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Four of the most well-known, commercially available docking programs, FlexX, GOLD, GLIDE, and ICM,
have been examined for their ligand-docking and virtual-screening capabilities. The relative performance of
the programs in reproducing the native ligand conformation from starting SMILES strings for 164 high-
resolution protein-ligand complexes is presented and compared. Applying only the native scoring functions,
the latest versions of these four docking programs were also used to conduct virtual screening for 12 protein
targets of therapeutic interest, involving both publicly available structures and AstraZeneca in-house structures.
The capability of the four programs to correctly rank-order target-specific active compounds over alternative
binders and nonbinders (decoys plus randomly selected compounds) and thereby enrich a small subset of a
screening library is compared. Enrichments from the virtual-screening experiments are contrasted with those
obtained with alternative 3D shape-matching and 2D similarity database-search methods.

INTRODUCTION

With the advent of high-performance and low-cost com-
puting systems, exemplified by enterprise grid-based net-
works and large Linux farms, the past decade has been
witness to a major change in the practice of molecular
modeling in the pharmaceutical industry, particularly in the
resources available to the computational chemist.1 As a result,
computational methods are being increasingly used in various
stages of the drug-discovery process.2 Coupled with a rapidly
rising number of protein structures, structure-based drug
design, driven by molecular docking and binding prediction,
has been undergoing somewhat of a renaissance.3

Molecular-docking methodologies ultimately seek to pre-
dict (or often retrospectively reproduce) the best mode by
which a given compound will fit into a binding site of a
macromolecular target. Docking, as a result, usually involves
two independent steps: (1) the sampling of the ligand’s
positional, conformational, and configurational space to
predict the ligand’s pose within the binding site of the
receptor and (2) the scoring of the ligand’s pose such that
the ranking typically is an arbitrary reflection of how well a
ligand is expected to bind to its cognate receptor. The
docking dilemma thus requires an efficient sampling and
searching procedure that is a necessary prerequisite to
accomplish point 1 and an accurate scoring function that will
correctly assign the bound ligand a priority score that will
successfully achieve point 2.

The re-emergence of such in-silico-based screening meth-
ods is of practical importance for lead-compound generation
in drug discovery.4 Molecular-docking programs coupled
with suitable scoring functions are now very much estab-

lished as the necessary tools that enable computational
chemists to rapidly screen large chemical databases and
thereby identify promising candidate compounds for further
experimental processing.5 A number of docking programs
such as DOCK,6 FlexX,7 GOLD,8 AutoDock,9 GLIDE,10

QXP,11 and ICM12 have been developed for just this purpose.
Consequently, molecular docking has caught the attention
of many pharmaceutical and biotechnology companies eager
to discover novel chemical entities, and this has culminated
in several well-documented comparative benchmarks on the
relative performance of one docking code versus another,
including various combinations of those noted above.13 Such
studies are very much of interest to us, but as has been
pointed out recently,14 and as we are only too aware, because
of the many control parameters and other variables that
influence the results of each docking code, docking com-
parisons are extremely difficult to do without inadvertently
(dis)favoring the performance of one code over another.
Regardless of how objective or careful the authors have
strived to be, the results of such comparisons can often be
misleading or not generally applicable to the problem at hand.

Given the increased use of molecular-docking approaches
and the growth in the number of modeling toolsets available
with docking capability, a comprehensive evaluation of a
number of docking programs over a large and highly curated
data set containing several protein classes of therapeutic
interest is clearly useful. In this sense, AstraZeneca is no
different from the other pharmaceutical and biotechnology
companies that have benchmarked docking-software perfor-
mance, in that we have also performed evaluations which
allow us to gauge the current state of the art. From our
viewpoint, such a study provides invaluable information
which enables us to devise improved protocols for small-
molecule docking and subsequent virtual-screening cam-
paigns, while also serving to highlight areas for improvement
in the next generation of docking programs and scoring
functions.
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From the perspective of hit or lead identification, a more
significant aspect is the relative performance of different
docking programs as efficient and effective virtual-screening
engines. Here, the ability to separate a small subset of active
compounds for a given protein target from a sufficiently large
set of randomly selected compounds is of paramount
importance, as opposed to producing a correct correlation
between the calculated and experimental binding affinities.
Of course, the most essential component of being able to
score ligands appropriately and reproduce credible enrich-
ment statistics for a specific target is to first be able to predict
the binding mode of a molecule correctly. A good rule of
thumb is that, if the ligand is not docked in the correct
conformation, it is very unlikely that the calculated score
and associated priority ranking a compound receives is of
any significance. However, exceptions to this rule can arise,
particularly when ligand poses are fortuitously close-lying
in energy. In addition, correctly predicting ligand binding
will assist in the subsequent selection and optimization of
compounds.

In this article, we report the results of an extensive study
of the docking accuracy of four programs, FlexX, GLIDE,
GOLD, and ICM. As noted previously, a concern with all
published docking evaluations is that they are inherently
difficult to do without accidentally biasing the performance
of one code over another. In this respect, we have endeavored
to be particularly vigilant in our approach and build on the
experience of former docking evaluations. To be sufficiently
distinctive from all other previously related works, we have
tried to ensure that this study both is cognizant of and
emphasizes the problematic issues associated with docking
comparisons. It is quite likely that the list of topics that we
cover is not all-encompassing, but we hope that enough of
the major issues that affect the outcome of a comparative
evaluation are exposed. Points worthy of note and possible
areas of concern are highlighted throughout the text in italics.

All four programs were used to dock random conformers
of ligands (starting from SMILES strings, which is a realistic
unbiased representation of how compounds are stored in
AstraZeneca databases) into the binding site of a receptor
(164 in total). The root-mean-square deviation (RMSD) (for
the heavy atoms only) between the docked conformers (rank
#1) and experimental X-ray structures were then calculated
and compared using astricter measure of successthan has
been used in the majorityof the previous evaluations. The
objective of this docking exercise was very simply to assess
the ability of each program to reproduce the conformation
of the native ligand over a wide-ranging data set of
approximately 164 X-ray crystal structures. By defining the
ligand as a SMILES string and running each program at the
default settings by following the instructions recommended
in the various user’s guides, we acquire a sense of the general
performance capabilities of each program. This obviously
does not preclude the possibility that a particular program
will perform significantly better in the hands of an expert.

All four programs were then used to dock a carefully
designed database (compound structures stored in SMILES
format) of randomly selected drug-like compounds plus
known receptor-specific active ligands of varying activity
against a broad range (12 in total) of pharmaceutically
relevant protein targets. As an example of the type of
challenge we were setting,for one target in particular, 17

actiVes were to be extracted from a much larger database
of ∼40 000 compounds. This leVel of acute discriminatory
capability by a scoring function isVery much representatiVe
of the type of performance we are looking to implement in
eVeryday discoVery research. Macromolecular targets were
carefully chosen to represent a range of protein classes having
substantially different active site topologies and character-
istics. For each target examined, at least one protein structure
with a cocrystallized ligand was available in the public
domain. The recovery rate was then used to calculate an
enrichment factor on a per-target basis as the key measure
of how well a particular docking program performed in
identifying the known target-specific active compounds from
the randomly selected drug-like compounds.

Through this kind of extensive evaluation and comparison,
we aim to develop an improved understanding of the relative
merits and shortcomings of the docking programs available
to us for present-day use in AstraZeneca discovery-research
projects.

