

(except the uptime SLA), were then used to emulate each strategy.

The actual downtime was then measured, and compared to the

target SLA fed to our models.

The data were a random subset of <UserID, Search> pairs from

Bing, spanning about a 2 weeks. The query was a grouped count

aggregate, where the grouping field was (𝑈𝑠𝑒𝑟𝐼𝐷 𝑚𝑜𝑑 𝑘), where

𝑘 was varied to change the size of checkpoints relative to the input

that generates them. We varied the following parameters:

 Target uptime SLA – 2 nines to 5 nines

 𝑆𝑇 (when applicable) – Varied by varying 𝑘, which resulted in

a range of 1.4 to 611.3

 𝑊𝑇 (when applicable) - .01 to 100

 𝑁𝐹 (when applicable) –2 to 5

In all experiments, 𝐹𝑇 was 100. In other words, we varied the

checkpoint size between ~one 100th of a failure period and ~6 times

a failure period. The window size was varied between one ten

thousandth of a failure period and one failure period.

Figure 14 shows the actual uptime measured by the emulator given

the target uptime used to generate 𝑅𝐹. In all runs, the predicted

uptime was very close to the actual runtime, with very small

variations caused by randomness in failure and slight variation in

checkpoint size. Note that on-demand checkpointing isn’t included

since all copies failed before getting a reliable value for uptime.

 MODEL ANALYSIS
Through a series of parameter explorations of the models presented

in Section 4, this section establishes the following about the
resiliency techniques modeled in this paper:

 One size doesn’t fit all: There is no single resiliency strategy

which efficiently covers most of the streaming query space.

Specific strategies can be vastly better or worse compared to

others, depending on scenario and environment

characteristics. This is true even when considering only

realistic scenarios (by orders of magnitude!).

 No actionable “rules of thumb”: While some strategies are

better than others for specific scenarios, the tradeoffs are quite

complex, and a model is needed to wade through the efficacy

of different approaches for different scenarios.

 Active-active periodic checkpointing, an obvious

generalization of single node checkpointing, is not discussed

in the literature, likely due to the intuition that it is inferior to

active-active on-demand checkpointing. Our models,
however, show this strategy to be superior in many situations.

 Computing 𝑹𝑭 and 𝑪𝑭
While our model for single node replay allows computation of our

metrics directly from the parameters, all other techniques require

that we numerically find the zero of a function of 𝑈 = 1/𝑅𝐹 in

order to determine the value of 𝑅𝐹 which exactly consumes all

available budget.

0 1 2 3 4 5 6

4

6

8

10

12

Recalling Section 4.6, the shape of these functions is

straightforward, in that they monotonically increase with 𝑈

between 0 and 1, which are the bounds of interest. This allows us

to do a binary search, avoiding the instabilities associated with

techniques like Newton’s method. Additionally, techniques that use

redundant active configurations have an additional layer of

complexity in the expression of these functions in that the functions

vary depending on the number of actives in the configuration, and

can become extremely complex (e.g. the most complex function

consumes an entire screen in Visual Studio). These functions are

computed automatically from the vastly simpler integrals presented

in this paper using Mathematica, for specific settings of 𝑁𝐹.

Finally, the techniques in this paper which periodically checkpoint

must determine the setting of 𝐶𝑇 which optimizes some notion of

cost. At times we will actually optimize for minimal 𝐶𝐹. At other

times we will find the optimal 𝐶𝐹 for which some bound on 𝑅𝐹 is

met. For instance, we might find the setting for 𝐶𝑇 which minimizes

𝐶𝐹 where 𝑅𝐹 is at most 2. Once again, we exploit the shape of the

cost curves to provide fully stable optimal solutions. In this case,

the curves are more complex, as they have a single peak, so a simple

binary search is insufficient. Recall that the details for numerically

solving such problems are described in Section 4.6.

 Experimental Setup
When comparing the resiliency approaches in this paper, there are

generally known qualitative “rules of thumb”, which state

conditions under which some of these techniques will be superior.

For instance, replay based solutions tend to work better when

checkpoints are large compared to the input that generates them.

