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Data warehousing is one of the major research topics of applied- 
side database investigators. Most of the work to date has focused 
on building large centralized systems that are integrated repositories 
founded on pre-existing systems upon which all corporate-wide 
data are based. Unfortunately, this approach is very expensive 
and tends to ignore the advantages realized during the past decade 
in the area of distribution and support for data localization in 
a geographically dispersed corporate structure. This research 
investigates building distributed data warehouses with particular 
emphasis placed on distribution design for the data warehouse 
environment. The article provides an architectural model for a 
distributed data warehouse, the formal definition of the relational 
data model for data warehouse and a methodology for distributed 
data warehouse design along with a “horizontal” fragmentation 
algorithm for the fact relation. 

Most of the work to date has focused on building large central- 
ized systems that are integrated repositories founded on pre-existing 
systems upon which all corporate-wide data is based. The cen- 
tralized data warehouse is very expensive and tends to ignore the 
advantages realized during the past decade in the areas of distribu- 
tion and support for data localization in a geographically dispersed 
corporate structure. Further, it would be unwise to enforce a cen- 
tralized data warehouse when the operational systems exist over a 
widely distributed geographical area. 

The distributed data warehouse supports the decision makers 
by providing a single view of data even though that data are 
physically distributed across multiple data warehouses in multiple 
systems at different branches. Currently, the field of distributed 
data warehouse in terms of architecture and design is considered an 
important research problem that needs investigation. 

This research contributes to the problem of distributed data 
warehouse architecture and design by: 

Keywords 
distributed data warehouse architecture, distributed data warehouse 
design, horizontal fragmentation. 

Extending the preliminary architecture model that has been 
presented in [8] by proposing a distributed data warehouse 
system architecture and describing the functionality of its 
components. 

1 INTRODUCTION 
Decision Support Systems (DSSs) and Executive Information Sys- 
tems (EISs) can only be effective tools if the data used are readily 
available and represent the integration of all pertinent corporate- 
wide data. Data warehouses provide this integrated environment by 
extracting, filtering, and integrating relevant information from all 
available data sources. Further, as new or additional relevant infor- 
mation becomes available, or the underlying source data are modi- 
fied by the operational systems, the new data are extracted from its 
autonomous, distributed and heterogeneous sources into a common 
model that is integrated with existing warehouse data. Once infor- 
mation is available at the warehouse, queries can be answered and 
data analysis (DSS and EIS) can be performed. 

Proposing the formal definition of the relational data model 
for data warehouse where the relational data model represents 
the underlying model for the different level of schemas of the 
proposed system architecture. 

Proposing a methodology for the distributed data warehouse 
design and a horizontal fragmentation algorithm that partitions 
the huge fact relation into a set of fragments. 

To the best of our knowledge, this is one of the first works to 
propose a methodology and a horizontal fragmentation algorithm 
for the distributed data warehouse design, 

The reminder of the paper is organized as follows. Section 2 
presents our proposal for the distributed data warehouse system 
architecture and illustrates how the information flows in the 
distributed data warehouse. Section 3 provides the data model for 
data warehouse. Section 4 addresses our proposal for the distributed 
data warehouse design and presents the horizontal fragmentation 
algorithm for the fact relation. Finally, Section 5 draws conclusions. 
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2 DISTRIBUTED DATA WAREHOUSE 
ARCHITECTURE 

This section extends the preliminary architecture model that has 
been presented in [S]. It proposes distributed data warehouse sys- 
tem architecture. and describes the functionality of its components 
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Figure 1: Distributed Data Warehouse System Architecture. 

and how the information flow in the distributed data warehouse en- 
vironment. 

The proposed distributed data warehouse architecture represents 
the classical solution for a large enterprise with various divisions 
and geographic locations. It is based on the ANSVSPARC 
architecture [13] that has three levels of schemas: internal, 
conceptual and external. 

