
Galileo: A Strongly Typed, Interactive Conceptual Language

Antonio Albano

Universita’ di Pisa,

Luca Cardelli

AT&T Bell Laboratories

Renzo Orsini

Universita’ di Pisa,

ABSTRACT

Galileo, a programming language for database applications, is presented. Galileo is
a strongly typed, interactive programming language designed specifically to support
Semantic Data Model features (classification, aggregation and specialization) as well as
abstraction mechanisms of modern programming languages (types, abstract types and
modularization). The main contributions of Galileo are: a) the proposal of a flexible type
system to model database structure and semantic integrity constraints; b) the inclusion of
type hierarchies to support the specialization abstraction mechanism of Semantic Data
Models. c) the proposal of a modularization mechanism to structure data and operations
into interrelated units; d) the integration of the abstraction mechanisms into an expression
based language that allows an interactive use of the database without resorting to a new
stand alone query language. Galileo will be used in the immediate future as a tool for
database design and, in the long term, as a high level interface for DBMSs.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs - abstract
data types; data types and structures; H.2.1 [Database Management]: Logical Design - data models;
schema and subschema; H.2.3 [Database Management]: Languages - data description languages (DDL);
data manipulation languages (DML); query languages
General Terms: Design, Languages
Additional Key Words and Phrases: Type hierarchy, database semantics, integrity constraints, exception
handling.

This work was supported in part by the CNR (Italian National Research Council), Progetto Finalizzato Infor-
matica, Obiettivo DAT AID, and in part by the Ministero della Pubblica Istruzione. Authors’ addresses: A.
Albano, R. Orsini: Dipartimento di Informatica, Universita’ di Pisa, Corso Italia 40, I-56100 Pisa, Italy; L.
Cardelli: AT&T Bell Laboratories, Murray Hill, NJ 07974, USA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357571264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-2-

1. INTRODUCTION

1.1. Motivation
If complex applications utilizing DBMS technology are to be developed, the crucial aspects of these

applications must be designed in a high level language with features that differ considerably from those
supported by traditional DBMSs [Brodie 81a, Lum 79, McLeod 84, Navathe 80, Yao 78]. Let us call this
activity Conceptual Modeling, its result a Conceptual Schema, and the language used the Conceptual Lan-
guage.

There are many opinions on the role of the conceptual schema during the design process. These
ideas, which are reflected in the features of the conceptual language, are briefly outlined below.
1. The conceptual schema documents the database structure in terms very similar to those used by users

to describe an application. It is therefore a model which will be used during the entire life cycle of the
database for considerations on the logical data structure and to verify informally that this structure is
adequate to satisfy the user requirements, before the implementation begins. As the conceptual
schema is only used for documentation, it does not have to be giv en in an executable language. The
schema is automatically processed only to provide useful reports. An early significant example of
this approach is the PSL/PSA design environment [Teichroew 77].

2. A second class of proposals extends the previous approach in a direction which more closely resem-
bles the software specification problem. This perspective is particularly interesting because of the
reciprocal influences of techniques and methodologies [Abrial 74, Brodie 81b, Bubenko 80, Smith
79b]. The rationale behind this approach is that, since a complex database implementation is a long
term evolving activity, it is essential that the conceptual schema is carefully designed and tested to
reduce logical errors in the implementation, and to be able to safely incorporate the new requirements
which will arise during the operational phase. The features of the conceptual language are at present
still under discussion. In particular, attention is being given to operational aspects, beside the struc-
ture of data. However, in addition to abstract specifications, there are a number of pragmatic reasons
why a high level, executable language should be used in conceptual design. In fact, such a language
could also be used to test the adequacy of the conceptual schema, if we do not care about execution
efficiency [Breutman 79, Ceri 81, Lum 79, Roussopoulos 79].

3. A third class of proposals considers a conceptual language as a tool which is much more than a mere
step on the way to implement a database application. To design complex, interactive computerized
information systems, a programming language with abstraction mechanisms to model databases is
needed.
There are few proposals which have adopted that last approach, although general agreement has been

reached only with regard to certain basic features of the language [Bunemann 79, Hammer 80, Hammer 81,
Mylopoulos 80, Smith 81]. Such a language should provide constructs to aid the designer in expressing, as
far as possible, the semantics of the application in the conceptual schema, rather than in the application pro-
grams. At the least it should provide features to describe:
a. Data defined both declaratively, with abstraction mechanisms (aggregation, classification and special-

ization), and procedurally (derived data).
b. Semantic integrity constraints, both standard (such as keys and mandatory values), and described by

a general purpose constraint specification language.
c. Operations to give the behavioral semantics of the data in the schema.
d. The language should have a sound mathematical foundation.

1.2. Assumptions
This paper describes the features of the conceptual language Galileo. Galileo is a programming lan-

guage that supports Semantic Data Model features. Therefore it belongs to the third of the approaches out-
lined above. The features presented here have been partially implemented [Albano 83a]. These are the first
results of a project which aims at designing and implementing a prototype system, Dialogo, to experiment
with a stand-alone programming environment to support the development and testing of database design

-3-

[Albano 81a].
The approach adopted in designing Galileo takes into account the requirements previously described,

but also assumes that a conceptual language should provide:
a. A set of independent constructs to be used in any combination to achieve simplicity and expres-

siveness.
b. Features to design and test the solution incrementally.
c. A modularization mechanism to decompose the design into meaningful modular units that corre-

spond to a description of the database at different levels of successive refinements, or to application
oriented views of the database.

1.3. Relation to Previous Work
The design of Galileo has been influenced by two areas of research: conceptual modeling and pro-

gramming languages. Although these areas have a number of overlapping issues, there are problems to be
solved if the results from both areas are to be successfully integrated [Brodie 81a, 84].

Galileo applies results from the conceptual modeling sector for features related to object oriented
databases, declarative definitions of constraints, multiple descriptions of objects and view modeling
[Baltzer 80, Biller 78, Brodie 80, Hammer 80, Hammer 81, Kent 79, McLeod 84, Mylopoulos 80, Schmidt
78, Shipman 80, Smith 79a, Smith 81, Weber 78].

Galileo borrows features such as data types, abstract types and modularization from the programming
language area [Shaw 80]. Although the utility of such features is recognized both pragmatically and theo-
retically, they hav e been mainly studied for applications on temporary data, i.e. not involving databases.

The data base proposals that have most influenced the design of Galileo are TAXIS, DIAL and
ADAPLEX. TAXIS is notable for introducing the basic knowledge representation mechanisms of Semantic
Networks on data, transactions and exceptions, and for its approach to user dialogue modeling [Barron 80].
DIAL, which has evolved from SDM [Hammer 81], uses data types, classes and derived classes, the "port"
mechanism to deal with user interaction, and features to control concurrency at the conceptual level [Ham-
mer 80]. Finally, ADAPLEX uses Semantic Data Model features in a strongly typed programming lan-
guage, namely Ada [Smith 81].

The main contributions of Galileo are:
1. An integration of features to support Semantic Data Model abstraction mechanisms within an expres-

sion based, strongly typed programming language.
2. A systematic use of both concrete and abstract types to model structural and behavioral aspects of a

database.
3. The inclusion of type hierarchies to support the specialization abstraction mechanism of Semantic

Data Models as well as a software development methodology by data specialization [Albano 83b,
Borgida 82].

4. The proposal of another abstraction mechanism, modularization, to organize a conceptual scheme in
meaningful and manageable units, to deal with data persistence without resorting to specific data
types, such as files of programming languages, and to deal with application oriented views of data in
a similar way to the view mechanism of DBMS’s [Albano 83d].

5. A small number of independent primitive features that can be applied orthogonally, that is in any
combination.
The basic ideas of Galileo have been investigated in ELLE, a programming language designed to deal

uniformly with temporary and persistent, complex data, that is without resorting to special data type con-
structors to deal with permanent data [Albano 81b]. Both ELLE and Galileo borrow many of their features
from the functional programming language ML [Gordon 79b]. A comparison of ADAPLEX, DIAL,
Galileo, and TAXIS is reported in [Borgida 84].

-4-

1.4. Structure of the Paper
The purpose of this paper is to illustrate the features of Galileo. The schema fragments used as exam-

ples are intended only to illustrate the main concepts and do not cover all the language features. A complete
description of Galileo exists as a technical report [Albano 83c]. The semantics of Galileo will be described
informally, but its formalization, using a denotational approach, is reported in [Capaccioli 83, Sabatini 82].
Pragmatic aspects of Galileo (schema design methodology and designers’ reactions to the language) are
also beyond the scope of this paper. They are currently studied in the context of a joint project of a group of
Italian universities and companies sponsored by the Italian National Research Council (CNR) [Ceri 83].
The goal of the project is the development of a database design methodology, together with a set of inte-
grated computer-assisted tools covering all aspects of the design process, including application analysis,
conceptual modeling, logical and physical design in both centralized and distributed environments.

