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1 Introduction

Insurance companies have traditionally used reinsurance contracts to hedge them-
selves against losses from catastrophic events. During the last decade, the high level
of worldwide catastrophe losses in terms of frequency and severity had a marked
effect on the reinsurance market. The catastrophes such as Storm Daria (Europe
1990), Hurricane Andrew (USA 1992) and the Kobe earthquake (Japan 1995) have
impacted the profitability and capital bases of reinsurance companies. Some of
these companies have withdrawn from the market while others have reduced the
level of catastrophe cover they are willing to provide (Booth 1997).

In the early 1990s, some believed that there was under-capacity provided by
the reinsurance market. Some investment banks, particularly in the US, recognised
the opportunities that existed in the reinsurance market. Through their large capital
bases the investment banks were able to offer alternative reinsurance products. One
of the alternative reinsurance products is catastrophe insurance futures and options
on catastrophe insurance futures, traded on a quarterly basis (Jan-Mar, Apr-June,
July-Sep and Oct-Dec), introduced by The Chicago Board of Trade in December
1992.

The CBOT devised a loss ratio index as the underlying instrument for catastro-
phe insurance futures and options contracts. The Insurance Service Office calculates
the index from loss data reported by at least 25 selected companies (CBOT 1994,
1995a and 1995b). The loss ratio index is the reported losses incurred in a given
quarter and reported by the end of the following quarter, Lt, divided by one fourth
of the premiums received in the previous year, Π , i.e. Lt/Π .

The value of an insurance future, Ft, at maturity t is the nominal contract value,
US$25,000, times the loss ratio index capped at 2, i.e.

Ft = 25, 000 ×Min

(
Lt
Π
, 2
)
. (1.1)

The CBOT capped the maximum loss ratio at 200% in order to limit the credit risk
from unexpected huge losses and to make the contract look like a non-proportional
reinsurance policy. However, to date there has not been an incident where the
maximum loss ratio has been reached; the highest estimated loss ratio being 179%
for Hurricane Andrew. Therefore ignoring the maximum loss ratio, the value of a
catastrophe insurance call option on the future of the option, Pt, at maturity t is
given by

Pt = Max (Ft −K, 0) = (Ft −K)+

=
(

25, 000 × Lt
Π

−K

)+

=
25, 000
Π

(Lt −B)+ (1.2)

where K is the exercise price and B = ΠK
25,000 .

Let Zi, i = 1, 2, · · · , be the claim amounts, which are assumed to be indepen-
dent and identically distributed with distribution function H (z) (z > 0). The total
loss excess over b, which is a retention limit, up to time t is

(Ct − b)+ (1.3)
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where Ct =
Nt∑
i=1

Zi, Nt is the number of claims up to time t and (Ct − b)+ =

Max (Ct − b, 0). Therefore the stop-loss reinsurance premium at present time 0 is

E
{

(Ct − b)+
}

(1.4)

where the expectation is calculated under an appropriate probability measure.
Throughout the paper, for simplicity, we assume interest rates to be constant.

If we assume that Lt = Ct, the price of the insurance future at time 0 is

E

[
25, 000 ×Min

(
Ct
Π
, 2
)]

(1.5)

and ignoring the maximum loss ratio, the price at time 0 of the call option on the
insurance future is

25, 000
Π

E
[
(Ct −B)+

]
(1.6)

where the expectations are calculated under an appropriate probability measure. If
we substitute ‘b’ with ‘B’ in the formula of the stop-loss reinsurance premium at
time 0 excluding 25,000

Π , the two formulae (1.4) and (1.6) are equivalent.
There has been discussion and research into the possibility of using catastrophe

insurance futures and options contracts rather than conventional reinsurance con-
tracts (Lomax and Lowe 1994; Smith 1994; Ryan 1994; Sutherland 1995; Kielholz
and Durrer 1997 and Smith et al. 1997). The competitiveness of the reinsurance mar-
ket emphasises the need for an appropriate pricing model for reinsurance contracts
and catastrophe insurance derivatives. This also causes reinsurance companies to
assess their strategies for the type of products offered to the market.

2 Doubly stochastic Poisson process and shot noise process

In insurance modelling, the Poisson process has been used as a claim arrival process.
Extensive discussion of the Poisson process, from both applied and theoretical
viewpoints, can be found in Cramér (1930), Cox and Lewis (1966), Bühlmann
(1970), Cinlar (1975), and Medhi (1982). However there has been a significant
volume of literature that questions the appropriateness of the Poisson process in
insurance modelling (Seal 1983 and Beard et al. 1984) and more specifically for
rainfall modelling (Smith 1980 and Cox and Isham 1986).

For catastrophic events, the assumption that resulting claims occur in terms of
the Poisson process is inadequate as it has deterministic intensity. Therefore an
alternative point process needs to be used to generate the claim arrival process. We
will employ a doubly stochastic Poisson process, or the Cox process (Cox 1955;
Bartlett 1963; Serfozo 1972; Grandell 1976, 1991; Bremaud 1981 and Lando 1994).
Under a doubly stochastic Poisson process, or the Cox process, the claim intensity
function is assumed to be stochastic.

The doubly stochastic Poisson process provides flexibility by letting the inten-
sity not only depend on time but also allowing it to be a stochastic process. Therefore
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the doubly stochastic Poisson process can be viewed as a two step randomisation
procedure. A process λt is used to generate another process Nt by acting as its in-
tensity. That is,Nt is a Poisson process conditional on λt which itself is a stochastic
process (if λt is deterministic then Nt is a Poisson process).

Many alternative definitions of a doubly stochastic Poisson process can be given.
We will offer the one adopted by Bremaud (1981).

Definition 2.1 Let (Ω,F, P ) be a probability space with information structure
given by F = {�t, t ∈ [0, T ]}. Let Nt be a point process adapted to F . Let λt be
a non-negative process adapted to F such that

t∫
0

λsds < ∞ almost surely (no explosions).

If for all 0 ≤ t1 ≤ t2 and u ∈ �

E
{
eiu(Nt2−Nt1)|�λt2

}
= exp



(
eiu − 1

) t2∫
t1

λsds


 (2.1)

then Nt is call a �t-doubly stochastic Poisson process with intensity λt where
�λt = σ {λs; s ≤ t}.