MATERIALS AND METHODS

In this section, we present a detailed description of the
procedure used to select and prepare protein receptors and
associated ligands for the binding mode prediction and
enrichment studies. The methodology associated with the
various docking programs is also described briefly.

Target Selection for Binding-Mode Assessment.A total
of 164 protein-ligand complexes were selected from the
Protein Data Bank (PDB)15 according to the following
criteria:

General Features
• Noncovalent binding between ligand and protein
• Crystallographic resolution around 3.0 Å or better
Ligand Features
• Molecular weight between 150 and 800 Da
• From 1 to 16 rotatable bonds, that is, varied flexibility

of receptor-bound ligands
• drug/lead/nonlead like
• structurally diverse
Protein Features
• Multiple structural motifs (wide spectrum of receptor

families)
• Diversity within classes
• Metal present in some of the binding pockets
• Range of active site topologies and water accessibility
• Activities of bound ligands ranging from low micromolar

to nanomolar
• Relevant for drug discovery (for the most part)
Our receptor test set incorporates several well-known

protein structural motifs (kinases, proteases, lipases, trans-
ferases, isomerases, phosphatases, oxidoreductases, nuclear
receptors, heme-containing proteins, a GPCR) and ligands
(sugars, macrocycles, and peptidomimetics).Receptors were
also chosen with more than one bound ligand per crystal
structure, to explore the ability of the docking programs to
handle Various conformations of the same receptor and
eliminate potential failures due to protein rearrangement
upon ligand binding (induced fit).16 To ensure diversity in
the test set, a number of lesser-quality structures were also
included. Proteases and kinases are the most widely repre-
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sented families in the test set, a statistic which merely
illustrates that these two protein classes have long been, and
still are, to some extent, the focus of modern structure-based
drug-discovery programs. The thresholds for molecular
weight and number of rotatable bonds of the ligands were
set to reflect a wide distribution of potential molecules,
covering both drug-like and nondrug-like structures. In
summary, we believe that our data set of∼164 complexes
is broad and provides a challenging test of binding mode
prediction capability.17

Receptor Preparation For Binding-Mode Assessment.
Generally, for the 164 protein targets, if a cofactor was
present at the binding site, its bond order and protonation
state were inspected and corrected if required. When relevant,
metal ions at the binding site were preserved. With only a
few tightly bound exceptions (PDB ids: 1dwd, 1lna, and
4phr), all the crystallographic waters were deleted from the
binding pockets. After removal of the ligand, solvent, and
cofactor (when the latter two were not intrinsic parts of the
binding site), additional domains not involved in ligand
binding, stabilizing counterions, and other extraneous small
molecules far from the active site were also removed.
Residues at the binding site of each receptor were then
visually inspected, hydrogens were added along with missing
heavy atoms and partial charges, corrections were made to
the orientations of hydroxyl groups and disulfide bonds, and
the tautomeric states of histidine residues and the protonation
states of basic and acidic residues were adjusted to be the
dominant species at pH 7.0. Hydrogen atoms were added in
Sybyl 6.5,18 and a constrained minimization was then used
to optimize the hydrogen positions. The end product of this
process was a clean receptor Sybyl mol2 file for docking
studies.

In the process of receptor preparation, it would appear
wrong to us to mix different assumptions between different
docking programs. By that, we mean that, potentially, it could
be a fatal flaw in our approach to presume that receptor
preparation by one program will be eminently transferable
to and compatible with another program, especially when
some programs have their own receptor preparation protocols
governing details such as atom-type assignment. Cognizant
of this fact that differences in atom-type assignment may
ultimately affect the accuracy of the grid potentials calculated
for both GLIDE and ICM, and in accord with the general
criteria outlined above, protein receptors for GLIDE were
prepared from the PDB structures with the protein prepara-
tion procedure within the Schro¨dinger program Maestro.19

For ICM, the raw PDB structure was converted to an ICM
object in order to impose the internal coordinate tree on the
original Cartesian coordinates of the protein receptor. The
conversion process to internal coordinate space is also in
accord with the procedure described above and yields a clean
and healthy receptor for docking.20

Ligand Preparation for Binding-Mode Assessment.The
X-ray coordinates of the ligands were extracted from each
of the 164 protein receptors. Each ligand was examined for
bond order and protonation state, and written out as a three-
dimensional “reference ligand” Sybyl mol2 file and as a
predocking Sybyl mol2 file for further processing.The
predocking ligand Sybyl mol2 file was conVerted into
SMILES format with an in-house program called SDFilter
with the correct stereochemistry (to ensure production of

the correct inVertomer or ring conformation upon conVersion
to 3D). As randomization of the starting geometry and
position of the ligand are both important, each SMILES
string was then conVerted to fresh and, therefore, unbiased
(in terms of 3D conformation and Cartesian position with
respect to the original position and coordinates of the natiVe
ligand) 3D conformations with Corina,21 further minimized
in Sybyl, and then saVed as an independent mol2 file ready
for docking.The ionization states of the ligands we were
attempting to dock were also of particular concern; thus, all
carboxylic acids were deprotonated, tertiary amines were
positively charged, phosphonates were partially deprotonated,
and guanidiniums were positively charged. Pipeline Pilot
version 4.522 was used to calculate several molecular
descriptors [molecular weight (MW), number of rotatable
bonds (NRots), polar surface area (PSA), logD, volume,
surface area, etc.] to aid the overall analysis of physico-
chemical diversity within the ligand set.

Targets for enrichment studies. A selection of 12
receptor targetswas used in this part of the study. A total
of 8 of the 12 target structures were selected from the
AstraZeneca in-house structure collection, comprising nNOS
(neuronal nitric oxide synthase, 1.95 Å), CPB (carboxypep-
tidase, 2.0 Å), HPMurl (glutamate racemase, 2.2 Å), GSK3b
(kinase, 2.8 Å), Factor Xa (serine protease, 2.3 Å), P38 (map
kinase, 2.0 Å), JNK3 (kinase, 2.2 Å), and PTP1B (phos-
phatase, 1.8 Å). The other four structures were extracted from
the protein data bank and consisted of thrombin (serine
protease, PDB id: 1dwd, 3.0 Å), COX2 (cyclooxygenase,
PDB id: 1cx2, 3.0 Å), ER (estrogen receptor, PDB id: 1err,
2.6 Å), and sPLA2 (lipase, PDB id: 1db4, 2.2 Å). These 12
targets were prepared for virtual screening in accord with
the procedure described above for the binding-mode predic-
tion receptors.

Docking Library for Enrichment Studies. A key issue
when eValuating enrichment rates is the number and nature
of the actiVe compounds that are included in the test set. In
this sense, we wish to make clear the distinction between
receptor-specific active compounds, other receptor-specific
actives, decoys, and randomly selected compounds.

