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1. ABSTRACT 
Ludwig Boltzmann, in the last quarter of the 19th century, discovered how irreversible 
macroscopic laws could originate from the time-reversible microscopic laws of physics. 
Although the logic of Boltzmann analysis is indisputable, macroscopic-based methods 
have traditionally been the prime approaches for solving almost all fluid-related 
engineering problems, and only recently have the family of Boltzmann techniques 
become serious contenders for such applications. Using a backdrop of traditional CFD 
modeling, this paper highlights and summarizes the Boltzmann-based solution techniques.  
 

2. INTRODUCTION 
One of the fascinating things about new discoveries is the relationship they bear to 
previous knowledge.  At times true breakthroughs can startlingly revolutionize our view 
the world.  Yet, perhaps even more often, there is a gradual accumulation of small 
insights or a growing awareness of inconsistencies in existing explanations, that suddenly 
‘snap’ into a new and viable pattern.  Such novel ideas, as dramatic as they first appear, 
are sometimes so completely assimilated that soon one can hardly imaging viewing the 
world in another way.  In considering such changes, perhaps two mistakes are possible: 
the first is to discount the creative step, and thus to dismiss true inspiration as mere 
routine; the contrary position is to exaggerate the novelty, and thus downplay the role of 
progressive development.   As in the classic “the glass is half empty/full” challenge, at 
issue here is another impossible division – in this case, Edison’s divide between 
“inspiration” and “perspiration” in the prescription of a discovery. 
 Interestingly, though, the description just given need not be limited to scientific 
discoveries at the fringes of human knowledge. A set of shifting and evolving paradigms 
is in fact characteristic of all learning and growth, and thus is central to education.   As 
we learn, we gradually distinguish simple and routine events from extraordinary ones, 
with the great benefit of freeing our concentration to attend to what is most new, 
challenging and, in many cases, most threatening.  As W.H. Vanderburg (1985) argues so 
well in his excellent On the Growth of Minds and Culture, this separation of the routine 
from the unusual is a key part of the way our minds are linked to a dynamic world. 
 The connections of these insights and the current task – namely a review of 
Boltzmann approaches to fluid modelling – are not as obscure as they might first appear. 
All humans attend most to what is most unexpected and novel, and we often tire or bore 
quickly of what is most familiar.  Thus, when a new approach is discovered, or perhaps 
rediscovered after having been lost for a while, one would first expect great advances, 
invigorated exchange, and, almost as likely, slightly over-zealous claims at “how much” 
is on the verge of being accomplished or discovered.   Since our initial progress is always 
so charged with a special aura of discovery, few things are as heady as initial success; 
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and yet, knowing as much as we do about the true nature of reality, perhaps few things 
are as sobering as the conviction that, in the long run, nature will continue to surprise us 
and confound our well-intended attempts to uncover her secrets. Indeed, a somewhat 
analogous uncertainty principle appears to lie at the heart of physical reality itself. The 
inescapable implication is that we must both strive to enlarge our comfort zone, while at 
the same time maintaining a sense of humility:  each new perspective we uncover is of 
necessity limited and incomplete, and needs a context to give it meaning. 
 

3. SOLUTION APPROACHES TO A FLUID FLOW PROBLEM 
Three complimentary viewpoints are often used to solve fluid flow problems, namely 
microscopic, mesoscopic and macroscopic perspectives. The specific approaches 
sketched in Fig. 1 (Succi, 2001), each contributes insight lacking in others, but each 
suffers inherent liabilities. For almost all practical purposes in applied physics, the ability 
to predict the behavior of the real world strongly depends on the time evolution of 
macroscopic quantities such as pressure, flow velocity, chemical concentration, 
temperature, etc.  Such terms arise from averages obtained over a huge number of 
individual trajectories. Since average quantities are most relevant to many “real life” 
problems of system design and operation, it makes sense to think of mathematical 
formulations dealing directly with these average quantities (Succi et al, 2002). This is, in 
fact, the prime task of statistical mechanics. The theory of the lattice Boltzmann equation 
belongs to the general framework of non-equilibrium statistical mechanics. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Macroscopic Approach 
(Navier-Stokes Equations)

Boltzmann Approach 

 Liouville Approach 

Newton-Hamilton Approach  

Lattice Boltzmann  

Lattice Liouville 

Lattice Gas  

Fig. 1 – Hierarchy of solution approaches (Succi, 2001) 
 
3.1 Newton-Hamilton Approach  
The microscopic description of a macroscopic fluid flow system is based on Newtonian 
mechanics. The mathematical problem generated by Newtonian mechanics is to solve a 
set of N overall nonlinear ordinary differential equations (ODEs): 
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in which N is of the order of Avogadro’s number ( ). In the above, m23106× i is the mass 
of the ith molecule, ir its position vector, dtrdV ii = its molecule velocity vector, and 
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iF  the force acting upon the ith molecule due to intermolecular interactions (Huang, 
1987). In many ways, this component approach is a new technique, contrasting to the 
apparent unreality of continuum approaches, reminding that macroscopic properties arise 
from individual components. 