The next section presents the basic data modeling features of Galileo. Section 3 describes the opera-
tors which affect the environment used to evaluate expressions. Section 4 describes the type system of the
language, and Section 5 the notion of type hierarchies. Section 6, presents the class mechanism used to
build an object oriented view of a database, with classification, aggregation and specialization abstraction
mechanisms. Section 7 presents the modularization mechanism to structure a schema and to deal with per-
sistent data. Section 8 illustrates the failure handling mechanism together with transactions modeling. In
the conclusions, we comment upon the implementation now underway and our future plans.

2. OVERVIEW OF GALILEO
Galileo supports the following abstraction mechanisms for database modeling:

Classification: entities being modeled that share common characteristics are gathered into classes. All ele-
ments of a class have the same type. The name of the class denotes the elements present in the database.
The elements of a class are represented uniquely, that is only one copy of each element is allowed.
Aggregation: elements of classes are aggregates, i.e. they are abstractions having heterogeneous compo-
nents and may have elements of other classes as components. Associations among entities are represented
by aggregations in a Galileo database. Components of aggregates can be collections of homogeneous val-
ues to represent, for example, multivalued associations among entities. Because of the unique representa-
tion of elements of classes, any modification of an element is reflected anywhere that element appears as a
component.
Generalization: elements of a class can be described in different ways by means of subclasses. Subclasses
are derived from classes by using a predefined set of operators. Elements of a subclass also belong to their
parent class. The type of the elements of a subclass is a subtype of the type of elements of the parent class.
The subclass mechanism includes the IS-A hierarchy of Semantic Networks and Semantic Data Models.
Modularization: data and operations can be partitioned into interrelated modules. Therefore, a complex
schema can be structured into smaller units. For instance, a unit may model a user view or a description of
the schema produced by a stepwise refinement methodology.

Other features of Galileo are:
1. It is an expression language; each construct is applied to values to return a value.
2. It is an interactive language: the system repeatedly prompts for inputs and reports the results of com-

putations; this interaction is said to happen at the top level of evaluation. At the top level one can
evaluate expressions or perform declarations. This feature allows the interactive use of Galileo with-
out a separate query language.

3. It is higher order, in that functions are denotable values of the language. Therefore, a function can be
embedded in data structures, passed as a parameter and returned as a value.

4. Every denotable value of the language possesses a type:
a. A type is a set of values sharing common characteristics, together with the primitive operators

which can be applied to these values.
b. The predefined types of the language are bool, num, string, equipped with the usual operators,

and the type null, which is a singleton set with the element nil, equipped with the equality

-5-

operator.
c. The type constructors available to define new types, from predefined or previously defined

types, are: tuple (record), sequence, discriminated union (variant), function, modifiable value
(reference), and abstract types. There are two constructors for abstract types: <=> and <−>.
The former is similar to CLU clusters, ALPHARD forms or Euclid modules: it is used to
define a new type together with the operations available. The latter is similar to the type con-
structor of Ada: it defines a new type which inherits the primitive operations of the representa-
tion type.

d. The type system supports the notion of type hierarchy; if a type t is a subtype of a type t´, then
a value of t can be used as argument of any operation defined for values of t´, but not vice versa
because the subtype relation is a partial order.

5. Every Galileo expression has a type. The meaning of "an expression e having type t" is that the value
of e possesses the type t. In general, any expression has a type that can be statically determined, so
that every type violation can be detected by textual inspection (static type checking). However, if the
type checker is not able to ascribe a type to an expression, the user must specify the type with the
notation "Expression: Type". The language has been designed to be statically type checkable for two
reasons: firstly, for the considerable benefits in testing and debugging; secondly, because programs
can be safely executed disregarding any information about types at run time. Execution time testing
will be required for constraints only. Finally, static type checking allows a typechecker to give the
correct meaning to overloaded operators, i.e. operators which can be used with operands of different
types.

6. Class elements possess an abstract type and are the only values which can be destroyed. Predefined
assertions on classes are provided and, if not otherwise specified, the operators for including or elimi-
nating elements of a class are automatically defined.

7. A control structure is provided for failures and their handling.
The following simple schema illustrates Galileo. The example concerns departments and employees

in a firm. The definitions are collected in the Organization schema.

Organization := (
rec Departments class

Department <−>
(Name: string
and Budget: num
and Address: Address
and Manager: var Employee
and Employees: var seq Employee)
key (Name)

and Employees class
Employee <−>

(Name: string
and Salary: var num
and NameOfDept :=

derived Name of
get Departments with this isin (at Employees))

key (Name)

and NewEmployee(AName: string, ASalary: num): Employee :=
mkEmployee (Name := AName and Salary := var ASalary)

and VipEmployees subset of Employees class
VipEmployee <−>

(is Employee

-6-

and VipProperty: string)

and type Address :=
(Street: string
and Zip: string
and City: string)

drop mkEmployee)

The rec is used for recursive functions or for mutually dependent types, such as Department and
Employee.

Departments and Employees are examples of base classes, while key is an example of predefined
class constraint to assert that the elements of the classes must differ in the value of the Name attribute.

An attribute of an element of a class may be primitive or derived. A primitive attribute is one that is
subject to direct initialization and updating. The value of a derived attribute is automatically computed from
other information in the database and cannot be updated: every time the value of the attribute is used, it is
as if the associated expression were evaluated to derive the value. An example of a derived attribute is
NameOfDept in Employees, where "this" is bound to the current element of the class.

An attribute can be modified if and only if it is defined of type var, otherwise it is constant and any
attempt to update the value is detected statically.

The function NewEmployee is an example of a defined operation included in the schema. It is the
only operation which can be used to create new elements of the class Employees, since the drop operator
prevents the predefined mkEmployee operation from being exported outside the schema definition. For
Departments and VipEmployees the functions mkDepartment and mkVipEmployee are available.

VipEmployees is an example of a subclass. It contains all those employees who are believed to be
very important. The elements of a subclass must have a type which is a subtype of the elements of the par-
ent class. For instance, the type of the elements of VipEmployees is that of Employee with the additional
attribute VipProperty.

This example shows how classes are used to deal with sets of related objects. The approach has some
similarity to that adopted for relational databases: in both cases the associations among data are described
by means of the value of an attribute. However, in relational databases data are tuples of simple values, col-
lected in relations, and associations among them are represented by assigning as value to an attribute the
key value of another tuple. In Galileo, instead, to represent associations the mechanism of "data sharing" is
used, so that an element of a class can be shared as a component by many others.

3. THE BASIC ENVIRONMENT OPERATORS
An important notion in Galileo is that of environment, as it used in the denotational semantics

description of programming languages [Tennent 81]. It is useful to distinguish between the definition of an
environment and its run time interpretation.

An environment definition is a map from identifiers to definitions of types or values; it is used to
typecheck declarations and expressions before their evaluation.

A (run time) environment is a map from identifiers to denotable values of the language, obtained by
evaluating an environment expression. The evaluation of any expression takes place in the context of an
environment, which specifies what the identifiers in use denote. Types are not present in run time environ-
ments since they are not denotable values, i.e. types cannot be produced as the result of expressions.

An environment definition is given with the following operators, where A and B stand for environ-
ment expressions.
Id:=Term introduces a new binding between the identifier Id and Term, which is the definition of a

value or a type.
A and B introduces the bindings of A and B, but the bindings of A cannot be used in B and vice

versa.

-7-

A ext B introduces the bindings of B and those of A not redefined in B. The bindings of A can be
used in B, but not vice versa. In other words, A is extended with B.

rec A introduces the bindings of A which can be used recursively in A.
type A introduces the bindings between identifiers and types defined in A.
A drop Id introduces the bindings of A except the one with binder Id.
A take Id introduces only the binding with binder Id defined in A.
A rename Id by NewId

introduces the bindings of A, but the binder Id is renamed as NewId.
For instance

type b := int
ext rec fact(x:b):b :=

if x = 0 then 1 else x*fact(x−1)
ext a := fact(3)
ext c := fact(4)

The binders defined are b, fact, a and c, bound respectively to the type int, the factorial function, the
expression fact(3) and the expression fact(4). Once this environment expression has been evaluated, it
denotes the set of associations (a,6), (c,24), and (fact,the internal representation of the function).