For the 12 pharmaceutically relevant protein targets listed
above, a total set of 2743 active ligands was compiled on
the basis of the public literature23 and the AstraZeneca high-
throughput screening database. The 2734 active ligands were
broken down on a target-by-target basis into receptor-specific
active compounds according to the following distribution:
nNOS (263 ligands), CPB (74 ligands), HPMurl (154
ligands), GSK3b (576 ligands), factor Xa (81 ligands), P38
(26 ligands), JNK3 (537 ligands), PTP1B (622 ligands),
thrombin (125 ligands), COX2 (124 ligands), ER (53
ligands), and sPLA2 (17 ligands).Regardless of the receptor
target under inVestigation, all actiVes were included in the
database during aVirtual screen. The potencies of the total
set of 2743 actiVe ligands were randomly distributed among
the 12 targets, ranging from low micromolar to nanomolar
affinity, and in principle, as the former are ostensibly more
difficult to rank-order correctly than the latter, they are
perhaps more representatiVe of the real-world challenge of
finding lead compounds in discoVery research. In the most
extreme cases, sPLA2, FXa, and thrombin, for example, the
target-specific actiVes display some congeneric features and,
therefore, proVide the most difficult examination of discrimi-
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natory capability. All structures were stored in SMILES
format.

A subset of commercially available chemicals was pre-
pared by randomly selecting approximately 20 000 com-
pounds from a larger data set containing over 900 000
compound structures. These compounds were also selected
to satisfy the following criteria:

General Features
• Molecular weight between 150 and 750 Da
• log D value between-6 and+6
• Number of rotatable bonds less than 7
• At least one polar atom (N, O, S, or P)
• No reactive functionalities as defined by AstraZeneca

chemists
Actives, decoys (compounds that were similar to the active

compounds in every respect except for activity), and random
selections (compounds that bear little resemblance to the
active ligands) were selected with a similar distribution of
molecular weight, to minimize the well-known tendency of
a scoring function to favor larger molecules (see below).To
ensure that discrimination by a scoring function was a real
challenge, the selection of decoys was biased toward drug-
like molecules using filters for functional groups and cutoffs
for both molecular weight and the number of rotatable bonds.
By combining the randomly selected subset with the set of
2743 receptor-specific ligands and removing duplicate
structures, we obtained a set of 22 743 compounds ready
for further computational processing and docking studies.
This SMILES library was then converted to 3D coordinates
with Corina, and all possible tautomers and protonation states
were enumerated for each compound, yielding approximately
40 000 compounds in total. Each structure was then saved
as an independent entry in a Sybyl multi-mol2 file.

Molecular Properties Distribution of Actives and
Randomly Selected Compounds.Before running the virtual
screening experiments, molecular properties, such as logD,
MW, number of rotatable bonds (NRot), PSA, and number
of hydrogen bond donors and acceptors (HBD, HBA), were
calculated for the target-specific actives and the randomly
selected compounds in the screening database.This was done
as a cautionary check to examine if any obVious systematic
differences in structures and properties existed between the

known actiVe ligand set and the randomly selected com-
pounds, to minimize the chances of introducing any potential
bias in faVor of the former.The results are shown in Figure
1. As drug-like rules were used in the initial selection of the
randomly selected compounds, in all the property distribution
figures over the ranges indicated, there were no clear
differences between known actives and randomly selected
compounds. We are, therefore, confident that the set of
receptor-specific active compounds and randomly selected
compounds are sufficiently alike that they provide an
exacting test of the discriminatory capability of the four
programs.

3D Shape Matching and 2D Similarity Searching.For
the enrichment studies by 3D shape matching and searching
by 2D similarity, one X-ray crystallography structure was
chosen for each target (see Chart 1 for public structures).
The bound ligand conformer was extracted and used as a
template for 3D shape matching. The influence of the
template ligand’s conformation on enrichment was also
studied. The X-ray conformation of each template structure
was minimized in Sybyl with the Merck Molecular Force
Field (MMFF),24 and the minimized conformation was used
as a template in a 3D shape search. For the shape-matching
experiments, no charge or pharmacophore-like feature map-
pings were considered. The 2D formula of the bound ligand
was also used as a query for a 2D similarity fingerprint
search. The scores for 3D shape matching and the 2D
similarity between the library compounds and the template
molecule were then calculated and incorporated into the
enrichment study. 3D shape matching was performed using
ROCS 2.0,25 and for each structure in the screening library,
a maximum of 100 conformers were generated. ISIS/Base
2.326 was used to undertake the 2D similarity search.

Docking Programs. The latest versions of each code
available to us at the time, FlexX 1.10, GOLD 2.2, GLIDE
3.5, and ICM 3.2.01a, were used for the docking studies. A
brief description is given below for each of the docking
programs. For more details, the reader is referred to the
original references and user’s guides of each code. Binding-
mode prediction experiments were carried out on a dual
processor (Intel Xeron) Linux workstation, each processor
having a clock speed of 2.8 GHz. Using an in-house program

Figure 1. Physicochemical profile of the target-specific active (blue) and randomly selected (yellow) sets of compounds.
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called Match3D, which takes into account local symmetry
in all cases, the accuracy of each docking prediction was
ascertained on the basis of the RMSD between the coordi-
nates of the heavy atoms of the ligand in the top docking
pose only (ranked #1) and those in the crystal structure.
Visual inspection was also used to verify the docking pose
in each case. For the enrichment test, all calculations were
performed on a Linux farm consisting of 100 1.0 GHz Intel
Pentium III processors.

FlexX 1.10. FlexX is one of the most used incremental
fragment-based docking programs inspired by the Leach and
Kuntz algorithm.27 In this algorithm, a set of preferred
torsional angles (up to 12) extracted from the Cambridge
Structural Database is assigned.28 To map the fragment on
the protein active site, the following interaction types are
taken into account: entropy, hydrogen bonds, metal acceptor,
aromatic ring, methyl, and amide.29 The most challenging
part of this algorithm is the placement of the base fragment.
To be successful, the base should have some putative
interactions such as hydrogen bond donor, hydrogen bond
acceptor, or interaction with an aryl group. The ligand
interaction centers are then mapped on the reversed protein
interaction centers, and the best scores are retained.

GOLD 2.2. GOLD is based on a genetic algorithm. The
ligand’s state is encoded by a chromosome,30 representing
its conformation and hydrogen bonding. The conformation
of the ligand is represented by a binary string, in which every
byte encodes for one torsional angle. Each torsion is allowed
to vary between-180° and +180° in step sizes of 1.4 Å.
Two integer strings encode mappings suggesting possible
hydrogen bonds between the protein and the ligand. The first
of these strings encodes a mapping of acceptors in the ligand
to the donor atoms in the protein. The second string encodes
a mapping of donor hydrogens in the ligand to acceptor
atoms in the protein. On decoding a chromosome, GOLD
utilizes least-squares fitting to form as many of these
hydrogen bonds as possible. In the evolutionary development
of the ligand conformations, the program employs an island

model, in which several subpopulations of chromosomes are
created at the beginning instead of one large population. The
genetic operations include the migration of individual
chromosomes between the subpopulations, crossover, and
mutation. To preserve diversity within the population, GOLD
employs a niching technique. If there are more than a
specified number of individuals in the niche, then the new
individual replaces the worst member of the niche rather than
the worst member of the total population. Two individuals
share the same niche if the RMSD between their donor and
acceptor coordinates is less than 1.0 Å. The fitness of a new
individual is assessed using a scoring function that includes
energy terms accounting for hydrogen bonding, short-ranged
van der Waals interactions between the ligand and the
protein, and the ligand internal energy. The latter is a sum
of ligand steric and torsional energies.