Also, there is a general consensus that active/active solutions

become more attractive as the SLA becomes more difficult to

satisfy. But where exactly are the cross-over points? And how harsh

is the penalty for choosing the wrong technique? Are there other

factors to consider? Also, we are the first to propose active-active

periodic checkpointing solutions (for streaming). How do they

compare to the on-demand checkpointing based solutions?

These questions and others will be explored through a series of

experiments which evaluate 𝐶𝐹 and 𝑅𝐹 for specific resiliency

techniques and parameter settings using the models and evaluation

techniques described in this paper. It is our intent to make available

both the C# model evaluation code with which these experiments

were conducted, as well as the Mathematica scripts used to

integrate the functions described in our models.

 Single Node: Replay vs. Checkpointing
We start with scenarios that contrast replay and checkpointing.

Intuitively, checkpoint size, as compared to input size, would seem

to provide the most interesting source of contrast. If the checkpoint

is small compared to the input that generated it, this would

intuitively favor checkpointing, as we trade off checkpointing costs

vs. replay costs. On the other hand, if the checkpoint is much larger

than the input that generated it, this would seem to favor replay.

Some situations which favor checkpointing are:

 Aggregation scenarios where the internal state is a

significantly reducing rollup

 “Needle in a haystack” queries, where rare events, and the

events around them are analyzed.

There are also realistic situations which favor replay. For instance:

 The query logic is very complicated, involving a large

number of stateful streaming operations

 The query logic contains an operation, like a cross-product,

which is highly expansionary, and is followed by another

non-reducing stateful operation.

There are many scenarios, covering a wide spectrum of

possibilities. Where is the crossover point? How bad do things get

in the extreme cases? Does the right choice depend on something

other than checkpoint size? To answer these questions, we
performed a sensitivity analysis, where we varied the following:

 Window size: Varied from .001 day to 1000 days (default 1)

 Checkpoint size: Varied from .001 windows of input to 1000

windows of input (default 1)

 The uptime SLA: from 50% to 99.999% (default 90%)

In addition, for all experiments, 𝐾𝐹 = 3, and 𝐹𝑇 = 1 month. In all

cases, we varied one attribute and kept the other two constant, at

their default values unless otherwise specified. Initially, we test

our intuition about the sensitivity to checkpoint size. The result is

shown in Figure 15.

As expected, as the checkpoint size increases relative to the input

size, periodic checkpointing becomes more and more costly,

reaching nearly 100x the cost of an unresilient solution. In contrast

the cost of replay doesn’t change at all as checkpoints get larger.

The story is identical for 𝑅𝐹 which, for periodic checkpointing,

grows to over 400x!

Next, we consider the sensitivity of these two techniques to window

size, with data reducing checkpoints (checkpoint size = 0.01).

Clearly both techniques become more expensive as window size

increases, but which one’s cost grows faster? The result of the

experiment is shown in Figure 16.

While both strategies become more expensive in response to larger

windows, it is clear that replay suffers more, growing to 12x the

cost of an unresilient solution, while checkpointing only grows to

3.4x the cost of an unresilient solution. The story becomes even

Figure 14: Target vs Actual Uptime

Figure 15: Replay vs. Checkpoint - Vary

Checkpoint Blowup

Figure 16: Replay vs. Checkpoint -

Vary WT

13

more stark when one considers the effect on 𝑅𝐹, which reaches over

300x for replay, but is only 13x for checkpointing.

The story is less intuitive when considering the effect of varying

the SLA, which is shown in Figure 17 and Figure 18. Not

surprisingly single node periodic checkpointing becomes highly

problematic with tough SLAs, reaching costs over 3000x times the

cost of an unresilient solution, and requiring network capacity on

compute nodes almost 20,000x more than the input rate.

On the other hand, while replay also needs to initially find over

2000 times the input rate network capacity on compute nodes, the

overall cost remains at about the cost of an unresilient solution.

Once a window’s worth of data is replayed on a recovering node,

the cost becomes the same as an unresilient solution. The SLA only

affects how quickly that window’s worth of data must be replayed.