Figure 1 illustrates the distributed data warehouse system archi- 
tecture. It is a four-tiered architecture consisting of (1) The dura 
integration layer. (2) The data staging layer. (3) The data distribu- 
tion layer. (4) The distributed data warehouse manager layer. The 
following sections discuss these layers in detail. 

2.1 The data integration layer 

The data integration layer consists of the sources databases avail- 
able across the sites and the integration and transformation tools. 
Figure I shows the multiple source databases available across the 
sites. These sources run the gamut from full functioning On-Line 
Transaction Processing (OLTP) to various unstructured external 
data sources such as Rat files or spreadsheets. The individual source 
at each site has its own Locallnternal Schema (LIS) and Local Con- 
ceptual Schema (LCS). The LIS defines the physical data organiza- 
tion on the source database while the LCS represents the abstract 
definition of the data and the relationships between them. The inte- 
gration and transformation tools extract data and information about 
the data from the source databases, define the relationships among 
data at multiple sources, detect duplicates and inconsistencies, add 
any extra desired information such as timestamps and transform the 
integrated data to the target database in the data staging layer. 

2.2 The data staging layer 

The data staging layer stores the integrated, subject oriented, 
current-value and detailed data. The integrated data in the staging 
layer stored using the Integrated Conceptual Schema (ICS) which 
defines the local schema of the entire source databases. The 
underlying model for the ICS is a canonical data model. The 
ICS will be mapped into the Global Conceptual Schema (KS). 
The underlying model for the GCS is the data warehouse model 
(see Section 3 for the detail description of the data model for data 
warehouse). 

The data stored in the data staging layer can be classified into 
new data and changed data. The new data represent the most recent 
data that are added to the operational systems. The changed data 

represent the update occurring on existing data in the operational 
systems. 

2.3 The data distribution layer 
The data distribution layer provides the foIlowing processes: frag- 
mentation, allocation and updating the distributed data warehouse. 
Fragmentation process applies its algorithms to the data that have 
been mapped into the data warehouse model (GCS). The fragmen- 
tation algorithms partition these data into fragments. Allocation 
process applies its algorithms to distribute the fragments to the sites 
available across the network. Finally the update process applies its 
algorithms to add the new information to the history of existing data 
available in the fragments in the distributed data warehouse. 

2.4 The distributed data warehouse manager layer 
The distributed data warehouse manager layer manages the frag- 
ments at each site. These fragments represent the integrated, sub- 
ject oriented, non-volatile, time variant and detailed data. This 
layer, also, provides a single view of the fragments even though 
these fragments are physically distributed across multiple sites on 
multiple systems. 

At every site, the logical organizations of the fragments are 
defined by the Local Conceptual Schema (LCS). Each LCS is 
mapped to a Logical Internal Schema (LIS) which defines the 
physical organization of the fragments stored at the local site. The 
DSS end users at each local site are supported by External Schema 
(ES) to allow them to execute the DSS applications against the data 
warehouse. 

The various sites are connected using a communication proto- 
col. This communication protocol provides a single application to 
operate “transparently” on data spread across different data ware- 
houses, managed by a variety of different DBMSs, run on a variety 
of different machines, supported by a variety of different operating 
systems, and connected by a variety of different communication 
networks [4]. 

3 THE DATA MODEL FOR DATA 
WAREHOUSE 

The data model for a data warehouse should be designed to 
structure the data in a manner that could handle the On-Line 
Analytical Processing (OLAP). There are two techniques for 
modeling the data warehouse: the multidimensional data model 
[I, 71 and the relational data model [3, 61. These two modeling 
techniques provide a multidimensional view of data to support and 
facilitate the OLAP applications. The distributed data warehouse 
design presented in Section 4 is based on the relational data model. 
The schema that is used for physical structures data warehouse 
data using the relational data model is the star schema. The 
following sections discuss the relational data warehouse schema 
and its formal definition in detail. 