GLIDE 3.5. The GLIDE algorithm approximates a
systematic search of positions, orientations, and conforma-
tions of the ligand in the protein-binding pocket via a series
of hierarchical filters. The shape and properties of the
receptor are represented on a grid by several different sets
of fields that provide a progressively more accurate scoring
of the ligand pose. The fields are computed prior to docking.
The binding site is defined by a rectangular box confining
the translations of the center of mass of the ligand. A set of
initial ligand conformations is generated through an exhaus-
tive search of the torsional minima, and the conformers are
clustered in a combinatorial fashion. Each cluster, character-
ized by a common conformation of the core and an
exhaustive set of side-chain conformations, is docked as a
single object in the first stage. The search begins with a rough
positioning and scoring phase that significantly narrows the
search space and reduces the number of poses to be further
considered to a few hundred. In the following stage, the
selected poses are minimized on precomputed OPLS-AA van
der Waals and electrostatic grids for the receptor. In the final
stage, the 5-10 lowest-energy poses obtained in this fashion
are subjected to a Monte Carlo procedure in which nearby

Chart 1. Structures Used in Shape Matching and Similarity Searching
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torsional minima are examined, and the orientation of
peripheral groups of the ligand are refined. The minimized
poses are then rescored using the GLIDE_Score function,
which is a more advanced version of ChemScore31 with
force-field-based components and additional terms account-
ing for solvation and repulsive interactions. The choice of
the best pose is made using a model energy score (Emodel)
that combines the energy grid score, GLIDE_Score, and the
internal strain of the ligand.

ICM 3.2.01a. In the ICM approach, the molecular system
is described using internal coordinates as variables. Energy
calculations are based on the Empirical Conformational
Energy Program for Peptides 332 force-field parameters and
MMFF partial charges. In the flexible-ligand-rigid-receptor
docking, the receptor field is represented by five potential
energy maps: electrostatic, hydrogen bond, hydrophobic, and
two van der Waals terms. A global optimization procedure
is used to undertake an unbiased, all-atom, flexible docking
of the ligand within the rigid binding pocket. This procedure
consists of the following steps: (1) a random conformational
change of the free variables according to the biased prob-
ability Monte Carlo (BPMC) algorithm),33 torsion and
rotational angles of the ligand, (2) local energy minimization
of the analytical differentiable terms, (3) calculation of the
complete energy, including nondifferentiable terms, (4)
acceptance or rejection of the total energy on the basis of
the Metropolis criterion,34 and (5) allocation of favorable
conformations to a conformational stack (history mechanism)
that both expels from unwanted minima and promotes the
discovery of new minima, followed by a return to step 1.
The conformational sampling is based on the BPMC ap-
proach,35 which randomly selects a conformation in internal
coordinate space and then makes a step to a new, random
position, independent of the previous one, but according to
a predefined continuous-probability distribution. It has been
shown that, after each random step, full local minimization
greatly improves the efficiency of the procedure.36 However,
because some energy terms might have no derivatives or
might be very expensive to compute, a double-energy Monte
Carlo minimization scheme circumvents these problems by
minimizing the energy with respect to the differentiable terms
but calculates the full energy also using the nondifferentiable
terms. This double-energy scheme allows for the incorpora-
tion of complex energy terms, such as surface-based solvation
energy, into the global optimization process.

Binding-Site Definitions. In FlexX, the active site and
the interaction surface of the receptor were defined by using
the X-ray reference ligand and a 10 Å cutoff distance. In
GOLD, the binding site was defined as a spherical region
of 10 Å radius centered on the center of mass of the native
ligand. In GLIDE, the binding region of the protein was
defined by a 1000 Å3 box centered on the center of mass of
the X-ray ligand to confine the center of mass of the docked
ligand. In ICM, the atoms delimiting the binding site were
selected automatically around the binding envelope by the
ICMpocketfinder algorithm,37 such that enough residues were
included for the correct protein-ligand interactions to be
found. In all cases, default settings were used for all other
parameters in accord with the user’s guides of each code.

RESULTS

Comparison of Docking Accuracy and Reliability. To
assess the prediction of binding modes by the four different
programs and to characterize the docking accuracy, several
parameters are calculated.

The first parameter is theaVerage RMSD for all the top
solutionsfrom each docking program. Here, the top solution
refers to the conformation of the docked ligand which is
ranked number one(#1) by the native scoring function. To
maintain simplicity in our analysis and evaluate the useful-
ness and true predictive capability of these four packages,
we chose to focus only on the RMSD results for the top-
ranked pose. This was because, as evaluators in an industrial
chemical laboratory, we were not interested in whether the
four programs could reproduce the experimental binding
mode in the top 100 poses; they can for a large majority of
cases, and of that we are certain. We were only interested
in what they ranked as their #1 pose and whether we could
repeatedly rely on this as an indicator of the binding mode.
The second parameter is the RMSD of each docking solution.
If a docked solution has a heavy-atom RMSD lower than or
equal to 2.0 Å, it is regarded as a successful solution. The
value 2.0 Å may be interpreted as a rather generous measure
of docking success, sowe haVe also enforced a more
rigorous measure of docking accuracy by setting the
threshold to 1.0 Å rather than the habitually used 2.0 Å.38

We are of the opinion that 1.0 Å is a more meaningful
assessment of the type of accuracy we are looking for in
eVery-day small-molecule docking.The final important metric
is the success rate, which is the percentage of successful
solutions coming from the top solutions at the two different
RMSD thresholds.

The results of the binding mode assessment for the top
solutions produced from each docking program’s native
scoring function are given in Figure 2 and Table 1. Generally,
from the scatter plot of the RMSD against the number of
compounds docked, all four docking programs perform
reasonably well against a wide range of targets. ICM and
GLIDE produce the lowest average RMSD matching with
the native ligands, 1.08 and 2.37 Å, respectively, while
GOLD and FlexX fared worse with RMSDs of 2.80 and 3.98
Å, respectively. At the RMSD cutoff of 2.0 Å depicted by
the green box in each plot, ICM and GLIDE performed well
in that they classified 149/164 and 104/164 compounds
correctly within this threshold, giving success rates of 91
and 63%, respectively. GOLD (91 from 164, 55%) also
performed reasonably, while FlexX (70 from 164, 42%)
performed less well. At the more stringent RMSD cutoff of
1.0 Å, denoted by the magenta box in each plot, ICM and
GLIDE again performed well, correctly docking 93/164 and
81/164, leading to success rates of 57 and 49%, respectively.
GOLD was successful in 64 out of 164 cases for a success
rate of 39%, and FlexX was successful 26% (42 from 164)
of the time. Even for the better performing programs, the
docking success rate was reduced considerably at the more
rigorous threshold.

While the lack of accuracy at the higher RMSD threshold
may appear discouraging, it is, of course, instructive to
remember that docking-based virtual screening is presently
an approximate and, therefore, error-prone science. Even with
this caveat, useful information can still be obtained from
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docking studies that fail to reproduce the observed binding
modes. The ability to scope out less-correct but alternative
possibilities certainly has valuable implications during the
overall drug-design process, where unexpected binding
modes can trigger new ideas and potentially lead to improved
compounds.

A clear example of misdocking can be seen in the complex
between chorismate mutase and prephenate (PDB id: 1com),
which displays a small, polar ligand bound to a pocket which
is mainly hydrophilic in nature. A number of electrostatic
interactions stabilize the complex. The best pose predicted
by all the programs shows a flat-ringed structure compared
to the peculiar bath-tub-bend conformation observed in the

X-ray structure. Clearly, this is a good example of a ligand-
ring system which adopts a peculiar conformation in the
protein which is not regenerated in the redocking experiment,
even though the ring conformation was specified correctly
prior to and during 3D conversion. Hence, the likelihood of
it ever being docked correctly is small. Although the
hydrogen bond between the ligand’s hydroxyl group and the
protein is retained, the remainder of the molecule is predicted
to establish an alternative pattern of salt bridges and hydrogen
bonds. As a result, the internal energy of the docked ligand
is more favorable than that in the original X-ray structure.
Accordingly, the four programs top-scored such a conforma-
tion.