The expression "use A in Expression" evaluates "Expression" in the current environment temporarily
extended with the bindings of A.

use a := 3
and b := 4
in a + b yields 7

Other environment operators will be introduced in the sequel.

4. THE TYPE SYSTEM
All denotable values of the language possess a type. A type is a set of values, possibly infinite,

together with the primitive operations that can be applied to these values. The predefined types of the lan-
guage are bool, num, and string, equipped with the usual operators, and null, which is a singleton set
whose only element is nil, equipped with the equality operator.

Type constructors exist to define a type for the following values: tuples, discriminated unions,
sequences, modifiable values, functions and abstract values.

4.1. Tuples
The data structure tuple, like records of programming languages and traditional database models,

consists of a set of <identifier (attribute or label), denotable value> pairs. The order of the pairs is unimpor-
tant. Examples of denotations of tuples are:

PaulBrown :=
(Name := "Paul"
and Surname := "Brown"
and BirthDate := "06/12/1941")

Department :=
(Name := "Computer Science"
and NumOfEmployee := 10
and Chairman :=

(Name := "John"

-8-

and Surname := "Moore"
and Salary := 80))

We shall say that a value is associated with an identifier when it appears in a pair together with that
identifier.

Tuples are equipped with the of operator that returns the value associated with an identifier (of is
right associative):

Name of
(Surname := "Moore"
and Name := "John"
and Salary := 80) yields "John".

A tuple type consists of an unordered set of pairs <identifiers, type>. Two tuple types are equal if
they hav e equal sets of pairs.

Tuples in Galileo are just environments constructed with any environment operators except type,
although we continue to use the two terms to indicate their use as a data structure (tuple) or as a binding in
which evaluation takes place (environment). The following example shows how to construct and use circu-
lar data with the operators rec, and and use:

use rec Cs :=
(Name := "Computer Science"
and Budget := 100
and Chairman := Smith)

and Smith :=
(Name := "John"
and Salary := 100
ext Deductions := Salary * 0.1
and Department := Cs)

in
Deductions of Chairman of Cs yields 10

A discriminated union, or variant, type consists of a set of alternative values. It is different from the
mathematical union of sets in that each value retains an inspectable tag, indicating the alternative to which
it belongs. Two variant types are equal if the sets of their pairs <tag, type> are equal. An example of variant
type is:

type Employee:=
<Technician: (Name: string and Skill: string)
or Secretary: (Name: string and TypingSpeed: string)>

Values of such a type are denoted by giving the expected tag:

JohnSmith := <Secretary := (Name := "John Smith" and TypingSpeed := "High")>

MarySmith := <Technician := (Name := "Mary Smith" and Skill := "Analyst")>

Tw o basic operators are defined on variants: is to test the tag of a variant value, and as to get the
value contained in the variant. Suppose w denotes a value of type Employee, then a legal Galileo expression
is:

if w is Technician

-9-

then Skill of (w as Technician)
else TypingSpeed of (w as Secretary)

The case construct is a convenient form to test the tag of a variant and to bind the value to a local
identifier:

case w when
<Technician := x. Skill of x
or Secretary := y. TypingSpeed of y>

The Pascal-like enumeration type <Id or ... or Id> is an abbreviation for <Id:null or ... or Id:null>,
and values of such a type can be denoted with <Id> instead of <Id := nil>. "optional t" is an abbreviation
for <bound: t or unbound: null>. If x is a value of type "optional t", it can be used in any expression as
abbreviation of "x as bound".

4.2. Sequences
A sequence is a finite ordered collection of homogeneous elements, i.e. data with the same type.

Sequences differ from sets in the ordering and multiplicity of elements.

[3; 4; 6*3; 4] is a sequence of integers

[(Name := "Jim" and Age := 20);
(Name := "Alice" and Age := 31)] is a sequence of tuples

A sequence type is denoted by seq followed by the type of the elements. For instance, the following
are the types of the above sequences:

seq num
seq (Name: string and Age: num)

Since each expression must have a type statically determinable, empty sequences must be followed
by their type, as in

[]: seq num
[]: seq (Name: string and Age: num)

Tw o sequences are equal when they meet three conditions: they hav e the same element types, the
same cardinality, and their elements are pairwise equal, in the correct order. Two sequence types are equal
if they hav e equal element types. The following examples show some operators on sequences:

first [2;3;2] yields 2
rest [2;3;2] yields [3;2]
[1;2] append [3;4;2] yields [1;2;3;4;2]
setof [1;2;2;1] yields [1;2]
3 isin [2;3;5] yields true
emptyseq [2] yields false

first and rest generate a failure when applied to an empty sequence.

all x in [2;3;2;3;6] with x > 2 yields [3;3;6]

all p in [(Name := "Jim " and Age := 20); (Name := "Alice" and Age := 31)]
with Age of p > 20

yields [(Name := "Alice" and Age := 31)]

-10-

The following semantically equivalent expression is preferred for sequences of tuples, since it avoids
the introduction of the explicit binder:

all [(Name := "Jim" and Age := 20); (Name := "Alice" and Age := 31)]
with Age > 20

To evaluate an expression for each element of a sequence, such as "Select the names of persons aged
more than 20", the following expression can be used:

for [(Name := "Jim" and Age := 20); (Name := "Alice" and Age := 31)]
with Age > 20 do Name

yields the sequence ["Alice"]

The conventional aggregate functions sum, average, etc. are available for sequences of numbers.

4.3. Modifiable Values
Values associated with the previous types cannot be modified. To introduce "modifiability" in the lan-

guage, for example to modify the value of a tuple pair or to change the value associated with an identifier in
the environment, a new kind of value, the location, is introduced. Its name, and meaning is that commonly
used in the denotational semantics description of programming languages [Tennent 81]. Locations reside in
a time varying structure, the store, and are associated with values of any type, included other locations since
they are also denotable values. The expression "var 3" denotes a new location which is associated in the
store with the value 3. The type of "var Expression" is "var TypeOfExpression", and two location types are
equal if and only if their associated types are equal.

The operations on locations are: getting the associate value, i.e. that content of the location; replac-
ing the associated value with a new value of the same type (assigning a value); testing for equality between
locations. For instance:

use x := var 3
in at x + 1 yields 4

The evaluation of at x giv es the value associated with the declared location.
The assignment operator <− is an infix binary operator. The value of the left operand must be a loca-

tion, while the value of the right operand must be a value of the same type as the previous content of the
location. This operation modifies the store replacing the old value of the location and returns nil. For exam-
ple:

use x := var 3
in (x <− at x + 1; x) yields 4

where (E1; ...; En) evaluates all expressions Ei sequentially and returns the value of the last one.

4.4. Functions
Functional types are build by the operator −>. The type (tx −> ty) consists of all the functions that

map values of type tx to result of type ty. The expression "fun(x: tx): ty is Expression" denotes a function
with formal parameter x, and body Expression that returns a value of type ty. The function possesses a type
(tx −> ty). To define a function f with formal parameter x and body Expression one performs the declara-
tion "f(x: t): t´ := Expression", equivalent to "f := fun(x: t): t´ is Expression". To apply f to an actual param-
eter p one evaluates the expression "f(p)". The body of f is evaluated in the environment where f is defined
(static scoping), extended with the bindings (formal parameters, value of the actual parameter). The value
of the body is returned as the result of the application. The control structures available to define compound
expressions are sequencing, selection, repetition and failure handling, which will be discussed in Section 8.

-11-

4.5. Abstract Types
The type of the values presented so far depends only on the structure of the values. That is, the type

compatibility rule adopted is the so called structural equivalence rule. User defined type names are just
used as an abbreviation for the structure they represent. These types are called concrete, in contrast with a
new kind of type called abstract. Two user-defined abstract types are always different, i.e. the type compat-
ibility rule adopted for them is the so-called name equivalence rule.

Abstract types are not abstract in the sense of algebraic abstract types, but rather are analogous to
CLU clusters, ALPHARD forms and Euclid modules. They are a mechanism to abstract the representation
of the data from their behavior. Such behavior is defined by the designer in terms of the operations that can
manipulate the data. However an abstract type can be used like any other type in all the contexts where a
type is expected. That is, user defined abstract types have the same status as primitive types, which can be
regarded as predefined abstract types provided by the language.