Equation (2.1) gives us

Pr {Nt2 −Nt1 = k|λs; t1 ≤ s ≤ t2} =

exp

(
−
t2∫
t1

λsds

)(
t2∫
t1

λsds

)k

k!
. (2.2)

Now consider the process Xt =
t∫
0
λsds (the aggregated process), then from (2.2)

we can easily find that

E
(
θNt2−Nt1

)
= E

{
e−(1−θ)(Xt2−Xt1)

}
. (2.3)

Equation (2.3) suggests that the problem of finding the distribution of Nt,
the point process, is equivalent to the problem of finding the distribution of Xt,
the aggregated process. It means that we just have to find the p.g.f. (probability
generating function) of Nt to retrieve the m.g.f. (moment generating function) of
Xt and vice versa.

Claims arising from catastrophic events depend on the intensity of natural dis-
asters (e.g., flood, windstorm, hail, and earthquake). One of the processes that can
be used to measure the impact of catastrophic events is the shot noise process (Cox
and Isham 1980, 1986 and Klüppelberg and Mikosch 1995). The shot noise process
is particularly useful in the claim arrival process as it measures the frequency, mag-
nitude and time period needed to determine the effect of catastrophic events. As
time passes, the shot noise process decreases as more and more claims are settled.
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This decrease continues until another catastrophe occurs which will result in a pos-
itive jump in the shot noise process. Therefore the shot noise process can be used
as the parameter of the doubly stochastic Poisson process to measure the number
of claims due to catastrophic event, i.e. we will use it as a claim intensity function
to generate the Cox process. We will adopt the shot noise process used by Cox and
Isham (1980):

t0

λ
t

Fig. 1. Graph illustrating a shot noise process

λt = λ0e
−δt +

∑
all i
si≤t

yie
−δ(t−si)

where:
λ0 initial value of λ
yi jump size of catastrophe i where E (yi) < ∞

(i.e. magnitude of contribution of catastrophe i to intensity)
si time at which catastrophe i occurs, where si < t < ∞
δ exponential decay
ρ the rate of catastrophe jump arrival.

This is illustrated in Fig. 1.

The piecewise deterministic Markov processes theory developed by Davis
(1984) is a powerful mathematical tool for examining non-diffusion models. From
now on, we present definitions and important properties of the Cox and shot noise
processes with the aid of piecewise deterministic processes theory (Dassios 1987
and Dassios and Embrechts 1989). This theory is used to calculate the distribution
of the number of claims and the mean of the number of claims. These are important
factors in the pricing of any reinsurance product.

The three parameters of the shot noise process described are homogeneous
in time. We are now going to generalise the shot noise process by allowing the
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parameters to depend on time. The rate of jump arrivals, ρ (t), is bounded on
all intervals [0, t) (no explosions). δ (t) is the rate of decay and the distribution
function of jump sizes at any time t is G (y; t) (y > 0) with E (y; t) = µ1 (t) =
∞∫
0
ydG (y; t). We assume that δ (t) , ρ (t) and G (y; t) are all Riemann integrable

functions of t and are all positive.
The generator of the process (Xt, Nt, λt, t) acting on a function f (x, n, λ, t)

belonging to its domain is given by

A f (x, n, λ, t) =
∂f

∂t
+ λ

∂f

∂x
+ λ [f(x, n+ 1, λ, t) − f (x, n, λ, t)] (2.4)

− δ (t)λ
∂f

∂λ

+ ρ (t)




∞∫
0

f (x, n, λ+ y, t) dG (y; t) − f (x, n, λ, t)


 .

For f (x, n, λ, t) to belong to the domain of the generator A, it is sufficient that
f (x, n, λ, t) is differentiable w.r.t. x, λ, t for all x, n, λ, t and that∣∣∣∣∣∣

∞∫
0

f (·, λ+ y, ·) dG (y; t) − f (·, λ, ·)
∣∣∣∣∣∣ < ∞ .

Let us find a suitable martingale in order to derive the Laplace transforms of
the distribution of λt, Xt and the p.g.f. (probability generating function) of Nt at
time t.

Theorem 2.2 Considering constants k and v such that k ≥ 0 and v ≥ 0,

exp (−vXt) · exp


−


ke�(t) − ve�(t)

t∫
0

e−�(r)dr


λt




× exp




t∫
0

ρ (s)


1 − ĝ


ke�(s) − ve�(t)

s∫
0

e−�(r)dr; s




 ds


 (2.5)

is a martingale where ĝ (u; s) =
∞∫
0
e−u ydG (y; s) and � (t) =

t∫
0
δ (s) ds.

Proof From (2.4) f (x, λ, t) has to satisfyAf = 0 for it to be a martingale. Setting
f = e−vxe−A(t)λeR(t) we get the equation

−λA′ (t) +R′ (t) − λv + δ (t)λA (t) + ρ (t) [ĝ {A (t) ; t} − 1] = 0 (2.6)

and solving (2.6) we get

A (t) = ke�(t) − ve�(t)

t∫
0

e−�(r)dr
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and

R (t) =

t∫
0

ρ (s)


1 − ĝ


ke�(s) − ve�(s)

s∫
0

e−�(r)dr; s




 ds

where � (t) =
t∫
0
δ (s) ds. Hence the result follows. �	

Let us assume that δ (t) = δ throughout the rest of this paper.

Corollary 2.3 Let v1 ≥ 0, v2 ≥ 0, v ≥ 0, 0 ≤ θ ≤ 1. Then

E
{
e−v1(Xt2−Xt1)e−v2λt2 |Xt1 , λt1

}

= exp
[
−
{v1
δ

+
(
v2 − v1

δ

)
e−δ(t2−t1)

}
λt1

]

× exp


−

t2∫
t1

ρ (s)
[
1 − ĝ

{v1
δ

+
(
v2 − v1

δ

)
e−δ(t2−s); s

}]
ds


 (2.7)

and

E
{
θ(Nt2−Nt1)e−vλt2 |Nt1 , λt1

}
(2.8)

= exp
[
−
{

1 − θ

δ
+
(
v − 1 − θ

δ

)
e−δ(t2−t1)

}
λt1

]

× exp


−

t2∫
t1

ρ (s)
[
1 − ĝ

{
1 − θ

δ
+
(
v − 1 − θ

δ

)
e−δ(t2−s); s

}]
ds


 .