In fact, for very permissive SLAs, we have longer than a window

to replay the first window’s worth of data, leading to costs lower

than an unresilient solution, which never fails!

Checkpointing, on the other hand, continues to pay a price for tough

SLAs after recovery, since the taking of each checkpoint also incurs

a downtime cost, making reduction of the initial reservation

untenable. It is worth noting that a tradeoff is possible with periodic

checkpointing, where the bandwidth reservation is higher at the

beginning, incurring a lower resiliency budget for recovery, and

where that extra budget is used to lower the reservation during

normal operation. This will increase 𝑅𝐹 but reduce 𝐶𝐹. We leave it

to future work to examine this tradeoff.

 Periodic Checkpointing Strategies
Conventional wisdom is that for weak SLAs, single node solutions

are the most cost effective, but as the downtime SLA becomes more

strict, active/active solutions become more attractive. How quickly

does this effect become important, and how important? To address

these questions, we compare single node periodic checkpointing

with 2 node periodic checkpointing, where we vary the downtime,

using the default values established in the previous section for the

other parameters. The results are shown in Figure 19 and Figure 20.

First, note that the conventional wisdom concerning the cost of

single vs. multinode solutions is technically correct, but practically

wrong! With even just a single 9 of resiliency SLA, 2 node periodic

checkpointing is already cheaper than the single node version! As

the SLA becomes more strict, the advantage of using just 2 nodes

becomes quite extreme. While the dominance of multinode

checkpointing over single node is unintuitive at first, one must

consider that with a single node, there is no spare to cover both

checkpointing and recovery costs. As a result, with a single node,

we must overprovision networking during normal operation to

cover the times during which more bandwidth is needed for

checkpointing. The multinode version doesn’t suffer from this

problem, which is why cost is independent of the SLA.

On the other hand, 𝑅𝐹 for multinode periodic checkpointing isn’t

independent of the SLA, and becomes quite high for tough SLAs

with just 2 nodes. Fortunately, we can use more nodes to combat

this problem. We therefore studied the effect of varying 𝑁𝐹 for

tough SLAs. In this experiment, we used default values for all

parameters except SLA, which was .99999, and the number of

nodes, which we varied. The results are shown in Figure 21.

Increasing the number of nodes reduces 𝑅𝐹, while increasing costs.

Fortunately, the cost increase isn’t prohibitive, with the lines

crossing at about 5 nodes, where 𝑅𝐹 and 𝐶𝐹 are both about 2.5.

 Multinode Periodic vs On-Demand

Checkpointing
In our evaluation so far, we have only considered periodic

checkpointing. In fact, the literature on multinode checkpointing

focuses exclusively on on-demand checkpointing. To our

knowledge, we are the first to suggest that this obvious

generalization of single node checkpointing could be worth

considering. The purpose of this section is to, therefore, understand

the networking cost of multinode periodic checkpointing as

compared with on-demand checkpointing.

The comparison is complicated by the fact that while all techniques

other than on-demand checkpointing are backed by highly reliable

storage systems (e.g. 11 9s over a 1 year span for S3 [21]), on-

demand, lacking such a stabilizer, must also meet a durability SLA

(see Section 4.4). In our experiments, here, we chose the maximum

𝑅𝐹 between the two types of analysis needed to meet all SLAs

(uptime and durability). We chose as our durability SLA for on-

demand checkpointing, 5 9s of durability over a span of 10 years.

This is actually a much weaker durability requirement than S3

provides.

The comparison is further complicated by the existence of two

tunable parameters, the checkpointing period (i.e. 𝐶𝑇), which is a

parameter for periodic checkpointing, and the number of replicated

compute nodes (i.e., 𝑁𝐹), which is a parameter for both strategies.

In addition, one can trade off 𝑅𝐹 and 𝐶𝐹 for both strategies by

varying the number of nodes.