The main reason for introducing abstract types is protection, that is, to provide a mechanism to define
a new type together with the operations available on values of that type. Thus values of different abstract
types are not compatible, even though they hav e the same representation, e.g., a weight is different from a
height, although both are represented by integers. In this way, it is possible to tailor particular operations for
each type, which cannot be used for objects of other types. For example, a function that tests a height and
an age against a table of standards can not be misused by applying it to a weight and an age. Another
important protection introduced by abstract types is that programs are independent of changes in data repre-
sentation as long as the primitive operations are the same.

To define abstract types, Galileo offers the following environment operator:

type Id <=> Type {assert [with "Name"] BoolExpr}

This environment expression introduces the following bindings:
1. Id is bound to a new type with a domain isomorphic to the domain of the representation type, Type,

possibly restricted by the assertions.
2. The identifiers mkId and repId are bound to two primitive functions, automatically declared, to map

values of the representation type into the abstract one and vice versa:

mkId : Type −> Id
repId : Id −> Type

If an assert clause is present, BoolExpr is a boolean expression on the values of the type. The asser-
tions impose constraints on data values, which are controlled at execution time, when the data is created. If
an assertion is violated, the operation fails with the name of the operation or with the name of the assertion,
if present.

type Time <=> (hrs: num and mins: num)
assert use this

in hrs within (0,23) And mins within (0,59)

This declaration defines an abstract type Time together with the primitive functions mkTime and rep-
Time. As an abbreviation, constraints on a property can be specified directly in the corresponding pair dec-
laration:

type Time <=>
(hrs: num this within (0,23)
and mins: num this within (0,59))

-12-

To define an abstract type with the representation hidden, but with user defined operations, the fol-
lowing definition might be used:

type Time <=>
(hrs: num this within (0,24)
and mins: num this within (0,60))

with Hours(t: Time): num :=
hrs of repTime(t)

and Minutes(t: Time): num :=
mins of repTime(t)

and MakeTime(x: num,y: num): Time :=
mkTime((hrs := x and mins := y))

This declaration exports an abstract type Time together with three functions MakeTime, Hours and
Minutes. The two primitive functions mkTime and repTime are only available in the definitions that appear
in the with part, but they are not exported in the scope of the type declaration. The with construct is not a
special syntax for abstract types, but it is another environment operator: A with B means that the types in A
can be used in B and they are exported together with the definitions in B; the values in A (like mkTime and
repTime) can be used in B but they are not exported. So abstract types are obtained from the interaction of
two orthogonal features: the isomorphism constructor <=> and the environment operator with. Mutually
dependent types can be defined with the expression:

type rec
(u <=> ...
and v <=> ...

...
and z <=> ...)

with op(...) := ...
...

and op(...) := ...

To define new types, Galileo provides an additional environment operator:

type Id <−> Type {assert [Name] BoolExpr}

This operator introduces the following bindings:
1. A new type which inherits the primitive operators on the representation type. The primitive operators

retain their names, but this overloading does not introduce ambiguities because the typechecker can
infer the meaning of an operator from the type of the operands. To restrict the set of operators to be
inherited, the operators drop or take on the representation type might be used.

2. The identifiers mkId and repId as for the <=> operator.
This environment operator has been included since in many cases most of the primitive operators on

the representation type are also needed for the abstract type, especially in database applications. The protec-
tion required is that the operators must never be applied to values of different types, and this is the effect of
introducing a new type with this operator. When all the operators on the representation type are inherited,
this operator is equivalent to the type constructor in Ada where user defined types are always different.

type PersonAge <−> num this within (0,150)
drop mod,*

This declaration introduces:

-13-

1. The new type PersonAge with a domain isomorphic to a subset of numbers.
2. The primitive functions mkPersonAge and repPersonAge.
3. The predefined operators on numbers translated on the type PersonAge, except mod and *. The oper-

ators incorporate the control of the assertion, so the expression "mkPersonAge(10) + mkPerson-
Age(1)" is equivalent to mkPersonAge(10 + 1).
For example, another definition of Time which introduces a new type equipped with the selector

operators "Hours of" and "Minutes of", and the functions mkTime and repTime is:

type Time <−>
(Hours: num this within (0,23)
and Minutes: num this within (0,59))

In defining a new tuple type with the operator <−>, it is possible to declare a pair as default or
derived:

type Product <−>
(Code: string
and SaleTax: default 0.06
and Price: var num
and Cost: var num
ext Profit:= derived(Price − Cost))

This declaration has the following meaning:
1. In the parameter of the function mkProduct the derived attributes are ignored, and if default attributes

are omitted, the specified value is assumed.
2. Every time the selector "Profit of" is used on a value of type Product, the associated expression is

evaluated and its result is returned. If the derived attribute is defined with the ext operator, the
expression is evaluated extending the definition environment temporarily with the pairs of the tuple.
When the and operator is used, the function is evaluated in the definition environment.

5. TYPE HIERARCHIES
An important property of the Galileo type system is the notion of subtype: if a type u is a subtype of a

type v (u ⊆ v), then a value of type u can be used in any context where a value of type v is expected, but not
vice versa. The subtype relation is a partial order. For instance, if a function f has a formal parameter of
type v, then an application of f to a value of type u is correctly typechecked because no run-time errors can
occur. It is important to stress the point that, since Galileo has a secure type system, the notion of type hier-
archies is related to that of well-typed expressions [Cardelli 84, Gordon 79a]: expressions which are syntac-
tically well-typed are always semantically well-typed, i.e. such expressions do not cause run-time type
errors and give a value of the correct type. In Milner’s words "well typed expressions do not go wrong" also
applies to hierarchies among types [Milner 78].

This notion of type hierarchies is different from the subtype concept of Ada, but is similar to the sub-
class mechanism of Simula 67 and Smalltalk. In Galileo this notion is extended to all the types, in the sense
explained in the sequel, while preserving two important properties: the language is still strongly typed and
the functions need not be recompiled to be used on parameters of any subtype.

With this mechanism Galileo supports the notion of programming by data specialization originally
introduced by Simula 67 and generalized in TAXIS to all the constituents of a database application : data,
transactions, assertions and scripts [Borgida 82]. Complex software applications, especially those related to
databases, can be designed and implemented incrementally. Once a set of functions has been designed and
tested for the most general data, it can still be used with data of any subtype introduced later on in the soft-
ware development process. Moreover new functions on the subtypes can be defined in terms of the old
functions.

-14-

The subtype relation is automatically inferred by the typechecker for concrete types, but it must be
declared explicitly among abstract types. The rules followed by the typechecker are:
1. For any type t, t ⊆ t.
2. If r and s are tuple types, then r ⊆ s iff:

a. The set of identifiers of r contains the set of identifiers of s, and
b. if r´ and s´ are the types of a common identifier, then r´ ⊆ s´.
For instance if

type (Address :=
(Street: string
and Zip: string)

and VipAddress :=
(Street: string
and Zip: string
and Country: string)

and Person :=
(Name: string
and Address: Address)

and Student :=
(Name: string
and Address: Address
and School: string)

and VipPerson :=
(Name: string
and Address: VipAddress))

then

Student ⊆ Person
VipPerson ⊆ Person

while it is false that

Person ⊆ VipPerson,
Person ⊆ Student,
Student ⊆ VipPerson and
VipPerson ⊆ Student.

3. If r and s are variant types, then r ⊆ s iff:
a. The set of tags of r is contained in the set of tags of s, and
b. if r´ and s´ are the types of a common tag, then r´ ⊆ s´.
For instance if

type (Day :=
<Monday or Tuesday
or Wednesday or Thursday
or Friday or Saturday
or Sunday>

and Weekend := <Saturday or Sunday>)

then

-15-

Weekend ⊆ Day.

4. If r and s are sequence types with elements of types r´ and s´, then r ⊆ s iff r´ ⊆ s´.
5. A modifiable type "var r" is a subtype of another type "var s" iff r and s are the same type.