In flexible-ligand docking, the size and flexibility of a
ligand is known to have a major effect on the docking
accuracy. We thus examined this effect by classifying the
docking results into five groups on the basis of the NRots
of ∼164 ligands; this descriptor is correlated with heavy-
atom (non-hydrogen) RMSD in Figure 3. Generally, for all
the docking programs, the RMSD increases proportionally
as ligands become more flexible. This is a well-known
problem in the docking arena that can be traced to inadequate
sampling of the conformational space, which increases
exponentially with ligand flexibility. Thus, thoroughness of
the sampling usually has to be partially sacrificed to keep
computing time within reasonable limits. Different algorithms
use different methods to circumvent the problem and
maximize the efficiency of the conformational sampling.
FlexX uses an incremental-construction approach, GOLD is
based on a genetic algorithm, a hierarchical systematic search
is implemented in GLIDE, while a biased-probability Monte
Carlo scheme is at the very foundation of ICM. From Figure
3, we note that both ICM and GLIDE perform well even for
some of the most flexible ligands having greater than 10
rotatable bonds, with a large percentage of the docking
solutions coming in at under a 2.0 Å RMSD. This suggests
that the stochastic search in ICM and the multistage
systematic algorithm in GLIDE both explore the conforma-
tional space adequately well. Additionally, the binding-mode
docking performance as a function of the druggable pocket’s
shape and volume has also been examined (data not shown).
The observed trends are very similar to those presented in
Figure 3.

Another important finding comes from the regression line
for each docking set. An approximate 2-3-fold loss in
accuracy can be seen on going from rigid compounds to
extremely flexible ligands for GLIDE and GOLD; a factor
of 5 is seen for FlexX. ICM performance is somewhat
insensitive to NRot, and therefore, increased ligand flexibility
would appear to present fewer problems for the stochastic
approach implemented in ICM. In the limit of extreme
rigidity (NRot ) 0), there is less variation in the calculated
RMSD among the four docking programs, and all programs
dock these compounds well. However, as we tend toward
the limit of extreme flexibility (Nrot> 25), it would appear
the chances of obtaining a more reliable docking solution
are increased with ICM and GLIDE, with the latter losing
some of its predictive power. This offers at least a partial
explanation for the performance of each docking program
against the test set.

The docking results for the four programs are plotted
against the resolutions of the 164 protein targets in Figure

Figure 2. Comparison of RMSD for rank #1 solutions for∼164
protein-ligand complexes redocked from SMILES. The colored
boxes signify the number of docking solutions within a given
RMSD threshold level. Colors: green, within 2.0 Å; magenta,
within 1.0 Å.
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4. The protein target set for the redocking study was chosen
for historical reasons within AstraZeneca and comprises a
number of high- and low-resolution receptors. Even though
a more recent higher-quality data set could, in principle, have
been compiled, the lesser-quality structures were purposely
retained to include diversity and to also enable us to assess
if there were any obvious differences in the capabilities of
the four docking programs to correctly place ligands into
poorer- versus higher-quality structures. Furthermore, it is
also important to note that, for many protein targets in drug
discovery projects, the 3D structures are solved at medium-
to-low resolutions (>2.0Å) because of difficulties during the
production of crystals or crystallization procedures employed.
Nonetheless, such medium- or low-resolution structures still
provide excellent starting points for drug hunting. It is,
therefore, of the utmost importance to evaluate how docking
programs perform in these cases, to fully assess their
contributions in real-life examples. It is clear from the plot
that no obvious trends appear in the results, both in the
redocking experiments and in the subsequent enrichment
studies. In fact, the data are quite illuminating, when one

considers that a better-quality data set might be considered
to provide a better measure of docking accuracy; Figure 4
clearly shows that, even though we have a large number of
receptors having 2 Å resolution or lower, the accuracy of
docking does not decrease in accord with the decreasing
resolution of the protein. In fact, for some high-resolution
structures, docking accuracies are quite poor.

As several protein families exist in the test setsproteases,
kinases, transferases, oxidoreductases, and so forthsthe
docking results can also be analyzed on the basis of
individual target classes. On analysis of the RMSD value
with the average rotatable bond number in each protein
family, it is worth noting that a greater flexibility of the
ligands does not necessarily result in a larger RMSD for some
docking programs. For example, in the GLIDE solutions,
the RMSD value of aspartic protease inhibitors is lower than
that of serine protease inhibitors, while the number of
rotatable bonds, and therefore the average flexibility of
aspartic protease inhibitors, is larger than in that of serine
protease inhibitors. The reverse trend is observed with ICM.
Such differences are clearly dependent on the nature of the

Table 1. Summation of the RMS Test for Docking Programs

recovery success rates (# and %)

program # complexes # at 2 Å % at 2 Å # at 1 Å % at 1 Å av. RMSD (Å) av. time (min)

FlexX 164 70 42.6 42 25.6 3.98 0.5
GOLD 164 91 55.4 64 39.0 2.80 1.4
GLIDE 164 104 63.4 81 49.3 2.37 1.0
ICM 164 149 90.8 93 56.7 1.08 1.0

Figure 3. Docking RMSD as a function of the number of rotatable bonds of the ligands (NRots).

Figure 4. Docking RMSD as a function of the resolution of protein structures used in the pose prediction test set.
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binding site for the different protein families and also the
docking program used.

One final point worthy of note concerns the time taken
on average to dock all 164 compounds on a typical desktop
computer having a processor speed of 2.8 GHz. As generally
the computational speed of each docking code is very
relevant for virtual-screening purposes, it is worth mentioning
here as part of the comparison. Average calculation speeds
for all four docking programs are given in Table 1, with
FlexX being the fastest, GOLD the slowest, and ICM and
GLIDE representing a compromise between these two
extremes. With the latest versions of the codes, the time of
docking no longer appears to be a parameter that enables us
to discriminate one code over another, as may have been
the case for previous slower versions of some of the codes.
Given that all the latest versions appear to perform at about
the same speed on the basis of the cross-program equivalen-
cies in timings, the more limiting factor would appear to be
the accuracy and general reliability of the sampling procedure
of the docking code, particularly when a more stringent
measure of docking correctness is enforced.

Enrichment Study. The purpose of most general virtual-
screening campaigns is to select a subset of a library enriched
in compounds relative to the entire collection and having
the desired activity toward a particular target. When the
percentage of active compounds in the screening set is known
or can be reliably estimated, the success can be quantified
by the enrichment factor. The enrichment factor is defined
as the ratio between the percentage of active compounds in
the selected subset and the percentage in the entire database.
For the purposes of this study, we define the enrichment
factor as

where Hitssel ) the number of target-specific seeds selected
by docking at a specific % level of subsetting, here set at
10%; Hitstot ) the total number of target-specific seeds for
the target in question; NCtot ) the total number of molecules
screened in the database, that is, 22 743; and NC) the total
number of compounds in upper 10% of the database, that
is, 2274.