In order to compare the techniques in a sensible way, we therefore,

for a particular scenario, vary 𝑅𝐹, and calculate the optimal 𝐶𝐹

across all possible settings of 𝐶𝑇 and 𝑁𝐹. This optimal value is

calculated by calculating the optimal 𝐶𝐹 for each setting of 𝑁𝐹

between 2 and 10 which is guaranteed to have 𝑅𝐹 of at most the

target. When reaching the target 𝑅𝐹 is not possible, that setting for

𝑁𝐹 is not used. Calculating the optimal 𝐶𝐹 for a particular setting

 Figure 17: Replay vs. Periodic - Vary SLA,

Measure CF

 Figure 18: Replay vs. Periodic - Vary

SLA, Measure RF

Figure 19: 1 vs. 2 Node Periodic - Vary

SLA, Measure CF

14

of 𝐶𝑇 and 𝑅𝐹 is straightforward and is described in the Appendix.

Note that we use approaches that are guaranteed to be stable, and

are not approximations, as in previous calculations.

We now compare the two multinode checkpointing strategies,

choosing default values for all parameters except the SLA, which

is set to .99999. The results are shown in Figure 22.

First, note that for almost every case, periodic checkpointing is

actually cheaper than on-demand checkpointing! The cross-over

point is actually at about 2, which is not a very large value for 𝑅𝐹.

 EXTENDING & APPLYING MODELS
In this section we show how our models can be extended and

applied to cover a wide variety of resiliency variants and scenarios.

 Incorporating Storage, Memory, CPU
To this point, we have only considered reservation sizes and costs

for networking. We now consider other resource costs.

7.1.1 Storage Cost
Storage device bandwidth is modeled in a fashion similar to

network, except that we assume that modern distributed stores can

perfectly load balance any storage activity, removing any local

bottlenecks in the storage subsystem. As a result, there is no analog

to 𝑅𝐹; only increased costs, which exactly correspond to the already

calculated input logging and checkpoint reading and writing costs.

These costs are then added the network costs after being multiplied

with a cost normalization factor (i.e. a byte of storage bandwidth

costs more than a byte of network bandwidth).

More specifically, referring back to Figure 6, the un-normalized

storage bandwidth cost, 𝑆𝐶𝐹, for single node replay, is 𝐶2 plus the

cost of journaling the input:

𝑆𝐶𝐹 =
𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇 +𝐾𝐹 ⋅ 𝐹𝑇

𝐾𝐹 ⋅ 𝐹𝑇
, 𝑅𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

Active-active replay is very similar, except that there are 𝑁𝐹

compute nodes, each of which independently fail and recover:

𝑆𝐶𝐹 =
𝑁𝐹 ⋅ (𝑅𝑇 ⋅ 𝑅𝐹 − 𝑅𝑇) + 𝐾𝐹 ⋅ 𝐹𝑇

𝐾𝐹 ⋅ 𝐹𝑇
, 𝑅𝑇 =

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑁𝐹

Considering Figure 8, storage cost for single node checkpointing is

simply the edges leading to storage in the cost diagram, which is

𝐶2 + 𝐾𝐹 ⋅ (𝐶3 + 𝐶1):

𝑆𝐶𝐹 =
𝐾𝐹 ⋅ 𝐹𝑇 + 𝑆𝑇 +

𝐶𝑇
2
+
𝐾𝐹 ⋅ 𝑆𝑇 ⋅ 𝐹𝑇

𝐶𝑇
𝐾𝐹 ⋅ 𝐹𝑇

For active-active periodic checkpointing, referring back to Figure

10, the storage costs are 𝐾𝐹 ⋅ (𝐶1 + 𝐶3) + 𝑁𝐹 ⋅ 𝐶2:

𝑆𝐶𝐹 =
𝑁𝐹 ⋅ (𝑆𝑇 +

𝐶𝑇
2
) + 𝐾𝐹 ⋅ 𝐹𝑇 +

𝐾𝐹 ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

𝐾𝐹 ⋅ 𝐹𝑇

For active-active on-demand checkpointing, there are no storage

costs beyond the already included cost of logging the input:

𝑆𝐶𝐹 = 1

7.1.2 CPU Capacity and Cost
For CPU cost, we introduce two new input parameters for CPU:

 𝐸𝐶= CPU cost of taking, sending checkpoint (cost, e.g. cycles)

 𝐼𝑃= Input processing cost (cost/time, e.g. cycles/sec)