Proof (2.7) follows immediately where we set v = v1, k = v1
δ +

(
v2 − v1

δ

)
e−δt2

in Theorem 2.2. (2.8) follows from (2.7) and (2.3). �	
Now we can easily obtain the Laplace transforms of the distribution of λt, Xt

and the p.g.f. (probability generating function) of Nt at time t.

Corollary 2.4 The Laplace transforms of the distribution of λt and Xt are given
by

E
{
e−vλt2 |λt1

}
= exp

[
−ve−δ(t2−t1)λt1

]

× exp


−

t2∫
t1

ρ (s)
[
1 − ĝ

{
ve−δ(t2−s); s

}]
ds


 , (2.9)

E
{
e−v(Xt2−Xt1)|λt1

}
= exp

[
−v

δ

{
1 − e−δ(t2−t1)

}
λt1

]
(2.10)

× exp


−

t2∫
t1

ρ (s)
[
1 − ĝ

{v
δ

(
1 − e−δ(t2−s)

)
; s
}]

ds



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and the probability generating function of Nt is given by

E
{
θ(Nt2−Nt1)|λt1

}
(2.11)

= exp
[
−1 − θ

δ

{
1 − e−δ(t2−t1)

}
λt1

]

× exp


−

t2∫
t1

ρ (s)
[
1 − ĝ

{
1 − θ

δ

(
1 − e−δ(t2−s)

)
; s
}]

ds


 .

Proof If we set v1 = 0 in (2.7) then (2.9) follows. If we also set v2 = 0, v = 0 in
(2.7) and (2.8) then (2.10) and (2.11) follow. �	

Let us obtain the asymptotic distributions of λt at time t from (2.9), provided
that the process started sufficiently far in the past. In this context we interpret it as
the limit when t → −∞. In other words, if we know λ at ‘−∞’ and no information
between ‘−∞’ to present time t, ‘−∞’ asymptotic distribution of λt can be used
as the distribution of λt.

Lemma 2.5 Assume that lim
t→−∞ρ (t) = ρ and lim

t→−∞µ1 (t) = µ1. Then the ‘−∞’

asymptotic distribution of λt has Laplace transform

E
(
e−vλt1

)
= exp


−

t1∫
−∞

ρ (s)
[
1 − ĝ

{
ve−δ(t1−s); s

}]
ds


 . (2.12)

Proof From (2.9), it is easy to check that if lim
t→−∞ρ (t) = ρ and lim

t→−∞µ1 (t) =

µ1 then
t∫

−∞
ρ (s)

[
1 − ĝ

{
ve−δ(t−s); s

}]
ds < ∞. Therefore the result follows

immediately. �	
It will be interesting to find the Laplace transforms of the distribution of λt,Xt

and the p.g.f. (probability generating function) Nt at time t, using a specific jump
size distribution of G (y; t) (y > 0). We use an exponential jump size distribution,

i.e., g (y; t) =
(
α+ γeδt

)
e−(α+γeδt)y, y > 0, −αe−δt < γ ≤ 0. In practice,

other thick-tail distributions such as log-normal, gamma and Pareto, etc. can also
be applied for jump size distribution of G (y; t) (y > 0). Examining the effect on
stop-loss reinsurance premiums and prices for catastrophe insurance derivatives
caused by changes in the jump size distribution will be also of interest.

Let us assume that ρ (t) = ρ α
α+γeδt . The reason for this particular assumption

will become apparent later when we change the probability measure.

Theorem 2.6 Let the jump size distribution be exponential, i.e. g (y; t) =(
α+ γeδt

)
exp

{− (
α+ γeδt

)
y
}

, y > 0, αe−δt < γ ≤ 0, and assume that



Pricing of catastrophe reinsurance and derivatives 81

ρ (t) = ρ α
α+γeδt . Then

E
{
e−vλt1 |λt0

}
= exp

{
−vλt0e−δ(t1−t0)

}(γeδt0 + αe−δ(t1−t0)

γeδt0 + α

) ρ
δ

×
(

γeδt0 + ve−δ(t1−t0) + α

γeδt0 + (v + α) e−δ(t1−t0)

) ρ
δ

, (2.13)

E
{
e−v(Xt2−Xt1)|λt1

}
(2.14)

= exp
[
−v

δ

{
1 − e−δ(t2−t1)

}
λt1

](γeδt1 + αe−δ(t2−t1)

γeδt1 + α

) ρ
δ

×
(
γeδt1 + α+ v

δ

(
1 − e−δ(t2−t1))

γeδt1 + αe−δ(t2−t1)

) αρ
δα+v

and

E
{
θ(Nt2−Nt1)|λt1

}
= exp

[
−1 − θ

δ

{
1 − e−δ(t2−t1)

}
λt1

]
(2.15)

×
(
γeδt1 + αe−δ(t2−t1)

γeδt1 + α

) ρ
δ

×
(
γeδt1 + α+ 1−θ

δ

(
1 − e−δ(t2−t1))

γeδt1 + αe−δ(t2−t1)

) αρ
δα+(1−θ)

.

If λt is ‘−∞’ asymptotic,

E
(
e−vλt1

)
=
(

γ + αe−δt1

γ + (v + α) e−δt1

) ρ
δ

, (2.16)

E
{
e−v(Xt2−Xt1)

}
=

(
γeδt1 + αe−δ(t2−t1)

γeδt1 + α+ v
δ

(
1 − e−δ(t2−t1)

)
) ρ

δ

×
(
γeδt1 + α+ v

δ

(
1 − e−δ(t2−t1))

γeδt1 + αe−δ(t2−t1)

) αρ
δα+v

(2.17)

and

E
{
θ(Nt2−Nt1)

}
=

(
γeδt1 + αe−δ(t2−t1)

γeδt1 + α+ 1−θ
δ

(
1 − e−δ(t2−t1)

)
) ρ

δ

(2.18)

×
(
γeδt1 + α+ 1−θ

δ

(
1 − e−δ(t2−t1))

γeδt1 + αe−δ(t2−t1)

) αρ
δα+(1−θ)

.
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Proof If we set ρ (t) = ρ α
α+γeδt and g(y; t) = (α+ γeδt) exp

{− (
α+ γeδt

)
y
}

,

y > 0, −αe−δt < γ ≤ 0 in (2.9), (2.10) and (2.11) then (2.13), (2.14) and (2.15)
follow. Let t0 → −∞ in (2.13) then (2.16) follows immediately, from which (2.17)
and (2.18) follow. �	

Now let us derive the expected value of claim number process, Nt.