Therefore, when the subsetting level is set at 10%, the
theoretical maximum that the enrichment factor can be is
10. In practical virtual screening, however, it is common
practice to select a top portion of a library of ranked
compounds for further evaluation, but the size of such
portions is somewhat arbitrary and, clearly, extremely
dependent upon the initial library size. Generally, selections
ranging from 0.1% to an upper extreme of 10% of the entire
ranking are considered possible, and depending on the value
selected, the calculated enrichment factors will differ, as they
are themselves dependent upon the fraction of the ranking
considered.

The aim of this second part of the evaluation was to
examine the performance of the four docking programs as
virtual-screening engines. To assess effectiveness, two
parameters were calculated to characterize efficiency.

The primary measure of performance we definedas the
ability of the docking program to assign priority and rank-
order receptor-specific molecules oVer all of the other
molecules in the database.In principle, the specific actives

for a target, or a large percentage thereof, should be ranked
best. In practice, this may not be achieved, and further
analysis may be needed to examine which of the target-
specific actives are present in the various upper fractions of
the ranked list. Equally important,for a screening method
to be of general utility, an acceptable leVel of performance
against a range of different targets is also required,and this
is another aspect of our evaluation that we are most interested
in. Importantly, this study involves no rescoring of the
docking results with alternative scoring functions, that is,
consensus scoring. In practice, the rescoring of docking
results represents an additional complicating step and a
further challenge to the analysis, because meaningful res-
coring demands some local reoptimization of the docking
poses being rescored according to each of the rescoring
functions. Even though the results may, or may not, have
improved in some cases, our study was confined to an
examination of the performance of the native scoring
functions, as they were developed by the authors of the
various programs, against a range of targets. A secondary
measure of performance, and perhaps one of lesser impor-
tance than enrichment, is the screening percentage. We define
the screening percentage to be the fraction of the whole
library that needs to be screened in order to recoup a certain
percentage of known ligands.For the purposes of this study,
the screening percentage represents the proportion of the
whole library that would need to be screened physically
according to the selection such that 80% of the receptor-
specific ligands are recovered.

Comparing Performance of Native Scoring Functions.
The general performance of the four docking programs along
with ROCS shape matching and ISIS 2D similarity searching
in the enrichment evaluation is summarized in Figure 5. The
associated data are presented in Table 2.

At a subsetting level of 10%, ICM produced the best
results overall with an enrichment factor of 6.1 when
averaged over all 12 targets. GLIDE combined with its
GLIDE_Emodel scoring function produced the second best
set of results with an average enrichment of 4.6, which is
identical to that obtained from ROCS shape matching. The
similar performance of shape matching and docking in these
two instances has some practical implications given the
tremendous speed advantage of the former over the latter.
However, the results from 3D shape matching are function-
ally dependent on the nature of the template used in the
query, as the enrichment factor falls to 4.3 and is noticeably
worse when minimized-ligand conformations are used as the
template, rather than the X-ray conformation. The implication
from this is that the choice of the template conformation for
shape matching is very important, and if the pose is predicted
correctly, alternative scoring schemes, like ROCS, can be
very fast and extremely efficient. The enrichment factor for
ISIS 2D similarity searching is 3.5, which is also noticeably
worse than shape matching and the ICM and GLIDE
dockings. FlexX, combined with FlexXscore, obtained an
enrichment factor of 2.2, which is slightly better than the
enrichments of 1.7 produced by GOLD and its native scoring
function, Goldfitness. This ordering in performance for the
latter two docking codes differs from the binding-mode
prediction results, where GOLD outperformed FlexX. In all
cases, neither docking, shape matching, nor similarity
searching obtain a perfect enrichment of 10 over all targets

Enrichment Factor (EF)) Hitssel/Hitstot × NCtot/NC
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at this level of subsetting. Although ICM and GLIDE come
close to achieving perfect enrichment for Factor Xa and
thrombin, respectively, only on one occasion for one target,
sPLA2, does the GLIDE_Emodel scoring function manage
to achieve a perfect 10.

For 7 of the 12 targets, sPLA2, P38, FXa, ER, CPB,
thrombin, and COX2, ICM produces enrichment factors of
g6 and, on average, outperforms all the other methods
examined here in the sense that it produces an acceptable
level of performance across the widest range of targets. On
the basis of the results for this data set, ICM therefore appears
to be the most versatile virtual-screening tool. Using the
Emodel scoring function, GLIDE also performs well for four
of these targets, sPLA2, FXa, nNOS, and thrombin, with
enrichment factors ofg6 in each case. The results change
little when GLIDE is combined with its GLIDE_Score
scoring function; in this case, ER scores better than 6 and
nNOS scores worse than 6; hence, ER replaces nNOS in
the above list of four targets. ROCS shape matching also
generated good results for 4 out of 12 targets. Thus, for
sPLA2, FXa, thrombin, and COX2, shape complementarity
between the ligand and the binding site is of premium
importance for binding. It would therefore appear that there
is significant overlap between some targets and their selected
ligands in terms of shape matching. In a somewhat analogous
fashion, for the 2D similarity searching, because the ligands
for FXa and sPLA2 targets share a number of congeneric
features, 2D similarity searching produces a good enrichment

in these two cases. FlexX, with a single enrichment factor
greater than 6, performs well only for thrombin, while GOLD
was unable to produce an enrichment factorg 6 for any of
the 12 targets investigated.

In practical virtual screening, however, it is a common
exercise to select only the top portion of the library of ranked
compounds for further evaluation and discard the remainder.
The size of the retained portion is logically dependent upon
the initial library size and can encompass anywhere from
0.1% to 10% of the entire ranking. From the perspective of
aiding our own experimental screening and accelerating lead
generation, it would be extremely useful to have a virtual-
screening approach that enables us to confidently pick only
a handful of the top-ranking compounds for further process-
ing, with some guarantee of a successful hit rate. This
becomes ever-more important when library sizes tend toward
the order of 1-100 million compounds, as is the case for
chemically sensible virtual libraries, for example. Thus, a
major purpose of virtual screening is to be able to throw
away 99% of the library of compounds virtually screened.

Given that ICM and GLIDE performed well at a 10% level
of subsetting, which is perhaps unrealistic for larger libraries,
we have also compared the performance of these two docking
programsat a more realistic leVel of 1% subsetting.Data
are shown in Figure 6 and Table 3. Here, a perfect
enrichment factor of 100 is possible only if all the receptor-
specific actives are placed in the top 227 scored compounds,
or if receptor-specific actives occupy the top 227 scoring

Figure 5. Enrichment performance of four docking programs, ROCS shape matching, and ISIS 2D similarity searching. For distinction,
purple to yellow color shading indicates structure-based docking; blue to cyan denotes ligand-based methods.