Note that these parameters are exactly CPU centric versions of 𝐶𝑆
and 𝐼𝑅. Similarly, we introduce:

 𝐸𝑇 =
𝐸𝐶

𝐼𝑃
= The checkpointing CPU time assuming input

processing time CPU bandwidth (time)

Again, note that 𝐸𝑇 is exactly the CPU centric version of 𝑆𝑇. We

now treat CPU like network, where CPUs can process load

associated with both input processing and checkpointing. Using

this approach, we introduce:

 𝑅𝐶𝑃𝑈𝐹 = The recovery CPU capacity reservation needed to

meet the SLA, as a factor of input processing capacity (factor)

Note that 𝑅𝐶𝑃𝑈𝐹 is exactly the CPU centric version of 𝑅𝐹. In

addition, the calculation of 𝑅𝐶𝑃𝑈𝐹 is identical to the calculation of

𝑅𝐹, except that 𝐸𝑇 is used instead of 𝑆𝑇. Furthermore, both 𝑹𝑭 (for

network) and 𝑹𝑪𝑷𝑼𝑭 (for CPU) resource reservations must be

satisfied in order for the query to meet its SLA

In terms of cost, referring back to Figure 6, the un-normalized CPU

capacity cost, 𝐶𝐶𝐹, for single node replay, is 𝐶1 + 𝐶2:

𝐶𝐶𝐹 =
𝑅𝑇 ⋅ 𝑅𝐶𝑃𝑈𝐹 − 𝑅𝑇 + 𝐹𝑇

𝐹𝑇
, 𝑅𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

Active-active replay is very similar, except that there are 𝑁𝐹

compute nodes, each of which independently fail and recover:

𝐶𝐶𝐹 =
𝑁𝐹 ⋅ (𝑅𝑇 ⋅ 𝑅𝐶𝑃𝑈𝐹 − 𝑅𝑇 + 𝐹𝑇)

𝐹𝑇
, 𝑅𝑇 =

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑁𝐹

In single node periodic checkpointing, since the CPU reservation

size doesn’t change, it’s simply that reservation size, substituting

𝐸𝑇 for 𝑆𝑇 in the calculation:

𝐶𝐶𝐹 = 𝐶𝑃𝑈𝑅𝐹

For active-active periodic checkpointing, referring back to Figure

10, the CPU costs for this case are 𝑁𝐹 ⋅ (𝐶1 + 𝐶2) + 𝐶3:

 Figure 20: 1 vs. 2 Node Periodic - Vary SLA,

Measure RF

 Figure 21: Multinode Periodic - Vary

Nf, Measure CF & RF

 Figure 22: Periodic vs On-Demand

 Checkpointing - Vary Rf

15

𝐶𝐶𝐹 =
𝑁𝐹 ⋅ (𝐹𝑇 + 𝐸𝑇 +

𝐶𝑇
2
) +

𝐸𝑇 ⋅ 𝐹𝑇
𝐶𝑇

𝐹𝑇

Referring to Figure 11, the CPU cost for active-active on-demand

checkpointing is captured by holding the CPU reservation for the

whole duration of time:

𝐶𝐶𝐹 = 𝑁𝐹 ⋅ 𝐶𝑅𝐹

Memory costs are easily calculated by adding up the number of

reserved bytes across all nodes, which requires the addition of a

parameter, and then combining with other costs after normalizing.

Again, there is no analog to 𝑅𝐹 for this resource. We therefore

introduce:

 𝑀𝐶𝐹 = The un-normalized memory cost per failure period

 𝑀𝐹 = The cost of reserving the necessary memory per billing

period compared to the NIC cost of receiving the input on a

compute node for that same period.

 𝐶𝑃𝑈𝐹 = CPU cost of processing the input on a single compute

node in comparison to the NIC cost of receiving the input on

that node.

 𝑆𝐹 = Cost of transferring the input to a single storage device

in comparison to the NIC cost of receiving the input on that

node.