3.1 Data Warehouse Schema 
The data warehouse schema (star schema) design was introduced 
by Kimball [6]. The basic principle behind it is building a highly 
redundant data structure to improve database performance for 
OLAP applications. 

The data warehouse schemes are physical database structures 
that store quantitative or factual data about the organization in large 
central tables surrounded by a group of smaller tables that describe 
the dimension of the organization [3, 121. The large central tables 
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Figure 2: The data warehouse schema. 

are called the fact tables and the surrounding tables are called the 
dimensional tables. 

Definition 1 (Dara Warehouse Schema}: 
Data warehouse schema S is an orderedpair (D,3); S = (23, F) 
where: 

0 v= {D~,D~,...,D~) . 1s a set of dimension relation schemas; 

l 3= (FI , Fz, . , F,) is a set offact relation schemas. n 

The data warehouse schema is a set of relation schemas. 
Two types of relation schemas are available in data warehouse: 
Dimensions and Facts. The relationship between the dimension 
relation and fact relation is one to many as shown in Figure 2. 

3.1.1 The Dimension Relations 

The dimension relations are descriptive relations that add value to 
the quantitative data available in the fact relation. They contain 
multiple attribute columns containing text and codes that describe 
the dimension key. The dimension relations are heavily attributed 
to support the “what-if’ queries required to derive decision-making 
information. They also represent the “by” criteria. For example, the 
DSS end user may wish to see “sales 6 region” or “monthly sales - 
by sales person”. 
-The dimension relation is a denormalized relation. It is 
constructed by applying a denormalization process. 

Definition 2 (Denormalization): 
Denormalization is the process ofpre-joining relations in a careful 
way to introduce controlled redundant data into already normalized 
relations, thereby improving database performance. n 

The advantages of using denormalization in building data ware- 
houses are [I I 1: 

l Reducing the number of joined relations required to answer 
queries. As a result, the run time application is improved. 

l Mapping the physical database structure closely to the user 
queries thereby improving the database performance. 

The dimension relation represents the joining of more than 
one normalized relations from legacy system. Figure 3 illustrates 
normalized relations based on geographical regions. Clearly these 
are in at least 3rd NE To perform OLAP analysis these should 
be “pre-joined” to enhance the performance of the OLAP queries. 

Rcgh 

R-ID Re&,. _.. - 

District 

D-ID. D~smct. R-ID. 

Slate 

S-ID. Stare. D-ID. .., 

City 

C-ID, City. S-ID. - 

Figure 3: The OLTP store schema. 

The normalized relations often have a hierarchical structure among 
themselves. This hierarchical structure will be captured during the 
denormalization process. Consider, for example, the hierarchical 
structure between the normalized relations of the OLTP store 
schema in Figure 3. The normalized relations (Region, District, 
State, City and Store) have a hierarchical structure between them 
where the highest level of the hierarchy is the Region relation and 
the lowest level is the Store relation. 

The denormalization process produces two outputs: 

1. The dimension relation: Figure 4 shows the store dimension 
relation after it has been denormalized out of the normalized 
relation which was shown in Figure 3. In the store dimension 
relation the store-key (of the lowest level relation in the 
hierarchy of the normalized relations) has been associated with 
the non-key attributes of the other normalized relations. 

2. The attributes hierarchy for the dimension relation: The at- 
tributes hierarchy will be represented by the relation Dm(Ail, 
AQ) where &i is the attributes hierarchy relation of the di- 
mension Di, the domain &ii of Ai1 represents the attributes 
of the dimension Di involved in the hierarchy and the domain 
Q~z of Ai represents the level of each attribute in the hierar- 
chy. For instance, the attributes hierarchy of the store dimen- 
sion relation is Store(Attributes-Hierarchy, Level) and it has the 
following values: 

m’r’l 

The attributes hierarchy is used in rolling-up and drilling- 
down operations of the OLAP applications. These two operations 
represents the moving along the attributes hierarchy to decrease or 
increase the level of the aggregation 131. The roll-up operation 
increases the level of aggregation, such as viewing the sales data 
from sales by city to sales by region. The drill-down operation 
decreases the level of aggregation, such as viewing the sales data 
from sales by region to sales by district. The attributes hierarchy 
will be used later in the proposed algorithm for fragmenting the 
data warehouse schema horizontally. 