Theorem 2.7 The expectation of claim number process, Nt is given by

E (Nt2 −Nt1) =

t2∫
t1

E (λs) ds (2.19)

=
(

1 − e−δ(t2−t1)

δ

)
E (λt1)

+
1
δ

t2∫
t1

(
1 − e

−δ(t2−s)
)
ρ (s)µ1 (s) ds.

If the jump size distribution is exponential, i.e.

g (y; t) =
(
α+ γeδt

)
exp

{− (
α+ γeδt

)
y
}
, y > 0 , −αe−δt < γ ≤ 0

with ρ (t) = ρ α
α+γeδt and λt is ‘−∞’ asymptotic, then

E (Nt2 −Nt1) =
ρ

δα
(t2 − t1) − ρ

δ2α
ln
(
γeδt2 + α

γeδt1 + α

)
. (2.20)

Proof Using (2.4), we can obtain

E (λt1 |λt0) = λt0e
−δ(t1−t0) + e−δt1

t1∫
t0

eδsρ (s)µ1 (s) ds (2.21)

and by letting t0 → −∞ in (2.21), we can obtain the ‘−∞’ asymptotic expected
value of λt;

E (λt1) = e−δt1
t1∫

−∞
eδsρ (s)µ1 (s) ds. (2.22)

From (2.2)

E (Nt2 −Nt1) =

t2∫
t1

E (λs) ds. (2.23)

Condition on λt1 in (2.23) and use (2.21) then (2.19) follows immediately. If the
jump size distribution is exponential, i.e. g (y; t) =

(
α+γ eδt

)
exp

{−(
α+ γ eδt

)
y
}

, y > 0, −αe−δt < γ ≤ 0 and ρ (t) = ρ α
α+γeδt the ‘−∞’ asymptotic expected

value of λt becomes
E (λt1) =

ρ

δ (α+ γeδt1)
. (2.24)
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Therefore set ρ (s) = ρ α
α+γeδs , µ1 (s) = 1

α+γeδs in (2.19) and use (2.24), then
(2.20) follows immediately. �	

The shot noise process λt has been taken to be unobservable. This implies
that catastrophes can only be observed on the basis of an observed process Nt of
reported claims. However in practical situation, as we observe catastrophes, we can
trace back which and how many claims are caused by them. Therefore “the filtering
problem” can be applied to obtain the best estimate λt on the basis of the observed
process Nt of reported claims or observed catastrophes (Dassios and Jang 1998a
and Jang 1998).

3 No-arbitrage, the Esscher transform and change of probability measure

Harrison and Kreps (1979) and Harrison and Pliska (1981) launched the approach
for the pricing and analysis of movements of the financial derivatives whose prices
are determined by the price of the underlying assets. Their mathematical framework
originates from the idea of risk-neutral, or non-arbitrage valuation of Cox and Ross
(1976). Sondermann (1991) introduced the non-arbitrage approach for the pricing
of reinsurance contracts. He proved that if there is no arbitrage opportunities in
the market, reinsurance premiums are calculated by the expectation of their value
at maturity with respect to a new probability measure and not with respect to the
original probability measure. This new probability measure is called the equivalent
martingale probability measure. The existence of an equivalent martingale proba-
bility measure is equivalent to the assumption of no arbitrage opportunities in the
market.

Let us assume that there exist a liquid reinsurance market, i.e. at any time
t ≤ T , the insurer can decide to sell any part of the risk of Cu, t ≤ u ≤ T ,
based on the information available at time t where Cu follows doubly stochastic
compound Poisson process with shot noise intensity defined on the probability
space (Ω,F, P ). Let PRu denote the total value of premiums received up to time
u defined on (Ω,F, P ) and define the reinsurance strategy that is adopted from
Embrechts and Meister (1995).

Definition 3.1 Let s ∈ [0, T ], a reinsurance strategy {ξu; t ≤ u ≤ T} is a pre-
dictable stochastic process on (Ω,F, P ) with 0 ≤ ξu ≤ 1 for all u ∈ [t, T ].

Assuming that interest rates is constant, let us define the specified process Rt,
0 ≤ t ≤ T , given by

Rt = PRt − Ct (0 ≤ t ≤ T )

denoting the net surplus from insurance business up to time t. If the insurer choose
at time t some reinsurance strategy {ξu; t ≤ u ≤ T} ∈ Ht where Ht denotes the
set of all reinsurance strategies starting at time t, then the company’s final gain at
time T is given by

GT (ξ) =

T∫
t

ξu dRu
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where it is assumed that the reinsurer receives direct insurer’s premiums for his
engagement. A strategy {ξu; t ≤ u ≤ T} allowing for a possible profit without the
possibility of a loss is called an arbitrage strategy, i.e. a strategy {ξu; t ≤ u ≤ T}
satisfying

(i) GT (ξ) ≥ 0, P− almost surely
(ii) EP [GT (ξ)] > 0

is called an arbitrage strategy. Therefore, for the reinsurance market (Ω,F, P ) , Rt
does not allow for arbitrage strategies if there is an equivalent probability measure
P ∗ such that the process Rt is a martingale. A probability measure P ∗ is called an
equivalent martingale probability measure if:

(i) P ∗(A) = 0 iff P (A) = 0, for any A ∈ �t;
(ii) The Radon-Nikodym derivative dP∗

dP belongs to L2 (Ω,�t, P );
(iii) Rt is a martingale under P ∗, i.e.

E∗ [Rt|�s] = Rs, P
∗ − a.s.

for any 0 ≤ s ≤ t ≤ T , where E∗ denotes the expectation with respect to P ∗

(Harrison and Kreps 1979 and Sondermann 1991).
Cummins and Geman (1995) also employed this non-arbitrage pricing tech-

nique for catastrophe insurance derivatives. Alternative pricing for catastrophe in-
surance derivatives such as general equilibrium and the utility maximisation ap-
proach can be found in Aase (1994) and Embrechts and Meister (1995).