To be complete, the ODE, (1), must be solved for all molecules of a substance 
using appropriate initial and boundary conditions. Yet, the application of Newtonian 
mechanics to the molecular world creates a huge computational challenge. Since the total 
number of molecules in a cubic centimeter of any ordinary substance is huge, accounting 
for the motion of individual molecules by tracing the 6N variables of ( )tr i  and ( )tV i  is 
an overwhelming complex scientific and numerical task.  Even if it took only one second 
to store and resolve the conditions for only one molecule of a fluid, it would take  
seconds (around years) to determine the conditions for all molecules in a cubic 
centimeter.  Even assuming that such a task was technically possible, the problem of 
dynamic instabilities would be overwhelming – any small uncertainty in the initial 
microscopic state would exponentially evolve, thereby shrinking the predictability 
horizon of the system virtually to zero (Succi et al, 2002). Finally, if all these difficulties 
are overcome, such a huge amount of information is seldom needed in real world 
applications. 

23106×
16102×

 
3.2 Liouville Approach  
While the Newton-Hamilton approach deals with molecular positions and velocities 
(Succi et al, 2002), the Liouville approach considers the so-called distribution functions 

( )tVrVrf NNN  , , , , , 11 ⋅⋅⋅  which describe the probability of having molecule 1 at position 

1r  with velocity 1V  , and so on up to molecule N at position Nr  with velocity NV  at 
time t. Trajectories are replaced here by the notion of phase-space fluids obeying a 6N-
dimensional continuity equation, known as the Liouville equation (Succi et al, 2002): 
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where iii mFa = is the acceleration of the ith molecule of mass mi under the action of  

force iF . Unfortunately, however, as is obvious the Liouville equation not only does not 
remove the difficulties in Newtonian approach arise from the huge amount of information 
being handled but also, since fN is a continuum 6N-dimensional field, the amount of 
computational information required for the Liouville approach grows exponentially. 
Nonetheless, the Liouville equation represents a very valuable step, not because it is 
mathematically solvable, but because it sets the stage for an elegant and powerful 
procedure that consistently eliminates irrelevant information (Succi et al, 2002). In fact, 
fN can be integrated over single-particle coordinates in order to define a low-order 
reduced distribution function of:  

NMNNMM dzdzfff ⋅⋅⋅== +⋅⋅⋅<⋅⋅⋅ ∫ 11212                         (4) 

where andkkk dVdxdz = NMk ⋅⋅⋅+= ,1 . As Succi et al (2002) argued, the result is the 
following set of M-equations: 
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in which CM represents the effects of intermolecular interactions. In the presence of a b-
body potential, CM involves only b upper-lying distributions bMM ff ++ ⋅⋅⋅  , ,1 . Fortunately, 
most interesting macroscopic observables, such as density, pressure, temperature, and 
energy, often depend only on one or two body distributions, so effort can be channeled 
into the lower levels (M = 1 and 2). 
 
3.3 Boltzmann Approach 
As quoted in Succi et al (2002), Boltzmann constructed a model in 1872 that he thought 
could describe the time development of a gas, whether in equilibrium or not. The 
Boltzmann model implied the so-called H-theorem, describing a quantity equal to entropy 
in equilibrium that must always increase with time. He showed how irreversible 
macroscopic laws such as 2nd law of thermodynamics could originate in time reversible 
laws of microscopic physics. Most macroscopic phenomena are irreversible and look 
quite different when run backward in time. Boltzmann argued that this irreversible 
behavior arises from more fundamental microscopic laws governing the behavior of the 
constituents of the systems obeying the irreversible laws. At first, it seemed that 
Boltzmann had successfully proved the 2nd law; but, then, it turned out that since 
molecular collisions were assumed reversible, his derivation could be run in reverse, 
which would then imply the opposite of the 2nd law!  Later it was realized that 
Boltzmann’s original model implicitly assumed that molecules are uncorrelated before 
each collision, but not afterwards, thereby introducing a fundamental asymmetry in time 
(Wolfram, 2002). In responding to objections concerning reversibility, Boltzmann 
realized (around 1876) that in a gas there are many more states that seem random than 
seem orderly. This realization led him to argue that entropy must be proportional to the 
logarithm of the number of possible states of a system, and to formulate ideas about 
ergodicity (Wolfram, 2002). The Boltzmann equation is expressed as (Xu et al, 1995):  
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where f is the non-equilibrium probability density of finding a particle with mass m at 

position r  and at time t with velocity V and acceleration mFa =  in which F  is the net 
external forces acting on the particle. The left-hand side represents free motion in the 

phase space ),( Vr and the right-hand side denotes the effects of binary collisions of 
particles arising from molecular interactions. The Boltzmann equation relies on the 
famous molecular chaos assumption: 