Table 2. Enrichment Factors at 10% Subsetting

structure-based method ligand-based method

target FlexX GLIDE_Score GLIDE_Emodel GOLD ICM ROCS X-ray ISIS

sPLA2 1.88 8 10 0 7.6 7.06 7.06
P38 2.08 2.4 0.8 2.13 7.3 1.54 3.08
FXa 3.67 7.05 8.72 3.58 9.3 8.15 8.27
ER 0.83 7.86 3.93 0.75 6.2 3.96 4.15
nNOS 0.11 2.43 6.65 0.08 4.7 2.16 0.34
CPB 3.88 4.77 5.69 4.46 6.5 3.38 2.03
thrombin 7.5 9.03 9.84 1.44 8.8 8.4 5.6
HPMurl 0.54 2.33 2.6 1.05 3.9 5.69 2.09
COX2 0.52 3.05 1.83 3.55 7.1 8.06 2.66
JNK3 1.75 2.19 1.51 1.35 5 2.92 2.81
GSK3B 1.92 1.26 1.74 1.16 4.7 2.94 3.09
PTP1B 1.37 1.43 1.64 0.93 2.3 0.64 0.77

average 2.2 4.3 4.6 1.71 6.1 4.6 3.5
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compounds when there are more than 227 actives to be
recovered. ICM produced the best results overall with an
average enrichment factor of 34. GLIDE combined with its
GLIDE_Score and GLIDE_Emodel scoring functions pro-
duced average enrichments of 23 and 21, respectively. For
two targets, P38 and COX2, we note that the GLIDE_Emodel
scoring function does not manage to prioritize any receptor-
specific ligands in the top 227 compounds.

As noted previously, the screening percentage is another
measure by which we can further evaluate the performance
of docking programs and their native scoring functions.
Screening percentages are plotted in Figure 7, and data are
shown in Table 4. ROCS shape matching produces the best
results with a screening percentage of 31% but only when
the X-ray ligand conformation is used as the shape-query
template. ROCS’s performance deteriorates considerably to
64% when a minimized-ligand conformation is used. Among
the four docking programs, the ICM and GLIDE screening
percentages are comparable at around 45% and represent a
significant improvement over the 63% required by FlexX
and the 85% needed by GOLD.

Some of these screening percentages may, upon first
inspection, appear alarmingly high. On this point, it is worth
noting that the recovery beyond 50% or more of the actives
can be problematic when one is restricted to flexible-ligand
rigid-receptor-based docking. This is because, at high
recovery percentage thresholds, such as the 80% we have
enforced here, the problem is no longer reduced to a “pure
docking ligands that will fit into the binding site and scoring
exercise”. It is likely that a large number of compounds will,

in fact, not fit, and thus, the dilemma becomes one of
modeling receptor rearrangement upon ligand binding, that
is, induced fit within the binding envelope. As a result, it is
not surprising that a large number of compounds are either
misdocked and score poorly or not docked at all, and this is
reflected in the large percentages of the database needed to
be screened to recover 80% of the actives. Nonetheless, for
flexible-ligand rigid-receptor-based virtual screening, the
results of virtual screening on this data set point unequivo-
cally to the fact that, by using ICM or GLIDE, we are able
to screen a much smaller percentage of the library in order
to find the same number of active ligands.

DISCUSSION AND CONCLUDING REMARKS

The performance of four of the most highly regarded
docking programs has been compared. FlexX, GOLD,
GLIDE, and ICM were used to redock a data set of 164
ligands into their corresponding receptor binding sites. To
gauge the docking accuracy, the non-hydrogen-atom RMSD
between the predicted and actual conformers was compared
at a generous threshold of 2.0 Å and at a more stringent
threshold of 1.0 Å. In this test, ICM, GLIDE, and GOLD
achieved respectable performance, with more than 50% of
the ligands docked correctly at the more-relaxed threshold;
all programs fared poorer when the RMSD was tightened to
1.0 Å, with only ICM and GLIDE correctly docking about
half of the ligands within this metric.

To estimate the virtual-screening effectiveness, these four
docking programs were also used to conduct screening
against 12 protein targets of therapeutic interest, involving
both publicly available structures and AstraZeneca in-house
structures. The capability to correctly rank-order target-
specific active compounds over alternative binders and
nonbinders and, thus, enrich a small subset of a screening
library was examined. On a target-by-target basis, GLIDE
would appear to be the best choice for sPLA2, nNOS, ER,
and thrombin; ICM would appear a better choice for FXa,
CPB, PTP1B, GSK3B, JNK3, P38, COX2, and HPMurl.
When methods other than docking are considered, ROCS
shape matching outperforms all four docking methods for
COX2 and HPMurl. Also of paramount importance is the
performance capability of a scoring function from one target
to the next. Taken on average, ICM displays the best

Figure 6. Enrichment performance for ICM and GLIDE at 1% subsetting.

Table 3. Enrichment Factors at 1% Subsetting

target GLIDE_Score GLIDE_Emodel ICM

sPLA2 53.3 66.7 64.7
P38 4 0 15.4
FXa 35.9 16.7 70.4
ER 46.4 10.7 57
nNOS 3.8 6.1 2.2
CPB 21.5 41.5 40.5
thrombin 67.7 80.6 63.2
HPMurl 2.7 4 18.1
COX2 6.1 0 27.4
JNK3 4 1.7 7.5
GSK3B 1.7 2.3 3.7

average 23 21 34
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enrichment factor of 6.1 at a 10% subsetting, and this is
noticeably better than ROCS shape matching (4.6), GLIDE_E-
model (4.6), GLIDE_Score (4.3), ISIS 2D similarity search-
ing (3.5), FlexX (2.2), and GOLD (1.7).

One of the goals of this study was to perform a compre-
hensive assessment such that it would enable us to implement
a set of platform-independent docking and virtual-screening
tools that medicinal chemists could apply routinely to as
many new targets as possible, prior to experimental high-
throughput screening. Therefore, the generality of a pro-
gram’s performance can arguably be taken as a coarse
indicator of potential transferability to new targets. From
Figures 2-4, given their overall performance in this evalu-
ation, ICM and GLIDE are found to be the most reliable in
reproducing the X-ray pose. ICM and GLIDE, therefore,
appear to be the primary choices for everyday molecular
docking. From Figures 5-7, by using ICM or GLIDE, the
chances of obtaining a superior enrichment factor, on
average, would appear to be better, and these programs also
appear to be excellent choices for virtual screening. But, this
we can only confidently say for the data set we have
examined here. Certainly, this may not always be the case
andwe acknowledge that additional tests ofVirtual screening
capability oVer seVeral different receptor data sets and
ligands would be necessary to fully substantiate whether the
kind of performance we haVe obserVed here is truly generally
transferable.Nevertheless, the current benchmark has proven
useful in that it enables us to prioritize the selection of

docking tools for a number of therapeutically relevant targets.
Conclusions such as those we have stated above, or for

that matter, those coming from any other docking-program
comparison, are likely subject to several limitations. A small
selection is discussed briefly below. It is certainly not our
intention to recommend to others a pecking order for the
examined docking tools. For our own purposes, we have
merely strived to be cognizant of the advantages and
disadvantages of the selected tools over a very limited range
of targets. As we have had the novice user very much in
mind during the evaluation, the results for the four programs
were compatible with out-of-the-box settings, which might
be of more significance to the medicinal chemist who is
interested in experimenting in molecular modeling, rather
than the expert modeler.Clearly, for some of the codes, there
are many control parameters that influence results, and the
benchmarks reported here may, or may not, differ signifi-
cantly when the programs are run under optimal conditions
to achieVe peak performance.

One such parameter is the rate at which a compound is
docked, that is, the time allocated for sampling in the binding
pocket. A number of the programs have different speed
settings and so may be classified as either slow or fast
depending on the settings chosen. This makes it entirely
possible thatone program might perform better when fast
settings are chosen, but worse when slow settings are
enforced andVice Versa.It is a common strategy to equalize
computing time in an attempt to promote fairness of

Figure 7. Screening percentages of four docking programs, ROCS shape matching, and ISIS 2D similarity searching. For distinction,
purple to yellow color shading indicates structure-based docking; blue to lilac denotes ligand-based methods.