We will examine an equivalent martingale probability measure obtained via
the Esscher transform (Gerber and Shiu 1996). In general, the Esscher transform
is defined as a change of probability measure for certain stochastic processes. An
Esscher transform of such a process induces an equivalent probability measure on
the process. The parameters involved for an Esscher transform are determined so
that the price of a random future payment is a martingale under the new probability
measure. A random payment therefore is calculated as the expectation of that at
maturity with respect to the equivalent martingale probability measure (also known
as the risk-neutral Esscher measure).

If the market is complete, the fair price of a contingent claim is the expecta-
tion with respect to exactly one equivalent martingale probability measure (i.e. by
assuming that there is an absence of arbitrage opportunities in the market). For
example, when the underlying stochastic process follows geometric Brownian mo-
tion or homogeneous Poisson process, we can obtain the fair price with respect to
a unique equivalent martingale probability measure. However, as the underlying
stochastic process for the claim arrival process is the Cox process, we will have
infinitely many equivalent martingale probability measures. In other words, we will
have several choices of equivalent martingale probability measures to price a stop-
loss reinsurance contract and insurance derivatives as the market is incomplete.

It is not the purpose of this paper to decide which is the appropriate one to use.
The insurance companies’ attitude towards risk determines which equivalent mar-
tingale probability measure should be used. The attractive thing about the Esscher
transform is that it provides us with at least one equivalent martingale probability
measure in incomplete market situations.
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We here offer the definition of the Esscher transform that is adopted from Gerber
and Shiu (1996).

Definition 3.2 Let Xt be a stochastic process and h∗ a real number. For a mea-
surable function f , the expectation of the random variable f(Xt) with respect to
the equivalent martingale probability measure is

E∗ [f (Xt)] = E

[
f (Xt)

eh
∗Xt

E (eh∗Xt)

]
=
E
[
f (Xt) eh

∗Xt
]

E [eh∗Xt ]
, (3.1)

where the process eh
∗Xt is a martingale and E

(
eh

∗Xt
)
< ∞.

From Definition 3.2, we need to obtain a martingale that can be used to define
a change of probability measure, i.e. it can be used to define the Radon-Nikodym
derivative dP∗

dP whereP is the original probability measure andP ∗ is the equivalent
martingale probability measure with parameters involved.

Let Mt be the total number of catastrophe jumps up to time t. We will assume
that claim points and catastrophe jumps do not occur at the same time.

The generator of the process (Xt, Nt, Ct, λt,Mt, t) acting on a function f (x,
n, c, λ, m,t) belonging to its domain is given by

A f(x, n, c, λ,m, t) (3.2)

=
∂f

∂t
+ λ

∂f

∂x
+ λ




∞∫
0

f (x, n+ 1, c+ z, λ,m, t) dH (z) − f (x, n, c, λ,m, t)




− δλ
∂f

∂λ
+ ρ




∞∫
0

f (x, n, c, λ+ y,m+ 1, t) dG (y) − f (x, n, c, λ,m, t)


 .

Clearly, for f (x, n, c, λ,m, t) to belong to the domain of the generator A, it is
essential that f (x, n, c, λ,m, t) is differentiable w.r.t. x, c, λ, t for all x, n, c, λ,
m, t and that

∣∣∣∣∣∣
∞∫
0

f (., λ+ y, .) dG (y) − f (., λ, .)

∣∣∣∣∣∣ < ∞

and ∣∣∣∣∣∣
∞∫
0

f (., c+ z, .) dH (z) − f (., c, .)

∣∣∣∣∣∣ < ∞.

Theorem 3.3 Considering constants θ∗, v∗, ψ∗ and γ∗ such that θ∗ ≥ 1, v∗ ≤ 0,
ψ∗ ≥ 1 and γ∗ ≤ 0,

θ∗Nte−v∗Cte
−{θ∗ĥ(v∗)−1} t∫

0
λsds

ψ∗Mte−γ∗λteδt
exp[ρ

t∫

0
{1−ψ∗ĝ(γ∗eδs)}ds] (3.3)

is a martingale where ĥ (v∗) =
∞∫
0
e−v∗ zdH (z).
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Proof From (3.2), f (x, n, c, λ,m, t) has to satisfy Af = 0 for f(Xt, Nt, Ct, λt,
Mt, t) to be a martingale. Trying θ∗ne−v∗ceφ

∗xψ∗m exp
(−γ∗λeδt

)
eA(t) we get

the equation

A′ (t) + λφ∗ + λ
{
θ∗ĥ (v∗) − 1

}
+ ρ

{
ψ∗ĝ

(
γ∗eδt

)− 1
}

= 0 (3.4)

and solving (3.4) we get

φ∗ = −
{
θ∗ĥ (v∗) − 1

}
and A (t) = ρ

t∫
0

{
1 − ψ∗ĝ

(
γ∗eδs

)}
ds

and the result follows. �	
Now let us look at how the processes λt and Nt change after changing proba-

bility measure. To do so we start with a technical lemma.

Lemma 3.4 Assume that f (n, λ, t) = f (λ, t) for all n and that e−v∗λt is a
martingale. Consider a constant v∗ such that v∗ ≥ 0. Then

A∗ f (λ, 0) =
A

{
f (λ, 0) e−v∗λ

}
e−v∗λ . (3.5)

Proof The generator of the process (λt, t) acting on a function f (λ, t) with respect
to the equivalent martingale probability measure is

A∗ f (λ, 0) = lim
t↓0

E∗ [f (λt, t) |λ0 = λ] − f (λ, 0)
t

. (3.6)

We will use e−v∗λt

E(e−v∗λt) as the Radon-Nikodym derivative to define equivalent mar-

tingale probability measure where E
(
e−v∗λt

)
< ∞ . Hence, the expected value

of f (λt, t) given λ with respect to the equivalent martingale probability measure
is

E∗ [f (λt, t) |λ0 = λ] =
E
[
f (λt, t) · e−v∗λt |λ0 = λ

]
E (e−v∗λt |λ0 = λ)

. (3.7)

Since the denominator in (3.7) is a martingale, it becomes

E∗ {f (λt, t) |λ0 = λ} (3.8)

=
f (λ, 0) · e−v∗λ +

t∫
0
E
[
A f (λs, s) · e−v∗λs|λ0 = λ

]
ds

e−v∗λ .