To clarify the reason for this rule, consider the following expression evaluated in an environment con-
taining the previous type definitions.

use type Trav eler :=
(Name: string
and Address: var Address)

ext Agnelli :=
(Name:= "Gianni Agnelli"
and Address :=

var (Street:= "200 Bloor St, Toronto"
and Zip:= "M4V 2H5"
and Country:= "Canada"))

and ChangeAddress (x :Traveler, y: Address) :=
Address of x <− (Street:= Street of y and Zip:= Zip of y);

in

(ChangeAddress(Agnelli,
(Street := "New Address"
and Zip := "New Zip"
and Country := "New Country"));

Country of at (Address of Agnelli)

The application of ChangeAddress is not well typed according to the above rule because the type of
Agnelli is not a subtype of Traveler. If, for instance, a different rule had been adopted, lets say that two
types var r and var s are in the ⊆ relation if r ⊆ s, then the previous expression would have been accepted
by the typechecker, but it would no longer be true that "well typed expressions do not go wrong": the last
expression will generate a run time error because the tuple Agnelli has lost the pair with attribute Country!
This is a consequence of the assignment operation in the ChangeAddress function: it assigns a new data
value of type (Street: string and Zip: string) to the Address of the actual parameter.
6. If (r −> s) and (r´ −> s´) are function types, then (r −> s) ⊆ (r´ −> s´) iff r´ ⊆ r and s ⊆ s´.
Note the inversion of the subtype relation between the domains of the functions. To clarify the reason for
this rule, consider the following expression (a parameter of type (r −> s) means that the actual parameter
can be any function mapping values of type r to values of type s):

use type
(Person := (Name: string)
and Student :=

(Name: string
and School: string)

and ForeignStudent :=
(Name: string
and School: string
and Country: string))

and John :=
(Name := "John")

-16-

and JohnStudent :=
(Name := "John"
and School := "UofT")

and AnItalian:=
(Name := "Mario"
and School: "UofT"
and Country: "Italy")

and NameOfPerson (x: Person): string :=
Name of x

and CountryOfForeignStudent (x: ForeignStudent): string :=
Country of x

and StringFromStudent (g: Student −> string, x: Student): string :=
g(x)

in
(StringFromStudent (CountryOfForeignStudent,JohnStudent);
StringFromStudent (NameOfPerson, AnItalian))

For the above rule, the first application of StringFromStudent is not well typed because the type of
CountryOfForeignStudent (ForeignStudent −> string) is not a subtype of (Student −> string). In fact, if it
were executed a run time error would occur because of the use of the selector "Country of" in the function
CountryOfForeignStudent on a value of type Student. In contrast, the second application of StringFromStu-
dent is instead well typed.
7. A type Id <−> t (the same rule applies to <=>) is a subtype of another type Id’ <−> t’, with primitive

types considered as predefined abstract types, when the subtype relation is declared explicitly to the
typechecker as follows:

Id is Id’ <−> t "NewAssertions", and t ⊆ t’

Note that the assertions on Id are those of Id’ plus "NewAssertions".

type (PersonAddress := (HomeAddress: string)
and StudentAddress :=

(HomeAddress: string
and College: string)

and Person <−>
(Name: string
and Age: num this within (0,150)
and Address: PersonAddress)

and Student is Person <−>
(Name: string
and Age: num this within (6,25)
and School: string
and Address: StudentAddress))

The following abbreviation, used when the representation type is a tuple type, makes evident that the
subtype Student inherits attributes and assertions of the type Person:

type Student <−>
(is Person

-17-

and School: string
ext Address: StudentAddress)
assert use this in Age within (6,25)

In the abbreviated notation, the ext operator must be used to redefine the type of Address. A derived
attribute cannot be redefined in a subtype.

Finally, multiple hierarchies are declared as "Id is Id´, Id´´<−> t", where t ⊆ t´, and t ⊆ t´´, or in the
abbreviated form "Id <−> is Id´, Id´´". Note that in the abbreviated form, if a common identifier is pre-
sented with type tr´ in t´, and tr´´ in t´´, then tr´ must be a subtype of tr´´ or vice versa. In the representation
of type Id the identifier will have the most specialized type.

6. CLASSES
Classes provide a mechanism to represent a data base by means of sequences of modifiable interre-

lated objects. An element of a class is an object which is the computer representation of certain facts of an
entity of the world that is being modeled. An object oriented view of a database is characterized by the fol-
lowing [Borgida 82, Kent 79, McLeod 84]:
1. There is a one-to-one correspondence between objects in the database and entities of the world that is

being modeled.
2. The objects of the database are all distinct and they might not have an external reference, such as a

key, that stands for them.
3. Associations among entities are modeled by relating the corresponding objects and not external refer-

ences. Moreover only objects that exist in the database can be used to model associations.
A class is characterized by a name and the type of its elements. The name of a class denotes the ele-

ments of the class currently present in the data base, while the type gives the structure of the elements. The
type of the class elements must be abstract, therefore two elements of different classes are always of differ-
ent types, although they may be defined with the same representation.

Elements of classes are the only values in Galileo which can be created and destroyed. Moreover they
are uniquely represented and when updated their modification is reflected in all other objects in which they
appear as components.

Each class can be either a base class or a subclass. A base class is defined independently of other
classes, while a subclass is defined in terms of other classes. As in SDM [Hammer 81], a base class is used
to model a primitive collection of entities, while a subclass is used to model alternative ways of looking at
the same entities.

6.1. Base Classes
A base class is defined by the environment operator class, as shown in the following example with

two mutually defined classes:

rec Departments class
Department <−>

(Name: string
and Budget: num
and Address: string
and Manager: optional Employee
and Employees: var seq Employee)
key (Name)

and Employees class
Employee <−>

(Name: string
and Salary: num

-18-

and NameOfDept :=
derived Name of

get Departments with this isin (at Employees)
key (Name)

The class operator introduces the following bindings:
1. The identifiers Department and Employee are bound to new types isomorphic to tuples.
2. The class identifiers Departments and Employees are bound to modifiable sequences of values of

type Department and Employee respectively.
3. The identifiers mkDepartment and mkEmployee are bound to two primitive functions, automatically

declared, which differ from the similar functions for abstract types in that every time they are applied,
new objects are created and are also automatically inserted in front of the associated sequences, if the
specified constraints are not violated. The constructed elements are also the values returned by these
functions.
The above declaration defines the structure of the objects together with a few constraints, some of

which are predefined constraints on sequences, to be tested when an instance is created or modified:
1. The key constraint asserts that elements of a class must differ in the value of certain constant

attributes. Note that if the key constraint is not specified, the insertion will be made even though the
value of the attributes are equal to those of another object already present in the class. That is, ele-
ments of classes are always distinct objects, but the construction of an element will fail when the con-
straints are violated.

Other constraints are specified directly in the definition of the element type:
2. Only attributes with a var type can be modified.
3. Only modifiable attributes with an optional type can be left unspecified when an element is created.
4. A derived attribute, such as NameOfDept, is used to model a mapping from the employees to the

department where they are employed, while the property Employees in Departments is used to model
a part-of relationship which implies the following dependency constraint: an employee cannot be
eliminated from the database as long as he belongs to a department.
Since the name of a class denotes the sequence of all the current elements present in the database, all

the operators on sequences can be applied to classes. In addition to these operators, the following are also
provided:

get ClassId with Condition

This is another operator on sequences: it returns the only element in a sequence which satisfy the
condition. Otherwise a failure is generated.

6.2. Subclasses
Subclasses and type hierarchies are the features provided by Galileo to support the abstraction mech-

anism of IS-A hierarchies, originally proposed in the context of Semantic Networks and nowadays consid-
ered as an essential requirement for a language supporting Semantic Data Model features [McLeod 84].

There are, however, differences between IS-A hierarchies and type hierarchies introduced in the pre-
vious section:
1. The subtype notion in Galileo refers to a static aspect of the language and has been introduced to

establish a compatibility rule among all the possible values of a type and those of its supertypes.
2. An IS-A hierarchy, e.g. Students IS-A Persons, involves two different notions. Firstly, it establishes

an existence constraint among the elements of Students and Persons present in the database: the ele-
ments of Students are always a subset of the elements of Persons (extensional notion). Secondly, it
establishes a subtype hierarchy between the type of the elements of Students and Persons. There-
fore, an element of Students can be used as an argument of any operation defined for elements of

-19-

Persons (intensional notion).
In Galileo the two notions behind the IS-A hierachy are expressed with two distinct mechanisms: the

type hierarchy, to deal with the intensional aspect, and the subclass to deal with the extensional aspect.
This distinction increases the modeling capability of the language because it allows the use of the type hier-
archy independently of the subclass mechanism.

There are three ways of defining subclasses: by subset, partition or restriction.
A subset class with elements of type T contains those elements of the parent class which have been

included explicitly in the subclass with the proper operator inT.
A partition class is like a subset class, but it enforces the additional constraint that its elements are

not included in another subclass of the same partition.
A restriction class contains all the elements of the parent class that satisfy some predicate, which is

evaluated at time of elements construction. This predicate cannot be defined over modifiable or derived val-
ues.

In all the cases, when a new element is added to a subclass, it then also becomes an element of the
parent class. In the case of restriction classes a new element must also satisfy the restriction predicate.