Table 4. Screening Percentages to Recover 80% of Target-Specific Ligands

structure-based methodology ligand-based methodology

target FlexX GLIDE_Score GLIDE_Emodel GOLD ICM ROCS X-ray ROCS min ISIS

sPLA2 55.4 9.3 4.6 94.8 55.5 41.1 76.5 58.2
P38 70.4 45.8 74.1 92.2 36.3 38.7 69.3 57.3
FXa 45.9 6.7 4.7 86.3 4.7 7.5 17.9 6.5
ER 75.3 5.9 67 97.8 53.9 42.8 88 66.5
nNOS 82.5 58.2 15.4 85.3 60.1 33.4 73.3 82.7
CPB 55.4 67.5 53.4 70.6 44.1 34.1 73.2 49.2
thrombin 14.7 3 1 85.3 12.2 6.45 14.6 12.6
HPMurl 82.1 83.6 85.6 84.9 70.4 38.8 76.7 75.1
COX2 75.3 40.9 69.3 65.4 42.5 9.4 21.7 48.9
JNK3 60.7 57.8 67.6 72.9 40.7 37.8 79.5 64.6
GSK3B 69.1 69.2 65 95.3 56.1 38.6 83.7 61.8
PTP1B 69.1 72.1 73.2 84.2 68.4 45.8 96.8 82.4
average 63 43 48 85 45 31 64 56
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comparison; we can only conclude that this can be unduly
damning to performance in some cases, and we have used
the default settings recommended by the authors in each case.

Many of the papers that we have cited earlier in this paper
refer to the performance of a program developed by that
program’s authors with other docking codes. A general
observation appears to be that only very rarely are indepen-
dent workers able to match the docking success rates
achieved and published by the vendors of the docking
programs. Such differences in performance can, arguably,
be ascribed both to a lack of familiarity with the docking
code and experience in how to get the best out of the
program. For ICM and GLIDE, our observations and the
results presented herein are somewhat supportive of the
authors’ claims of performance, both as docking tools and
virtual-screening engines, and this is reassuring.

Being fair to the vendors, it can also be difficult to match
the docking success rates achieved and published even by
other independent workers. The results of this study are
consistent with those of Cheney and Mueller, who reported
that, for top-ranking pose prediction accuracy, ICM was 83%
reliable compared to GOLD (79%), GLIDE (55%), and FLO
(64%).39 This contrasts the study by Perola et al.,13c where
GLIDE (61% correctly docked) outperforms both GOLD
(48%) and ICM (45%), with the latter performing the poorest
of the three programs examined.

The results of the Perola study are clearly at odds with
the results that we have obtained here, and at first, we were
at a loss to explain the differences. Upon careful examination
of their paper, we can only conclude that a possible source
of discrepancy that might rationalize the observed difference
in ICM performance could arise during the receptor prepara-
tion stage. As noted earlier, what would seem wrong to us
is to mix different assumptions between different docking
programs.To presume that receptor preparation by one
program will be eminently transferable to and compatible
with another program may be incorrect, especially when
programs haVe their own internally consistent approaches
to receptor preparation. In an ideal case, all programs would
be compatible with each other in terms of transferability,
with universally agreed-upon atom-type definitions and
assignments. But, from our experience, this is not the case.
Receptor preparation by Macromodel (Schro¨dinger) is ap-
propriate for GLIDE but not ICM (Molsoft) as some atom-
type assignments generated by the former are incompatible
and, therefore, unreadable by the latter. Consequently, if any
of the critical atoms, which are unreadable by ICM, did
happen to be in the binding site, then conceivably this would
lead to an inaccurate and, hence, incorrect grid-potential
representation of the binding envelope. Docking would
therefore take place into a nonsensical description of the
binding site for certain targets. Ultimately, this would serve
to exaggerate the difference in ICM performance between
GLIDE and GOLD for some targets. This is the most
plausible explanation for the difference in ICM performance
between the Perola study and our own, but clearly, there are
potentially many other reasons: versions of the code used
[with later releases presumably much improved over earlier
ones to corroborate this point; the Vertex study was recently
repeated by the same authors using the current version of
ICM, and considerable improvements in ICM docking
accuracy were observed. The results will be reported

separately (Perola, E.; Totrov, M., personal communication)],
speeds of the computer processors on which the calculations
were performed, the definition of the binding site (this is
inherently more difficult to make equal as it can be very
subjective. Binding site size equates to search space; the
larger the site, the longer and more difficult the search
becomes, and an inevitable consequence of large binding site
definitions is time spent sampling areas of the protein other
than the intended target area), the human element in the
study, and so on.

The inability of others to reproduce results in papers such
as those cited and the present one (whether written by
vendors or users) is a serious problem. As a step toward
enabling others to investigate the results of this article without
breaching any level of our own confidentiality, we provide
information concerning known active ligands used in the
enrichment studies. Clearly, we cannot provide information
with regard to proprietary compounds, which were used for
seven receptors, but for the remaining 5 out of the 12 targets,
sPLA2, ER, COX2, P38, and thrombin, active ligands were
compiled from public sources, and a representative example
of each structure is shown in Figure 8. The scores of these
compounds as produced by the four docking programs along
with their rankings relative to the comparison database are
also reported in Table 5. The data presented are consistent
with the overall picture obtained from this evaluation, in that
ICM scores and ranks the active ligands more reliably than
the other three programs. In this way, we hope that by
providing this sort of information, we offer a first step in
the right direction toward enabling these results to be checked
by other workers, for example, with respect to receptor
preparation, or, in cases where receptor structures are
proprietary, to see what happens if a different receptor
conformation is employed.

As a result of all the possible variables, we are perhaps
overly cautious and critical, both toward our own results and
toward those of others that have performed comparative
docking analyses. With the large number of docking studies
now in the literature seemingly playing the performance of
one docking program off against another, it is perhaps also
likely that the vendors themselves no longer pay too much
attention to the results of competitive benchmarking. Reasons
for this include those that we have highlighted above, and
perhaps others we have not, but it is clear that docking
performance can, and does, differ, depending on a number
of factors that are often difficult to equalize. Sometimes, in
an attempt to promote fairness to all programs by attempting
to equalize all parameters, one ends up unintentionally
penalizing performance, and this ultimately makes docking
comparisons very difficult to do well. For an excellent
account of most of the relevant issues, see ref 14.

Even with all these obstacles in mind, docking studies still
remain of interest and can be exceptionally useful. Of the
published studies to date, this study involves a reasonably
large data set for docking-accuracy comparison and covers
a wide range of targets for enrichment experiments;in its
entirety, the data set is currently one of the most compre-
hensiVe that we are aware of. By not optimizing the
individual docking protocols, our comparison focused on
identifying and highlighting the basic performance factors
for each docking program against targets of therapeutic
relevance. With the pharmaceutical industry’s need for
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improved lead finding, the results for some docking programs
are quite encouraging. Some practically useful insights into
the pros and cons, particularly in relation to general transfer-
ability and using the docking methods in virtual screening
against specific targets, have been obtained. We hope that
these findings will be valuable to both academic and
industrial colleagues, particularly medicinal chemists, that
aspire to use molecular-docking approaches to accelerate
lead-compound generation.
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