Set (3.8) in (3.6) then

A∗ f (λ, 0) =
1

e−v∗λ lim
t↓0

t∫
0

E
[
A f (λs, s) · e−v∗λs |λ0 = λ

]
ds

t
. (3.9)
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Therefore, from Dynkin’s formula (Øksendal 1992), (3.5) follows immediately.
�	

Let us examine the generatorA∗ of the process (Xt, Nt, Ct, λt,Mt, t) acting on
a function f (x, n, c, λ,m, t) with respect to the equivalent martingale probability
measure.

Theorem 3.5 Consider constants θ∗, v∗, ψ∗ and γ∗ such that θ∗ ≥ 1, v∗ ≤ 0,
ψ∗ ≥ 1 and γ∗ ≤ 0. Suppose that ĥ (v∗) < ∞ and ĝ

(
γ∗eδt

)
< ∞. Then

A f(x, n, c, λ,m, t) (3.10)

=
∂f

∂t
+ λ

∂f

∂x
− δλ

∂f

∂λ

+ θ∗ĥ (v∗)λ{
∞∫
0

f (x, n+ 1, c+ z, λ,m, t) dH∗ (z) − f (x, n, c, λ,m, t)}

+ ρ∗ (t) {
∞∫
0

f (x, n, c, λ+ y,m+ 1, t) dG∗ (y; t) − f (x, n, c, λ,m, t)},

where

dH∗ (z) =
e−v∗zdH (z)

ĥ (v∗)
, ρ∗ (t) = ρψ∗ĝ

(
γ∗eδt

)

and d G∗ (y; t) = e−γ∗eδtydG(y)
ĝ(γ∗eδt) .

Proof From Theorem 3.3, we can use

θ∗e−v∗Cte
−{θ∗ĥ(v∗)−1} t∫

0
λsds

ψ∗Mte−γ∗λte
δt

exp[ρ
t∫
0

{
1 − ψ∗ĝ

(
γ∗eδs

)}
ds]

E[θ∗Nte−v∗Cte
−{θ∗ĥ(v∗)−1} t∫

0
λsds

ψ∗Mte−γ∗λteδt exp[ρ
t∫
0
{1−ψ∗ĝ (γ∗eδs)} ds]]

(3.11)
as the Radon-Nikodym derivative to define an equivalent martingale probability
measure. Therefore from Lemma 3.4,

A∗ f(Xt, Nt, Ct, λt,Mt, t)
=A f(Xt, Nt, Ct, λt,Mt, t)

·
θ∗e−v∗Cte

−{θ∗ĥ(v∗)−1} t∫

0
λsds

ψ∗Mte−γ∗λte
δt

exp[ρ
t∫
0

{
1−ψ∗ĝ

(
γ∗eδs

)}
ds]

E[θ∗Nte−v∗Cte
−{θ∗ĥ(v∗)−1} t∫

0
λsds

ψ∗Mte−γ∗λteδt exp[ρ
t∫
0
{1−ψ∗ĝ (γ∗eδs)} ds]]

.
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From (3.2), using the generator with respect to the original probability measure,

A f (x, n, c, λ,m, t) θ∗Nte−v∗Ct exp


−

{
θ∗ĥ (v∗) − 1

} t∫
0

λsds




· ψ∗Mt exp
(−γ∗λteδt

)
exp[ρ

t∫
0

{
1 − ψ∗ĝ

(
γ∗eδs

)}
ds]

=


∂f
∂t

+ λ
∂f

∂x
− δλ

∂f

∂λ
+ λ


θ∗

∞∫
0

f (x, n+ 1, c+ z, λ,m, t) e−v∗zdH (z)

− θ∗ĥ (v∗) f (x, n, c, λ,m, t)




+ ρ


ψ∗

∞∫
0

f (x, n, c, λ+ y,m+ 1, t) e−γ∗eδtydG(y)

− ψ∗ĝ
(
γ∗eδt

)
f (x, n, c, λ,m, t)




 · θ∗Nte−v∗Cte

−{θ∗ĥ(v∗)−1} t∫

0
λsds

· ψ∗Mt exp
(−γ∗λteδt

)
exp


ρ

t∫
0

{
1 − ψ∗ĝ

(
γ∗eδs

)}
ds


 .

Therefore

A∗ f (x, n, c, λ,m, t) (3.12)

=
∂f

∂t
+ λ

∂f

∂x
− δλ

∂f

∂λ

+ θ∗ĥ (v∗)λ




∞∫
0

f (x, n+ 1, c+ z, λ,m, t) dH∗ (z) − f (x, n, c, λ,m, t)




+ ρ∗ (t)




∞∫
0

f (x, n, c, λ+ y,m+ 1, t) dG∗ (y; t) − f (x, n, c, λ,m, t)




where

dH∗ (z) =
e−v∗zdH (z)

ĥ (v∗)
, ρ∗ (t) = ρψ∗ĝ

(
γ∗eδt

)

and dG∗ (y; t) = e−γ∗eδtydG(y)
ĝ(γ∗eδt) . �	

Theorem 3.5 yields the following:

(i) The claim intensity function λt has changed to λtθ∗ĥ (v∗);
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(ii) The rate of jump arrival ρ has changed to ρ∗ (t) = ρψ∗ĝ
(
γ∗eδt

)
(it now

depends on time);

(iii) The jump size measure dG (y) has changed to dG∗ (y; t) = e−γ∗eδtydG(y)
ĝ(γ∗eδt) (it

now depends on time);

(iv) The claim size measure dH (z) has changed to dH∗ (z) = e−v∗zdH(z)
ĥ(v∗)

.

In other words, the risk-neutral Esscher measure is the measure with respect to
which Nt becomes the Cox process with parameter λt θ∗ ĥ (v∗) where three
parameters of the shot noise process λt are δ, ρ∗ (t) = ρψ∗ĝ

(
γ∗eδt

)
, dG∗ (y; t) =

exp(−γ∗eδty)dG(y)
ĝ(γ∗eδt) and claim size distribution becomes dH∗ (z) = e−v∗zdH(z)

ĥ(v∗)
.