We can now compute total cost:

𝑇𝑜𝑡𝑎𝑙𝐶𝐹 =
(𝐶𝐹 +𝑀𝐹 ⋅ 𝑀𝐶𝐹 + 𝐶𝑃𝑈𝐹 ⋅ 𝐶𝐶𝐹 + 𝑆𝐹 ⋅ 𝑆𝐶𝐹)

1 + 𝑀𝐹 + 𝐶𝑃𝑈𝐹 + 𝑆𝐹

 Distributed Execution
Many streaming deployments are distributed in nature.

Specifically, different parts of the streaming pipeline are executed

on different machines with the output of one machine feeding as

input into another machine, which computes the next portion of the

pipeline. In such situations, the pipeline state associated with each

node must be protected from failure.

Typically, some form of reliable enough (relative to the uptime

SLA) queuing is used to protect the conversation between

distributed nodes, such that when a node fails, its state can be

recovered through some combination of checkpointing and replay.

Note that for particularly tough SLAs, transactional queues are used

which are backed by replicated storage, which can meet very high

availability and durability requirements [21]. Again, a choice must

be made, for each pipeline running within a node, for how

protection from failure is best achieved. This paper presents the

models needed to make these choices in a clear, disciplined manner.

Of course, if we have two nodes, each of which have a 5 nines

uptime SLA, the resulting query uptime will be less than 5 nines,

since if either fails, the pipeline stalls. If our overall goal is 5 nines

of uptime, we must budget downtime less than this for each node.

One mildly conservative way of doing this, assuming uncorrelated

failure, is to split the downtime budget between the two nodes in a

way which minimizes cost. It is possible that there will be some

double counting of downtime if both nodes are down at the same

time, but this is a very small portion of overall downtime.

 Sharding
Sharding is a strategy sometimes employed in streaming settings,

when there is not enough memory, CPU capacity, or network

available on a single node to execute the full query. To cope with

this situation, the query is leveraged to produce an effective

partitioning of the input, with each partition being sent to one

compute shard. Depending on the computation, the results from

these sharded computations may or may not be brought back

together using a combining node. If the results are brought back

together, global time order must be maintained. For the purposes of

this discussion, we assume this is the case. Note that each shard, as

well as the combining node, must still be resiliently protected with

one of the strategies presented in this paper.

Note that there are, therefore, two analyses which must be done.

One for the shards, and one for the combining node. We assume, in

this analysis, that we know the total global input rate 𝐼𝑅, and total

checkpoint size for the sharded computation 𝐶𝑆. In addition, assume

we know all relevant information for the query running on the

combining node. Note that this information is all independent of the

sharding factor 𝑆𝐹.

The result of maintaining global order is that when a single shard

goes down, the entire query stalls. Effectively, this decreases the

mean to failure by the sharding factor, which has a cost increasing

effect. On the other hand, because each shard’s state, and the input

that generated it, is reduced by the same fraction, recovery times

after each failure are shorter. While we do not fully study these

trade-offs in this paper, we demonstrate how such a study would

proceed by providing the model changes necessary in single stage

map/reduce style sharding, followed by combining, assuming that

the ingress nodes shuffle data to the correct streaming node:

 𝐹𝑇𝑁𝑒𝑤 =
𝐹𝑇

𝑆𝐹
 𝐼𝑅𝑁𝑒𝑤 =

𝐼𝑅

𝑆𝐹
 𝐶𝑆𝑁𝑒𝑤 =

𝐶𝑆

𝑆𝐹

The alternate values for 𝐹𝑇 , 𝐼𝑅, 𝑎𝑛𝑑 𝐶𝑆 are now directly used in our

models to compute 𝑅𝐹. The results tell us, for each resiliency

approach, given a particular sharding factor, the overprovisioning

needed to achieve our SLA. Since we assume knowledge of the

relevant query characteristics for the combining node, this analysis

proceeds as in the distributed execution case, where the downtime

is split between the combining node, and all the shards as one unit.

Note that while we use the new failure, input rate, and checkpoint

size values for computing 𝑅𝐹, we use both the original and new

values for computing cost. In particular, increased compute node

reservations must be reflected in the cost, but storage costs are

unaffected by sharding. This is a simple alteration of the formulas.