( ) ( ) ( )222111221112 ,,,,, VrfVrfVrVrf ×=                    (7)  
which considers no correlation between molecules entering a binary collision. It is 
precisely this arbitrary assumption that breaks time reversal symmetry; it is clear that 
after a collision takes place, molecules must be correlated due to the mass, momentum, 
and energy conservations. The essence of the molecular chaos assumption is that these 
post collisional correlations decay exponentially fast in time so that the probability of the 
two particles’ colliding with each other again in a correlated state after any finite time 
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lapse is virtually zero (Succi et al, 2002). Breaking time-reversal symmetry allows a 
process to be irreversible. This is, in fact, Boltzmann’s most profound contribution to 
statistical mechanics after his discovery of a quantitative measure of irreversibility, the 
celebrated H-theorem (Boltzmann, 1872 cited in Brush 2003): 

( ) ( ) ( )[ ] rdVdtVrftVrftH ⋅×= ∫  ,,ln,,                             (8)  
In fact, the Boltzmann H-function provides a quantitative measure of irreversibility and 
can be directly related to the concept of entropy (i.e., entropy HKS B−= ). 

Boltzmann showed that the H-function never increases but must always decrease 
or remain constant regardless of the details of the collision operator. Moreover, H must 
approach a value and remain constant thereafter. In that case, the corresponding final 
value of f is the Maxwellian distribution (Brush, 2003). Indeed, the H-theorem takes the 
role of a conceptual bridge between microscopic and macroscopic behavior of a system. 
Unfortunately, however, Boltzmann derived his theory without demonstrating under what 
conditions it has solutions (Succi et al, 2002). While leaving mathematical rigor behind, 
the H theorem is nonetheless a monumental contribution to modern science, since it 
showed for the first time the way to a grand unification of two fundamental and hitherto 
disconnected domains of science: mechanics and thermodynamics.  

Modern developments reveal the practical importance of Boltzmann equation. 
With a shift in focus from actual particles (real atoms or molecules) to quasi particles, the 
Boltzmann equation became applicable well beyond the original framework (i.e., rarefied 
gas dynamics; Kadanoff and Baym, 1962). Today Boltzmann approaches are used in a 
vast variety of fields in statistical mechanics including engineering and applied physics 
such as neutron and radiation transport, electron transport in semiconductors, hadronic 
plasmas, fluid flow problems, groundwater flow, and many others.  

The adequacy of Boltzmann description was quite controversial at the time and to 
a certain degree at least this remains so. Zermelo and Loschmidt claimed that Boltzmann 
description was not adequate (Goldstein, 2001). As cited in Goldstein (2001), Loschmidt 
argued that since the classical equations of motion are time reversible, it is possible to 
obtain a solution to these equations that violate the macroscopic laws by time reversing 
solutions that obey them. Zermelo also pointed out reasons for the existence of such anti-
thermodynamic solutions showing that anti-thermodynamic behavior is just as consistent 
with the macroscopic laws as thermodynamic behavior.  
 
3.4 Macroscopic or Continuum Approach 
Macroscopic quantities such as fluid density (ρ), momentum (M), energy (E), and other 
parameters are obtained using integration of the kinetic molecular distribution function f 
over velocity space: 

VdtVrfmtr ∫=  ),,(),(ρ                                                      (9-a) 

VdtrVtVrfmtrUtrtrM ∫==  ),( ) ,,(),( ),(),( ρ                 (9-b) 

VdvtVrfmtrEtr ∫ ×=  
2

 ),,(),(),(
2

ρ                                     (9-c) 
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in which m is the molecular mass and U  is the macroscopic velocity vector at a position 

r  and at time t. The traditional model of fluid flows used in applied physics and 
engineering is based on a set of partial differential equations (PDEs) known as the 
Navier-Stokes equations (NSEs). These equations were originally derived in the 1840s on 
the basis of conservation laws and first-order approximations. Interestingly, though, they 
can also be derived from molecular dynamics if one assumes sufficient randomness in 
microscopic molecular processes. Assuming small deviations from local thermodynamic 
equilibrium and using (9-a, b, and c) for a small control volume of flow, the Navier-
Stokes equations (continuity and momentum) of flow dynamics for a fluid with kinematic 
viscosity of υ at the macroscopic level are obtained as:  
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∂
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                                                                 (10-a) 
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in which BBf  represents the body forces per unit mass (typically gravity). The left side of 
(10-b) represents the flow acceleration and the right side is the total effective force acting 
on the control surfaces per unit mass of control volume. At a mathematical level, analysis 
of NSEs has not yet fully established the formal uniqueness and existence of solutions. 
Indeed, there is even some evidence that singularities might almost inevitably form, 
which would imply a breakdown of the equations, and perhaps a need to account for 
underlying molecular processes (Wolfram, 2002).  