In practice, the reinsurer will calculate the values of a stop-loss contract and
insurance derivatives using θ∗ > 1, ψ∗ > 1, γ∗ < 0 and v∗ < 0. This results in
the reinsurer assuming that there will be a higher value of claim intensity itself, a
higher value of the damage caused by the catastrophe, more catastrophes occurring
in a given period of time and a higher value of claim size. These assumptions are
necessary, as the reinsurer wants compensation for the risks involved in operating in
incomplete market. The reinsurer also aims to maximise their shareholders’ wealth
by earning profits rather than operating at breakeven point where premiums are
equal to expected claims that is calculated with respect to the original probability
measure.

If θ∗ = 1, ψ∗ = 1, γ∗ = 0 and v∗ = 0 then net premium and non-arbitrage
free price are calculated which should cover the expected losses over the period of
contract. Therefore we can consider θ∗, ψ∗, γ∗ and v∗ as security loading factors
by which gross premium and non-arbitrage price, that should be finally charged,
will be calculated. However, as expected, we have quite a flexible family of equiv-
alent probability measures by the combination of θ∗, ψ∗, γ∗ and v∗. It means that
insurance companies have various ways of levying the security loading on the net
premium and non-arbitrage free price to obtain the gross premium and non-arbitrage
price (i.e. by changing equivalent martingale probability measures using the com-
bination of θ∗, ψ∗, γ∗ and v∗). One of the interesting results by changing measure
(i.e. by assuming that there is an absence of arbitrage opportunities in the market)
is that we can justify reinsurers’ security loading on the net premium for stop-loss
reinsurance contract and on non-arbitrage free prices for insurance derivatives in
practice.

Now let us evaluate the ‘−∞’ asymptotic expected value of Nt and the p.g.f.
(probability generating function) of the ‘−∞’ asymptotic distribution ofNt with re-
spect to the equivalent martingale probability measure, i.e.E∗ (Nt) andE∗ (θNt

)
.

We will assume that the jump size distribution is exponential, i.e. g (y) = αe−αy,
y > 0, α > 0 and that λt is ‘−∞’ asymptotic. Therefore we can obtain that
g∗ (y; t) =

(
α+ γ∗eδt

)
exp

{− (
α+ γ∗eδt

)
y
}
, y > 0, − αe−αy < γ∗ ≤ 0 and

t < 1
δ ln

(
− α
γ∗

)
since dG∗ (y; t) =

exp(−γ∗eδty)dG(y)
ĝ(γ∗eδt) . It is clear that such a model

is appropriate in the short term only, as it breaks down for t ≥ 1
δ ln

(
− α
γ∗

)
.

For simplicity, let us assume that v∗ = 0 and ψ∗ = 1, i.e. we only consider θ∗

and γ∗ as security loading factors.
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Corollary 3.6 Let the jump size distribution be exponential. Consider constants
θ, θ∗, v∗, ψ∗ and γ∗ such that 0 ≤ θ ≤ 1, θ∗ ≥ 1, v∗ = 0, ψ∗ = 1 and γ∗ ≤ 0.
Furthermore if λt is ‘−∞’ asymptotic, then

E∗ (θNt2−Nt1
)

=

{
γ∗eδt1 + αe−δ(t2−t1)

γ∗eδt1 + α+ θ∗(1−θ)
δ

(
1 − e−δ(t2−t1)

)
} ρ

δ

×
{
γ∗eδt1 + α+ θ∗(1−θ)

δ

(
1 − e−δ(t2−t1))

γ∗eδt1 + αe−δ(t2−t1)

} αρ
δα+θ∗(1−θ)

(3.13)

and

E∗ (Nt2 −Nt1) =
θ∗ρ
δα

(t2 − t1) − θ∗ρ
δ2α

ln
(
γ∗eδt2 + α

γ∗eδt1 + α

)
(3.14)

where 0 < t1 < t2 < t.

Proof From Theorem 3.5 and (2.3),

E∗ (θNt2−Nt1
)

= E


exp


−θ∗ĥ (v∗) (1 − θ)

t2∫
t1

λsds






where

dH∗ (z) =
e−v∗zdH (z)

ĥ (v∗)
, ρ∗ (t) = ρψ∗ĝ

(
γ∗eδt

)

and dG∗ (y; t) =
exp(γ∗eδty)dG(y)

ĝ(γ∗eδt) . Since v∗ = 0, ψ∗ = 1 and the jump size

distribution is exponential, ρ∗ (s) = ρ α
α+γ∗eδs and µ∗

1 (s) = 1
α+γ∗eδs . Therefore

if we set v = θ∗ (1 − θ) in (2.17) and multiply θ∗ to (2.24), putting γ = γ∗, the
results follow immediately. �	

4 Pricing of a stop-loss reinsurance contract for catastrophic event
and catastrophe insurance derivatives

Now let us look at the stop-loss reinsurance premium and catastrophe insurance
derivatives prices at present time 0, assuming that there is an absence of arbitrage
opportunities in the market. This can be achieved by using an equivalent martingale
probability measure,P ∗,within the pricing model used for calculating premium for
reinsurance contract. Therefore, from (1.4), (1.5) and (1.6), the stop-loss reinsurance
gross premium at time 0 is

E∗
[
(Ct − b)+

]
, (4.1)
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the arbitrage-free price for the insurance futures contract at time 0 is

F0 = E∗
[
25, 000 ×Min

(
Ct
Π
, 2
)]

(4.2)

and the arbitrage-free price for the insurance call option on futures at time 0 is

P0 =
25, 000
Π

E∗
[
(Ct −B)+

]
(4.3)

where all symbols have previously been defined and for simplicity, we assume
interest rates to be constant.