Finally, the operator:

remove Expression1, ... , ExpressionN

is provided to eliminate objects from a class and from its subclasses, and returns the value nil only if the
objects are not used as components of other elements. Otherwise a failure is generated. "Expression i" must
evaluate to a sequence of elements.

The type of the elements of a subclass must be a subtype of the element type of the parent class. So
new attributes can be added with the and operator, or old attributes can be redefined with the ext operator,
but the following restrictions must be satisfied:
1. Non-optional attributes may be added only when a subclass is defined as a subset or partition.
2. When a subclass is defined by restriction, then only derived, optional, or default attributes can be

added.
Subclasses can also be defined from more than one parent class, with the restriction that the type of

the elements must be a subtype of the element type of each parent class. An element of a subclass is always
an element of all its parent classes.

Some examples follow to clarify these points:

PublicEmployees restriction of Employees class
PublicEmployee <−> is Employee

The elements are the same as the Employee class.

DowntownDepartments restriction of Departments
with Address = "Downtown"

class
DowntownDept <−>

(is Department
ext ManagerSalary := derived Salary of (at Manager))

The elements of the DowntownDepartments class are all the departments in Downtown.

Managers partition of Employees
with Secretaries, Craftsmen class

Manager <−> (is Employee and Bonus: num)

-20-

Secretaries partition of Employees
with Managers, Craftsmen class

Secretary <−> is Employee

Craftsmen partition of Employees
with Secretaries, Managers class

Craftsman <−> is Employee

Carpenters subset of Craftsmen class
Carpenter <−> is Craftsman

Bricklayers subset of Craftsmen class
Bricklayer <−> is Craftsman

The Employees are partitioned into three disjoint subsets, while the Craftsmen have been refined into
two overlapping subsets of instances. In all the above cases, the classes must be populated explicitly.

The predicate alsoin is provided to check whether or not an object of one class also belongs to a sub-
class:

Expression alsoin Subclass

Expression must evaluate to an object of a class.
The following operator is used to include an element of a class in a subclass with elements of type T:

inT (Expression1, Expression2)

Expression1 must evaluate to the object to be included in the subclass, while Expression2 must evalu-
ate to a value of the representation type of T. The operator checks that the values of the corresponding
attributes of Expression1 and Expression2 are the same. Expression2 can be omitted when an object if a
subclass has the same attributes of an object of the superclass.

Finally to operate on an object of a parent class as if it were the element of a subclass, the object
must be retyped with the following operator:

Expression likein Subclass

Expression must evaluate to an object of a class. The result is the object as member of Subclass. This
operator is needed due to the static type checking discipline.

7. ENVIRONMENTS AS A MODULARIZATION MECHANISM
The languages hitherto proposed for conceptual modeling do not provide features to help the designer

to develop and test a schema incrementally or to express the overall structure of a schema in terms of
smaller related parts. This issue has been addressed in Galileo using the environment, which is a denotable
value, as a modularization mechanism [Albano 83d]. As will be shown in the sequel, the environment oper-
ators previously defined can be used to structure a schema in a way similar to that suggested for theories by
Burstall and Goguen in their specification language Clear [Burstall 77].

Another use of environments is to deal with data and operations as a single unit which can be
accessed by programs. This problem has also been addressed in ADAPLEX with a specialized form of Ada
packages [Smith 81]. In fact, a drawback of commercial DBMSs is that no kind of procedural knowledge
can be described in the schema, whether "derived" information, or application domain oriented operations.
In other words, in these systems data can be shared, but the procedural knowledge cannot: it must be
embedded in the applications. The inclusion of the operations in the schema has the following advantages:

-21-

1 The same operations on the database are not duplicated in all the programs which need them.
2 The database schema does reflect all the knowledge available about the application domain. In partic-

ular, the schema contains not only the description of the structure of the objects and the constraints,
but also the operations on the objects, which complete their semantics.

3 It is possible to constrain user programs to operate on the database through a set of predefined opera-
tions, especially designed to include critical design choices, such as integrity preservation.
Environments also have other useful applications. Firstly, it is the mechanism used by Galileo to deal

with persistence without resorting to specific data types, such as files of programming languages. Sec-
ondly, to deal with evolving applications, the environment is used to establish explicitly the way in which
new applications interact when they use common data. Finally, the environment will be used to define
application oriented views of data in a similar way to the view mechanism of DBMSs.

7.1. Persistence
Temporary values only exist in the system during the execution of the expression in which they are

defined. None of the abstraction mechanisms described previously has the property of defining persistent
values. For instance, user programs may also contain class definitions, if temporary classes must be kept
while running an application. To deal with persistence, a global environment is assumed in which all val-
ues are automatically maintained. Such an environment is managed by the system which supports the lan-
guage. For other approaches to the treatment of persistence as an orthogonal property of data see [Atkinson
83, Atkinson 84].

The global environment is extended by adding new bindings with the command use. In fact, for user
protection, a warning is generated if use is used with identifiers already bound in the current environment.
Instead of having a single set of unrelated definitions and values, as imposed by the interactive approaches
of LISP top level and APL workspace, the user can fruitfully employ the environment mechanism to struc-
ture the global environment. For instance, the following is the definition, at top level, of an environment
Personnel with two permanent classes (for brevity defined operations are omitted):

use
Personnel :=

(rec Departments class
Department <−>

(Name: string
and Manager: var Employee
and Budget: num)
key (Name)

and Employees class
Employee <−>

(Name: string
and Salary: num
and Dept: var Department)
key (Name));

Each expression is evaluated inside an environment, initially the global one, called the current envi-
ronment. Any environment which can be accessed from the global environment can become the current one
with the command "enter Environment", while to return to the global environment there is the command
quit. Since the language is expression based, in the current environment it is possible to evaluate any
expression by simply typing it. For example, assuming that the classes in Personnel have already been pop-
ulated, a simple interactive session is (*):

enter Personnel;

(*) A more elaborate session is reported in [Albano 83a].

-22-

To get the names of all the employees with a salary less than the average salary of their department:

for x in Employees
with Salary of x

< avg(for y in Employees
with at Dept of x = at Dept of y
do Salary of y)

do Name of x;

To add a new employee to the Research department:

mkEmployee
(Name := "Brown"
and Salary := 4
and Dept := get Departments with Name = "Research");

7.2. Encapsulation
Another use of the environment mechanism is to model a schema as a set of interrelated units. Each

unit encapsulates data and operations which are closely related. For instance, let us assume that we are
interested in describing as distinct units data relevant to the planning and administration departments of our
hypothetical firm, although these departments share data of the environment Personnel:

use Planning :=
(Personnel
and Projects class

Project <−>
(Name: string
and Budget: num)
key (Name));

use Administration :=
(Personnel
and Suppliers class

Supplier <−>
(Name: string
and Address: var string
and Credit: var num)
key (Name));

Note that, because of the semantics of environment operators, the Personnel environment is shared by
Planning and Administration, so that any updating of a class in any environment will be reflected in all the
others.

7.3. Refinements
It is possible to start with one environment and to generate others by extending the environment with

new definitions. Thus, data concerning the same application are visible at different levels of details.

use DetailedPersonnel :=
(Personnel
and Branches class

Branch <−>
(Name: string

-23-

and Address: string
and Other: string)
key (Name)

ext SpecialEmployees subset of Employees class
SpecialEmployee <−>

(is Employee
and PrivateData: string));

7.4. View Modeling
To provide controlled access to the database, it is possible to give a different view of an environment

by excluding some of its data or operations.

use OnlyDepartments := Personnel drop Employees

In OnlyDepartments Employees are not visible, while in the following environment only the names
of the employees and the names of the departments where they work can be accessed:

use EmployeesView :=
(use Personnel
in Employees :=

derived for e in Employees
do (e ext NameOfDept := Name of Dept)
drop Dept, Salary);

The expression "Id := derived Expression" denotes an environment in which the only association is
between Id and a virtual value, which is obtained by evaluating Expression every time the value of Id is
requested. All the operators to query a class can be applied to Employees, which therefore behaves like a
view of relational database.