The main challenge with NSEs is that although explicit solutions are sometimes 
available for flows with very low Reynolds numbers and simple geometries, even in the 
regime of flow where regular arrays of eddies are produced, analytical methods have 
never yielded complete explicit solutions. In this regime, and more generally in almost all 
high Reynolds-number flows, however, numerical approximations are realistically the 
only possible approach. Indeed, it has become increasingly common to see numerical 
results given far into the turbulent regime, leading sometimes to the assumption that 
turbulence has somehow been derived from the NSEs (Wolfram, 2002). But just what 
such numerical results actually have to do with detailed solutions to the NSEs is not clear. 
One the other hand, it turns out to be be almost impossible to distinguish whatever 
genuine instability and apparent randomness may be implied by the NSEs from artifacts 
that are introduced through the discretization procedure used to numerically solve the 
equations. Turbulent flows at higher Reynolds numbers involve eddies with a wide range 
of sizes that thus require prohibitively large amounts of information to be numerically 
captured.  In practice, therefore, semi-empirical models of turbulence tend to be used - 
often “eddy viscosities” or other closure approaches that have no direct relation to the 
NSEs.  

A number of researchers (Ghidaoui et al, 2001, Chen et al, 1998, Gunstension et 
al, 1991, Abbott and Minns, 1998, Frisch et al, 1986, Su et al, 1999) have argued that 
there are considerable advantages to mesoscopic Boltzmann approach over the traditional 
macroscopic approaches. These include the following attributes: 
1. The advective operator in the macroscopic approach (10-b) is nonlinear; whereas the 

corresponding term in Boltzmann approach (6) is linear, permitting superposition; 
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2. Since the probability distribution function of particles is scalar, the Boltzmann 
approach can be simply extended for a multidimensional fluid flow problem; 

3. The Boltzmann approach can be easily implemented for fluid flow problems with 
complex boundary conditions; 

4. The fact that the (6) is a linear ODE and probability distribution function of 
particles/molecules is scalar make the analysis of the turbulent open channel flow 
problems much easier, since a direct numerical simulation and large eddies is possible;  

5. The solution of an incompressible fluid flow problem is much easier and do not 
involve the difficult solution of the Poisson equation since it is simply the limit of (6) 
as the Mach number approaches zero; 

6. The physics of any waves and or diffusion processes are handled simultaneously with 
the flow equations, and there is no need for operator splitting; and finally, 

7. No characteristics decomposition is required to solve the equations. 
Yet the novelty and “strangeness” of the Boltzmann approach compared to traditional 

CFD modelling is a barrier to some, and wide adoption will depend on demonstrating not 
only its equivalence, but its computational and physical superiority in a range of 
applications.  In this context, it is worthwhile introducing one more promising Boltzmann 
variant, the so-called lattice Boltzmann method. 
 
3.5 Lattice Boltzmann Method 
Lattice Boltzmann method (LBM) is a mesoscopic particle based approach to simulate 
fluid flows. It is becoming a serious alternative to traditional methods for computational 
fluid dynamics (Chen et al, 1998). LBM is especially well suited to simulate flows 
around complex geometries, and they are straightforwardly implemented on parallel 
machines. Historically, LBM developed from lattice gases, although it can also be 
derived directly from (6) (He and Luo, 1997). In lattice gases, particles “live in” or are 
assumed to occupy the nodes of a discrete lattice. Using a LBM, the simulation involves 
in a two-step procedure usually called propagation and collision phases (Rivet and Boom, 
2001). Within the propagation phase, the particles jump from one lattice node to the next, 
according to their discrete velocity, after which the particles collide and obtain new 
velocities through a collision phase. The collision operator differs between many LBMs. 
In the BGK method, the particle distribution after propagation is gradually relaxed 
towards the equilibrium distribution.   
 

4. CONCLUSION 
The adequacy of Boltzmann theory has been debated and controversial since it was 
developed. This article briefly reviews several solution approaches applicable to fluid 
flow problems and highlights the advantages and disadvantages of mesoscopic and 
macroscopic approaches. In a more detailed discussion on the importance of the 
Boltzmann theory, Schrodinger (cited in Goldstein, 2001) reviewed these developments 
and provided that excellently conclude this review: “the spontaneous transition from 
order to disorder is the quintessence of Boltzmann theory...This theory really grants an 
understanding and does not…reason away the dissymmetry of things by means of a prior 
sense of direction of time…No one who has once understood Boltzmann theory will ever 
have recourse to such expedients…No perception in physics has ever seemed more 
important to me than that of Boltzmann-despite Plank and Einstein”.       
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