 Caching
Recent work [13][14] exploits the potential value of caching for

workloads where query state is very large, long living,

partitionable, and highly inactive after an initial period of activity.

Online advertising, a problem of such high value that large

distributed systems are built for the sole purpose of solving this

problem, is an example of such a workload. In particular, users’

browsing and ad related activity are tracked for a long period of

time (e.g. a week). But most browsing sessions are, in fact, over

after a short period of time (e.g. 10s of minutes), and will not

contribute further to the streaming calculation.

Keeping all the session state in expensive DRAM is a poor choice

for the states which are unlikely to be accessed. The problem is

exacerbated for checkpointing strategies, which repeatedly

checkpoint inactive states, significantly increasing the cost of

resiliency.

One solution is to push the inactive states into replicated, cheap

persistent storage, and only cache, in memory, the states which are

still active. This significantly reduces the memory footprint of the

compute nodes, which helps with both memory cost and resiliency.

16

MillWheel advocates using an existing key/value store for storing

inactive states, but if one is running one of the active/active

resiliency techniques to protect compute nodes, a better choice

could be for the replicas to store their inactive states in locally

attached storage. This would completely eliminate the network

traffic associated with sending the states to the distributed store.

Reasoning about resiliency for these cases is straightforward, as
long as we additionally know:

 The in-memory state reduction from caching.

 The required bandwidth for sending/receiving inactive states
to/from storage.

In particular, the state reduction from caching is a savings applied

directly to memory costs, and checkpoint sizes. The reduced

checkpoint sizes are then fed into the cost model. The bandwidth

for sending and receiving inactive states is used to calculate

additional storage costs, as well as network costs if a distributed

key/value store is used. Note that if locally attached storage is used

to store inactive states, part of the recovery cost is to transmit the

cached states on other nodes, similar to failure of a node in the

key/value store, which must be accounted for if such a store is used.

 RELATED WORK
Streaming Resiliency Message-passing systems have

traditionally employed a wide variety of resiliency strategies,

including logging, checkpointing and redundancy; see [19] for a

survey. In data stream processing systems, active-active (also

called active replication, active standby, or process-pairs)

approaches were first proposed in Flux [5], and were adopted by

several systems [10]. Timestream [8] uses checkpointing, along

with leveraging query semantics to determine how much replay is

needed. D-Streams [7] treats a streaming query as a sequence of

micro-batch computations, with prior micro-batch state serving as

checkpoints. Several systems achieve resiliency by offloading

query state [13][14][15], either to resilient databases or distributed

key-value stores. In this paper, we describe and/or discuss how the

Shrink framework can model such resiliency techniques.

Several research papers [1][2] argue that active replication in

streaming systems suffers from a high resource overhead, e.g.,

doubling the number of required processing nodes. In this work, we

show that depending on the required SLA, active replication may

in fact be the cheapest strategy by huge margins. On the other hand,

Hwang et al. [11] use analysis and simulations to similarly report

that active standby is superior to passive standby as it can achieve

much shorter recovery time with a similar amount of overhead. Gu

et al. [4] perform an empirical evaluation of the two resiliency

strategies: active standby and passive standby, and report that

passive standby presents a different tradeoff from active standby:

longer recovery time, but 90% less overhead. These techniques

provide useful intuitions for relative costs; however, unlike Shrink,

they do not take the uptime SLA into account, nor do they model

varying resource reservation requirements. These factors are

critical for the cloud deployments of today, and lead to the

completely different analysis techniques presented in this paper.

Offline Query Resiliency DBMSs generally provide fault-

tolerance through replication [17]; however they do not provide

intra-query fault-tolerance. Phoenix [18] explores resiliency for

Web enterprise applications. Techniques for query suspend and

resume [16] use models to choose techniques for rollback recovery

in a DBMS if a long-running query fails mid-execution, which is

similar to the streaming query recovery problem. Map-Reduce

provides intra-query resiliency by materializing output between the

map and reduce stages, and replaying these tuples on failure.