7.5. Logical Independence
The environment operators allow the designer to make applications independent from changes in an

environment, as long as the old view of the database is derivable from the redefined environment. For
instance, let us assume that an application program was designed to work in the DetailedPersonnel environ-
ment on Branches of a certain area, "Downtown", to retrieve data. The database was then extended to
include Branches in other areas, with the elements type redefined as:

Branch <−>
(Name: string
and Address: string
and Area: string
and Other: string)

In order to make the old program independent of these changes, it can be used in the following envi-
ronment:

use NewDetailedPersonnel :=
(DetailedPersonnel
ext Branches :=

derived for b in Branches
with Area = "Downtown"

-24-

do b drop Area);

8. TRANSACTIONS AND FAILURE HANDLING
Every top level Galileo expression is a transaction. That is to say, it is considered an atomic action

against the database: once invoked, it either completes all its operations or behaves as if it were never
invoked. Transactions may fail due either to a hardware or software failure, or to a run time program error.
In Galileo it is possible to cause such an event, and also to sense its occurrence in order to perform any
appropriate action. The failure of a transaction causes an interruption of the normal control flow, and in
addition all updatings from the beginning of the transaction are undone.

A transaction can be either simple or compound. Each expression typed in at top level by the user is a
simple transaction. Therefore, if the expression fails, the persistent data are unaffected. However, if more
than one top level expression must be considered as a single transaction, the expressions must be enclosed
in "transaction brackets": transaction and end_transaction. A compound transaction is a sequence of top
level expressions enclosed between such brackets.

Since any operation, predefined or defined, accessible to the user may be applied as a simple transac-
tion, whenever the schema designer defines operations, he is defining in fact transactions. As a conse-
quence, transactions can be nested by defining a new function as a composition of predefined ones: an
action, atomic at a higher level of abstraction, may be decomposed in subatomic actions to perform, for
example, a stepwise updating of the database [Gray 81]. A failure of inner transactions can be controlled,
and alternative transactions can be started to achieve the desired effect. Consider, for example, the case of
booking a tour with an airline reservation system. Even if the reservation of single parts of the tour suc-
ceeds, unless all the tour has been reserved, the effects of previous operations must be revoked, and a new
attempt could be made with a different airline, or with a different schedule. The different attempts should
be treated as alternative transactions, and the outermost one should fail only if all attempts fail. Another
important advantage of nested transactions is the ability to define transactions not knowing the context in
which it might be used [Atkinson 81].

The linguistic construct for handling failures has a block structure, unlike the usual proposed commit
and abort statements [Gray 81]: "Expression if_fails Expression". If the first expression fails, its effects
are undone and the value of the whole construct is that of the second expression. Otherwise, it is that of the
first one with effects preserved.

Failures have associated with them a string which can be used for a selective handling of failures with
the case_fails construct. For failures which occurred during the execution of primitive operations, the
string returned is the name of the operation. The user can generate a failure with the expression "failwith
string" or with fail, which is equivalent to "failwith "fail"". When a failure occurs, the normal execution
path is interrupted, and the control is passed to the first surrounding failure handler, and the effects are
undone. If no handler is present, the top level expression fails, all its effects are undone, an error message
is printed, and the execution terminates. Let us consider an example with the selective failure handler:

Employee class
Employee <−>

(Name: string
and Salary: num
and Dept: Department)
key (Name)
assert with "LowPay" Salary < Minimum
assert with "HighPay" Salary < (Budget of Dept)/10

-25-

ext rec NewEmployee(AName: string, ASalary: num, ADept: string):Employee :=
mkEmployee

(Name:= AName
and Salary:= ASalary
and Dept:= get Departments with Name = ADept)

case_fails
["LowPay"]

NewEmployee(AName, Minimum, ADept) |
["HighPay"]

NewEmployee(AName,
(Budget of get Departments with Name = ADept)/10,
ADept)

9. CONCLUSIONS
A strongly typed programming language for database applications has been presented. Unlike other

proposals which integrate a relational data model into a conventional, general purpose programming lan-
guage, e.g. Pascal, [Amble 79, Rowe 79, Schmidt 80, Shopiro 79, Wasserman 79], we have integrated into
the framework of the programming language Edinburgh ML [Gordon 79b], a strongly typed interactive lan-
guage, features to support Semantic Data Model abstraction mechanisms (classification, aggregation and
specialization) as well as abstraction mechanisms of modern programming languages (types, abstract types
and modularization).

The approach adopted is, therefore, closer to the one adopted by ADAPLEX that extends the Ada
language with new features to support databases modeling [Smith 81], the difference being that the features
included in Galileo, notably the type hierarchies, are not ad hoc for databases, but they can be used inde-
pendently in the language. This approach has been preferred for two reasons.

Firstly, we were interested in studying a uniform approach towards the design of a modern program-
ming language, strongly typed, which includes features to support Semantic Data Models. We believe that
this paper has provided evidence of how types, abstract types, type hierarchies, classification, aggregation,
specialization and modularization can be integrated in expression based language, statically type checkable.
In particular, we hav e shown the effectiveness of the environment, a novel abstraction mechanism in the
context of conceptual modeling, for structuring complex applications and for view modeling.

Secondly, we were interested in developing an interactive Database Designer’s Workbench, which
integrates a set of tools for creating, testing, and implementing on traditional DBMSs a database design
[Albano 81a]. Since, in the short term, we are mainly interested in using this aid for conceptual modeling,
we have found it more convenient to design a new language for dealing with the specific problems in this
area. We hav e already implemented a prototype version of the system, called Dialogo, which presently sup-
ports a significant subset of Galileo [Albano 83a]. Tools are available to edit a conceptual schema, query
the definitions and load and query test data. An interesting feature of Dialogo is that it is based on a top
level cycle in which a Galileo expression from the user is accepted, executed and the result displayed while
the effect of the user expression on the database is preserved permanently. An expression may be the
invocation of a single predefined function or any complex expression of the language.

Future studies on Galileo will proceed along the following lines:
1 Extensions. We will extend the language to provide: a) a form oriented, input/output interface; b) a

process construct to model the interaction with the users and database evolution, with an approach
similar to that adopted in TAXIS.

2 Implementation. The Dialogo system is being reimplemented by extending the present implementa-
tion of the ML compiler available on a VAX 11/780 running the UNIX(*) operating system.

3 Applications. With the new implementation of Dialogo, it will be possible to effectively experiment
the design of database applications using Galileo. This will also provide the opportunity to test the

(*) UNIX is a Trademark of Bell Laboratories.

-26-

tools available in our Designer’s Workbench against the demands of specific user environments.

We are indebted to M.E. Occhiuto who contributed to the design of a preliminary version of Galileo
and to the members of Galileo Project for their constructive criticisms to the contents of the paper: M.
Capaccioli, F. Giannotti, B. Magnani, D. Pedreschi and M.L. Sabatini. Also many thanks to A. Borgida, S.
Gibbs, D. Lee, A. Mendelzon, J. Mylopoulos, B. Nixon and I. Reichstein for their helpful suggestions for
improving a previous version of this paper, printed as a Technical Report when A. Albano was visiting pro-
fessor at the Computer Science Department of the University of Toronto. The paper has also benefited from
the constructive comments of the referees.

REFERENCES

Abrial J.R. [74], "Data Semantics", Data Management Systems, J.K. Klimbie and K.L. Koffeman
(eds), North-Holland, Amsterdam, 1-60, 1974.

Albano A. and R. Orsini [81a], "An Interactive Integrated System to Design and Use Data Bases",
Proc. Workshop on Data Abstraction, Data Bases and Conceptual Modelling, ACM SIGMOD Special
Issue 11, 2, 91-93, 1981.

Albano A., M.E. Occhiuto and R. Orsini [81b], "A Uniform Management of Persistent and Complex
Data In Programming Languages", Infotech State of Art Report on Database, M.P. Atkinson (ed.),
Series 9, No.4, Pergamon Infotech, 321-344, 1981.

Albano A. and R. Orsini [83a], "Dialogo: An Interactive Environment for Conceptual Design in
Galileo", Methodology and Tools for Database Design, S. Ceri (ed.), North-Holland, Amsterdam,
229-253, 1983.

Albano A. [83b], "Type Hierarchies and Semantic Data Models", ACM Sigplan ’83: Symposium on
Programming Language Issues in Software Systems, San Francisco, 178-186, 1983.

Albano A., M. Capaccioli and R. Orsini [83c], "La definizione del Galileo (Versione 83/6)", Rapporto
Tecnico DAT AID N.20, Pisa, 1983.

Albano A., M. Capaccioli, M.E. Occhiuto and R. Orsini [83d], "A Modularization Mechanism for
Conceptual Modeling", Proc. 9th Int. Conf. on VLDB, Florence, Italy, 232-240, 1983.

Amble T., K. Bratbergsengen and O. Risnes [79], "ASTRAL, A Structured and Unified Approach to
Database Design and Manipulation", Data Base Architecture, G. Bracchi and G.M. Nijssen (eds),
North-Holland, Amsterdam, 240-257, 1979.