The context for the formal definition of a dimension’s relation 
schema requires recalling Definition I of the data warehouse 
schema where S = (2), 3). 
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1 S-Kev store Citv State District Keeion 1 
I S.No. I New York NY New York Ea&n 
2 S.No.2 L. Angeles CA L. Angeles Pacific 
3 S.No.3 Boston MA Suffolk E;lSt~~n 
4 S.No.4 Miami FL Dade south Easr 

I 

Figure 4: The Store Dimension relation 

Definition 3 (Dimension): 
The dimension relation schema for eny Di is represented by 
Di(A;, Ai2, Ai3, . . . . Ail, . . . . A,,) where Ai : D, --+ Qij is an 
attribute of Di (Di E V) and Qij is its domnin for 1 5 i < n and 
l~j~rn. n 

The dimension relation key At1 D is functionally determines all 
attributes of the dimension relation Di, that is, AZ ---+ A,j for 
1 5 i 5 n and 2 < j 5 m. The superscript letter D in A: implies 
that AZ is a dimension key. 

There are two types of the dimension relation attributes: 

1. Non-hierarchical attribute: it contains descriptive information 
about the dimension but it is not involve in the dimension 
attributes hierarchy. 

2. Hierarchical attribute: it contains descriptive information 
about the dimension and involves in the dimension attributes 
hierarchy. 

3.1.2 The Fact Relations 

The fact relation normally contains millions of rows and is highly 
normalized [6]. The fact relation stores time-series factual data. 
These data represent real values that the DSS end users need to 
track. The fact relation is composed of foreign keys and raw data. 
Each foreign key references a primary key on one of the dimension 
relations. These dimension relations could be time, product, 
market, vendor, customer, etc. The raw data represent the numerical 
measurement of the organization such as sales amount, number 
of units sold, prices and so forth. The raw data usually never 
contain descriptive (textual) attributes because the fact relation is 
designed to perform arithmetic operations such as summarization, 
aggregation, average and so forth on such data. 

The context for the formal definition of a fact’s relation schema 
requires recalling Definition 1 of the data warehouse schema where 
s = (V,3). 

Definition 4 (Fact): 
The fact relation schema for eny Fi is representedby Fi( K,F, AZ, 
AZ, . . . . A?, . . . . A;) where A$ : Fi ----f Qil is CI measurement 
attribute of Fi (Fi E .F) and Qi3 is its domain for 1 5 i 5 q 
and 1 5 j 5 p. The AT attribute contains a numeric value. 
The superscript letter m in Al;” implies that AC is a measurement 
attribute. n 

The fact relation key, represented by the foreign key set IiF = 
{Af, A?, . . . . Af, . . . . A:} where A? (1 5 1 5 g) is a foreign 
key references a primary key on one of the dimension relations 
and g is the number of the dimension relations referenced by the 
fact relation F,. Each element Af of the KF set functionally 
determines all the measurement attributes of the fact relation Fi, 
that is, AP -&forl<I<g,l<i<qandl<jCp. 

3.1.3 The Relations Size 

The size of the dimension relations is smaller than the size of 
the fact relations [6]. The size of the dimension relations could 
be thousands of rows while the fact relation could be millions of 
rows. For example, suppose that the sales history in a sales data 
warehouse holds data for three years (see Figure 5). The number 
of records of the time dimension relation would be (3 Years * 365 
Days = 1095 Days (records)). Also suppose that there are 200 
stores (records) in the store dimension relation and 50,000 products 
in the product dimension relation. Let us assume that the daily sales 
of each stores are 6000 items. Then the number of records in the 
sales fact relation would be (1095 * 200 * 6000 = 1314 millions 
records). Therefore, it is clear that the size(D) << size(F). 