Upadhyaya et al. [9] propose a cost model for the total runtime of

an online (sharded) query plan over a bounded dataset in a

distributed setting, across several resiliency strategies (they do not

consider active standby). In contrast, we focus on modeling

resiliency overheads for real-time streaming queries in the context

of an overall SLA for downtime, and include active-active solutions

in the space of strategies considered.

 CONCLUSIONS & FUTURE WORK
This paper has introduced the first, comprehensive, cloud friendly

comparison between different resiliency techniques for streaming

queries. In particular, we take a resource reservation style approach,

where the reservation is allowed to decrease over time. This is

highly appropriate for the multi-tenant cloud environments in

which these queries typically run.

In this paper, we show that specific resiliency strategies can be

vastly better or worse compared to others by orders of magnitude,

there are no actionable “rules of thumb”, informative models are

tractable, our models are accurate (typically within 1% in practice),

and can be adapted to describe many resiliency strategies, including

distributed queries, sharding, and caching. We also introduce

active-active periodic checkpointing, a clear generalization of

single node checkpointing, and show that it is much better than on-

demand caching in most situations.

We expect this work to be expanded upon in several ways. For

instance, this paper focuses specifically on streaming queries, but

many distributed services in the cloud face similar design choices.

The uptime guarantees they provide can likely be modeled with an

approach similar to what is described here. Adapting the techniques

presented here to these other settings is likely very worthwhile.

REFERENCES
[1] A. Martin, C. Fetzer, et al. Active Replication at (Almost) No

Cost. In SRDS, 2011.

[2] Z. Zhang, Y. Gu, et al. A Hybrid Approach to HA in Stream
Processing Systems. In ICDCS, 2010.

[3] J. H. Hwang, Y. Xing, et al. A Cooperative, Self-Configuring

High-Availability Solution for Stream Processing. In ICDE,
2007.

[4] Y. Gu, Z. Zhang, et al. An Empirical Study of High

Availability in Stream Processing Systems. In Middleware,

2009.

[5] M. Shah, J. M. Hellerstein, E. Brewer. Highly Available,

Fault-Tolerant, Parallel Dataflows. In SIGMOD, 2004.

[6] M. Balazinska et al. Fault-tolerance in the Borealis distributed

stream processing system. TODS, Vol. 33, Issue 1, March
2008.

[7] M. Zaharia et al. Discretized streams: Fault-tolerant streaming
computation at scale. In SOSP, 2013.

[8] Z. Qian et al. Timestream: Reliable stream computation in the
cloud. In EuroSys, 2013.

[9] P. Upadhyaya et al. A latency and fault-tolerance optimizer for
online parallel query plans. In SIGMOD, 2011.

[10] J-H. Hwang, U. Cetintemel, and S. Zdonik. Fast and Highly-

Available Stream Processing over Wide Area Networks. In
ICDE, 2008.

[11] J-H. Hwang et al. High-availability algorithms for distributed
stream processing. In ICDE, 2005.

17

[12] G. Jacques-Silva et al. Towards automatic fault recovery in
System-S. In ICAC, 2007.

[13] T. Akidau et al. MillWheel: fault-tolerant stream processing at
internet scale. In VLDB, 2013.

[14] D. Peng and F. Dabek. Large-scale Incremental Processing

Using Distributed Transactions and Notifications. In OSDI,
2010.

[15] J. Meehan et al. S-Store: Streaming Meets Transaction
Processing. In VLDB, 2015.

[16] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. Query
suspend and resume. In SIGMOD, 2007.

[17] A. Ray. Oracle data guard: Ensuring disaster recovery for the
enterprise. An Oracle white paper, Mar. 2002.

[18] D. Lomet. Dependability, abstraction, and programming. In
DASFAA 2009.

[19] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson.

A survey of rollback-recovery protocols in message-passing

systems. ACM Comput. Surv., 34(3):375–408, 2002.

[20] B. Chandramouli et al. Trill: A High-Performance Incremental

Query Processor for Diverse Analytics. In PVLDB, 2014.

[21] Amazon S3. http://aws.amazon.com/s3/.

[22] K. S. Trivedi. Probability and Statistics with Reliability,

Queuing and Computer Science Applications. John Wiley &

Sons, 2002.