Atkinson M.P., K.J. Chisholm and W.P. Cockshott [81], "The New Edinburgh Persistent Algorithmic
Language", Infotech State of Art Report on Database, M.P. Atkinson (ed.), Series 9, No.4, Pergamon
Infotech, 299-318, 1981.

Atkinson M.P., P.J. Bailey, K.J. Chisholm, W.P. Cockshott and R. Morrison [83], "An Approach to
Persistent Programming", The Computer Journal 26, 4, 360-365, 1983.

Atkinson M.P., P.J. Bailey, W.P. Cockshott, K.J. Chisholm and R. Morrison [84], "Progress with Per-
sistent Programming", report PPR-8-84, University of Edinburgh and University of St Andrews,
1984.

-27-

Baltzer R. [80], "An Implementation Methodology for Semantic Database Models", Entity Relation-
ship Approach to System Analysis and Design, P.P. Chen (ed.), North-Holland, Amsterdam, 433-444,
1980.

Barron J. [80], "Dialogue Organization and Structure for Interactive Information Systems", M.Sc.
Thesis, Dept. of Computer Science, University of Toronto, 1980.

Biller H. and E.J. Neuhold [78], "Semantics of Databases: The Semantics of Data Models", Informa-
tion Systems 3, 1-30, 1978.

Borgida A.T., J. Mylopoulos and H.K.T. Wong [82], "Methodological and Computer Aids for Inter-
active Information Systems Design", Automated Tools for Information System Design, H.J. Schneider
and A. Wasserman (eds), North-Holland, Amsterdam, 1982.

Borgida A. [84], "Features of Languages for the Development of Information Systems at the Concep-
tual Level", IEEE Software, 1984 (to appear).

Breutman B., E. Falkenberg and R. Mauer [79], "CSL: A Language for Defining Conceptual
Schemas", Data Base Architecture, G. Bracchi and G.M. Nijssen (eds), North-Holland, Amsterdam,
237-256, 1979.

Brodie M.L. [80], "The Application of Data Types to Database Semantic Integrity", Information Sys-
tem 5, 4, 287-296, 1980.

Brodie M.L. and S.N. Zilles (eds) [81a], Proc. Workshop on Data Abstraction, Data Bases and Con-
ceptual Modelling, ACM SIGMOD Special Issue 11, 2, 1981.

Brodie M.L. [81b], "On Modelling Behavioural Semantics of Databases", Proc. 7th Int. Conf. on
VLDB, Cannes, 32-42, 1981.

Brodie M.L., J. Mylopoulos and J.W. Schmidt (eds) [84], On Conceptual Modelling: Perspectives
from Artificial Intelligence, Databases, and Programming Languages, Springer Verlag, New York,
1984.

Bubenko J.A. [80], "Information Modeling in the Context of System Development", IFIP Congress
1980, North-Holland, Amsterdam, 395-411, 1980.

Buneman P. and R.E. Frankel [79], "FQL-A Functional Query Language", Proc. of ACM SIGMOD
Conference, Boston, Mass., 52-58, 1979.

Burstall R.M. and J.A. Goguen [77], "Putting Theories Together to Make Specifications", Proc.
IJCAI, Boston, Mass., 1045-1058, 1977.

Capaccioli M. [83], "La Semantica Denotazionale del Galileo", Tesi di laurea in Scienze dell’Infor-
mazione, Universita’ di Pisa, Italy, 1983.

Cardelli L. [84], "A Semantics of Multiple Inheritance", in Semantics of Data Types, G. Kahn, D.B.
MacQueen and G. Plotkin (eds), Lecture Notes in Computer Science, Vol. 173, Springer Verlag, New
York, 51-67, 1984.

-28-

Ceri S., G. Pelagatti and G. Bracchi [81], "Structured Methodology for Defining Static and Dynamic
Aspects of Data Base Applications", Information System 6, 1, 31-45, 1981.

Ceri S. (ed.) [83], Methodology and Tools for Database Design, North-Holland, Amsterdam, 1983.

Gordon M. [79a], "The Denotational Description of Programming Languages. An Introduction",
Springer Verlag, New York, 1979.

Gordon M., R. Milner and C. Wadsworth [79b], Edinburgh LCF, Lecture Notes in Computer Sci-
ence, Vol. 78, Springer Verlag, 1979.

Gray J. [81], "The transaction Concept: Virtues and Limitations", Proc. 7th Int. Conf. on VLDB,
Cannes, 144-154, 1981.

Hammer M. and B. Berkowitz [80], "DIAL: A Programming Language for Data Intensive Applica-
tions", Proc. of ACM SIGMOD Conference, Santa Monica Ca, 75-92, 1980.

Hammer M. and McLeod [81], "Database Description with SDM: A Semantic Database Model",
ACM TODS 6, 3, 351-386, 1981.

Kent W. [79], "Limitations of Record-Based Information Models", ACM TODS 4, 1, 107-131, 1979.

Lum V. et al. [79], "1978 New Orleans Data Base Design Workshop Report", Proc. 5th Int. Conf. on
VLDB, Rio de Janeiro, 328-339, 1979.

McLeod D. and R. King [84], "Semantic Database Models", Principle of Database Design, S.B. Yao
(ed.), Prentice Hall, 1984 (to appear).

Milner R. [78], "A Theory of Type Polymorphism in Programming", Journal of Computer and Sys-
tem Science 17, 348-375, 1978.

Mylopoulos J., P.A. Bernstein and H.K.T. Wong [80], "A Language Facility for Designing Database-
Intensive Applications", ACM TODS 5, 2, 185-207, 1980.

Navathe B.S. [80], "Information Modeling Tools for Data Base Design", Panel on Logical Database
Design, Fort Lauerdale, Florida, 1980.

Roussopoulos N. [79], "CSDL: A Conceptual Schema Definition Language for the Design of Data
Base Applications", IEEE Trans. on Software Engineering, Vol. SE-5, N.5, 481-496, 1979.

Rowe L.A. and K.A. Shoens [79], "Data Abstraction, Views and Updates in RIGEL", Proc. of ACM
SIGMOD Conference, Boston, Mass., 71-81, 1979.

Sabatini L. [82], "La Semantica Statica del Galileo", Tesi di laurea in Scienze dell’Informazione,
Universita’ di Pisa, Italy, 1982.

Schmidt J.W. [78], "Type Concepts for Database Definition", Database: Improving Usability and
Responsiveness, B. Schneidermann (ed.), Academic Press, 215-244, 1978.

-29-

Schmidt J.W. and M. Mall [80], "Pascal/R Report", University of Hamburg, Fachbereich Informatik,
Report N.66, January 1980.

Shipmann D.W. [80], "The Functional Data Model and the Data Language DAPLEX", ACM TODS 6,
1, 140-173, 1980.

Shopiro J.E. [79], " A Programming Language for Relational Databases", ACM TODS 4, 4, 493-517,
1979.

Shaw M. [80], " The impact of Abstraction Concerns on Modern Programming Languages", Pro-
ceedings of the IEEE, Vol.68, N.9, 1119-1130, 1980.

Smith J.M. and D.C.P. Smith [79a], "Database Abstraction: Aggregation and Generalization", ACM
TODS 2, 2, 105-133, 1979.

Smith J.M. and D.C.P. Smith [79b], "A Database Approach to Software Specifications", Software
Development Tools, W.E. Riddle and R.E. Fairley (eds), Springer Verlag, Berlin, 176-200, 1979.

Smith J.M., S. Fox and T. Lancers [81], "Reference Manual for ADAPLEX", Technical Report
CCA-81-02, Computer Corporation of America, January 1981.

Teichroew D. and E.A. Hershey [77], "PSL/PSA: A Computer Aided Technique for Structured Docu-
mentation and Analysis of Information Processing Systems", IEEE Trans. on Software Engineering,
Vol. SE-3, N.1. 41-49, 1977.

Tennent R.D. [81], Principle of Programming Languages, Prentice-Hall International, London, 1981.

Wasserman A.I. [79], "The Data Management Facilities of PLAIN", Proc. of the ACM SIGMOD
Conference, Boston, Mass., 60-70, 1979.

Weber H. [78], "A Software Engineering View of Data Base Systems", Proc. 4th Int. Conf. on VLDB,
Berlin, 36-51, 1978.

Yao S.B., S.B. Navathe and J.L. Weldon [78], "An Integrated Approach to Logical Database Design",
Proc. NYU Symp. on Data Base Design, 1-14, 1978.