It will be interesting to derive the premium and pricing formulae, using a specific
claim size distribution ofH (z) (z > 0). We assume that the claim size distribution

is gamma, i.e. h (z) = βϕzϕ−1e−βz

(ϕ−1)! , z > 0, β > 0, ϕ ≥ 1. Then

E∗
[
(Ct − b)+

]
(4.4)

=
∞∑
n=1

a∗
n



nϕ

β

∞∫
b

βnϕ+1cnϕe−βc

(nϕ)!
dc− b

∞∫
b

βnϕcnϕ−1e−βc

(nϕ− 1)!
dc


 ,

F0 (4.5)

=
25, 000
Π




{ ∞∑
n=1

a∗
n
nϕ
β

}

−
{ ∞∑
n=1

a∗
n

(
nϕ
β

∞∫
2Π

βnϕ+1cnϕe−βc

(nϕ)! dc− 2Π
∞∫

2Π

βnϕcnϕ−1e−βc

(nϕ−1)! dc

)}



and

P0 (4.6)

=
25, 000
Π

∞∑
n=1

a∗
n



nϕ

β

∞∫
B

βnϕ+1cnϕe−βc

(nϕ)!
dc−B

∞∫
B

βnϕcnϕ−1e−βc

(nϕ− 1)!
dc




where a∗
n = P ∗ (Nt = n) and B = ΠK

25,000 .
In practice, other distributions such as exponential, log-normal and Pareto, etc.

can also be applied for claim size distribution ofH (z) (z > 0). Examining the effect
on stop-loss reinsurance premiums and prices for catastrophe insurance derivatives
caused by changes in the claim size distribution will be also of interest.

Now let us illustrate the calculation of stop-loss reinsurance gross premium
for catastrophic events and the arbitrage-free prices of the catastrophe insurance
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derivatives using the models derived previously. From (3.13), the p.g.f. of Nt is

E∗ (θNt
)
=

∞∑
n=1

θnP ∗ (Nt = n) =
∞∑
n=0

θna∗
n (4.7)

=

{
γ∗ + αe−δt

γ∗ + α+ θ∗(1−θ)
δ (1 − e−δt)

} ρ
δ

×
{
γ∗ + α+ θ∗(1−θ)

δ

(
1 − e−δt)

γ∗ + αe−δt

} αρ
δα+θ∗(1−θ)

The parameter values used to expand (4.7) with respect to θ are

θ∗ = 1.1, γ∗ = −0.1, α = 1, δ = 0.3, ρ = 4, t = 1.

Using these parameter values we can calculate the mean of the claim number in a
unit period of time. From (3.14)

E∗ (Nt) =
θ∗ρ
δα

t− θ∗ρ
δ2α

ln
(
γ∗eδt + α

γ∗ + α

)
≈ 16.61.

By expanding (4.7) using the MAPLE algebraic manipulations package we can
obtain a∗

n = P ∗ (Nt = n) which is as follows:

E∗ (θNt
)
=

∞∑
n=1

θnP ∗ (Nt = n) (4.8)

=
∞∑
n=0

θna∗
n =

{
0.64082

0.9 + 0.95033(1 − θ)

} 4.4(1−θ)
0.09+0.33(1−θ)

= 0.000014982 + 0.00011628θ + 0.00048266θ2 + 0.0014225θ3

+ 0.0033355θ4 + 0.006615θ5 + 0.011523θ6 + 0.018086θ7

+ 0.026045θ8 + 0.034881θ9 + 0.0439θ10 + 0.052349θ11

+ 0.059537θ12 + 0.064932θ13 + 0.068214θ14 + 0.06929θ15

+ 0.068273θ16 + 0.065434θ17 + 0.061148θ18 + 0.055831θ19

+ 0.049898θ20 + 0.043723θ21 + 0.037616θ22 + 0.031815θ23

+ 0.026484θ24 + 0.02172θ25 + 0.017567θ26 + 0.014023θ27

+ 0.011056θ28 + 0.0086166θ29 + 0.0066419θ30 + 0.0050667θ31

+ 0.0038272θ32 + 0.0028639θ33 + 0.0021241θ34 + 0.0015621θ35

+ 0.0011396θ36 + 0.00082497θ37 + 0.00059282θ38

+ 0.00042301θ39 + 0.00029981θ40 + 0.00021112θ41

+ 0.00014775θ42 + 0.00010279θ43 + 0.000071101θ44

+ 0.00004891145 + 0.000033469θ46 + 0.000022785θ47

+ 0.000015436θ48 + 0.000010407θ49 + 0.000006985θ50

+ 0.0000046672θ51 + 0.0000031051θ52 + 0.0000020573θ53

+ 0.0000013575θ54 +O
(
θ55

)
.
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Table 4.1.

Retention level b Reinsurance gross premium
0 16.58403
5 11.61916

10 7.06779
16.61 2.83349
20 1.58701
25 0.59582
30 0.19512

Table 4.2.

θ∗ γ∗ = −0.1
1.0 0.3544252
1.1 0.595824
1.2 0.9299355
1.3 1.366049
1.4 1.90885
1.5 2.558786

Table 4.3.

γ∗ θ∗ = 1.1
0.0 0.3029752

−0.1 0.595824
−0.2 1.207256
−0.3 2.512553
−0.4 5.364622
−0.5 11.65184

Example 4.1 The parameter values used to calculate (4.4) are

n : 1 ∼ 41, ϕ = 1, β = 1, b = 0, 5, 10, 16.61, 20, 25, 30

E∗ (Ct) = E∗ (Nt)E (Z) = 16.61.

By computing (4.4) using S-Plus the calculation of the stop-loss reinsurance gross
premiums for catastrophic events at each retention level b are shown in Table 4.1.

Example 4.2 We will now examine the effect on stop-loss reinsurance gross pre-
miums caused by changes in the value of θ∗ and γ∗. By expanding (4.7) using
MAPLE at each value of θ∗ and γ∗ respectively and computing (4.4) by S-Plus,
the calculation of the stop-loss reinsurance gross premiums for catastrophic events
at the retention limit b = 25 are shown in Table 4.2 and Table 4.3.

Example 4.3 The parameter values used to calculate (4.5) are

n : 1 ∼ 41, ϕ = 1, β = 1, Π = E∗ (Ct) = E∗ (Nt)E (Z) = 16.61.

By computing (4.5) using S-Plus the calculation of an arbitrage-free price of catas-
trophe insurance futures is as follows:

F0 = $25, 000 × (0.9984363 − 0.005339982) = $24, 827.41.

Example 4.4 The parameter values used to calculate (4.6) are

n : 1 ∼ 41, ϕ = 1, β = 1, Π = 16.61, K = $25, 000.
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By computing (4.6) using S-Plus the calculation of an arbitrage-free price of catas-
trophe insurance option on futures is as follows:

P0 =
$25, 000
16.61

× 2.833487 = $4, 264.73.
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