4 DISTRIBUTED DATA WAREHOUSE 
DESIGN 

The distributed data warehouse design proposed in this research 
is based on the top-down design approach. There are two fun- 
damental issues in the top-down design approach: fragmentation 
and allocation. The problem of fragmentation and allocation has 
been addressed for distributed relational database system [2, IO] 
and the distributed object based system [5]. Previous research work 
on fragmentation and allocation for distributed relational database 
system has been based on highly normalized relations’. 

In the data warehouse environment, the integrated data from 
different resources are modeled into a denormalized relations to 
facilitate the on-line data analysis (see Section 3). The existing 
distributed relational databasedesign techniques for fragmentation 
will not work for distributed data warehouse because of the 
underlying model. 

This section proposes a methodology for the distributed data 
warehouse design and a horizontal fragmentation algorithm for the 
huge fact relation. The main idea of the methodology will be 
discussed first, followed by a detailed description of the algorithm. 

4.1 The Design Methodology 
The main ideas of the methodology are (I ) to replicate the dimen- 
sion relations across the network and (2) to generate horizontal 
fragments of the huge fact relation only. The reasons are: 

l The size of the dimension relations is relatively small compared 
to the fact relations (see Section 3.1.3 for details). 

l The dimension relations are changing slowly, the cost of 
updating the replicas is relatively low. 

l If the dimension relations are fragmented and allocated across 
the network, query processing will be costly because the 
DSS user queries usually nm against the fact relation and its 
dimension relations. 

Since the dimension relations will be replicated across the 
network, the main objective of the proposed methodology is to 
generate horizontal fragments of the huge fact relation. 

There are two approaches for horizontal fragmentation: primary 
and derived [2, IO]. Applying the primary horizontal fragmentation 
requires a set of simple predicates used in user queries against the 
relation. The fact relation represents the numerical measurements 

‘Clearly much work has been done in the area of horizontal fragmen- 
tation in the distributed relational database systems. Instead of providing a 

complete review, we will point to the relevant work as we present the algo- 
rithms in subsequent sections. 
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Figure 5: A simple data warehouse schema for sales. 

of the organization. The DSS user queries perform arithmetic 
operations on the fact relation such as summarization, aggregation, 
average and so forth. 

It is unlikely that a set of simple predicates for the fact relation 
could be determined from the DSS user queries. Therefore, the 
primary horizontal fragmentation approach could not be applied on 
the fact relation. 

The other approach is to apply the derived horizontal fragmenta- 
tion on the fact relation. In the data warehouse schema, the fact re- 
lation is owned by more than one dimension relations (owners) and 
represents the many-to-many relationship among the dimension re- 
lations. For example, in Figure 5 the many-to-many relationship 
among the dimension relations (Store, Product, Time) is expressed 
with three links (~51, ~52, La) to the sales fact relation (member). 

Since the fact relation is owned by more than one dimension 
relations, there are two approaches for deriving the horizontal 
fragments of the fact relation: 

l the first approach derives the horizontal fragments of the 
fact relation from the predicates that are defined on only 
one dimension relation. This dimension relation has more 
applications than the other dimension relations. The algorithm 
for implementing this approach has been presented in 191. 
Unfortunately, this approach has the following drawbacks: (1) 
the generated fragments of this approach does not reflect all 
the user applications against the data warehouse because they 
based on the applications of one dimension relation; (2) the 
number of generated fragments is small but they are large in 
terms of size. The small number of fragments will decrease the 
level of executing the query in parallel and therefore the system 
performance. The large size of fragments may not be desirable 
if storage is limited in the distributed sits. 

l the second approach derives the horizontal fragments of the 
fact relation from the predicates that are defined on al1 the 
dimension relations. The following section proposed an 
algorithm for implementing this approach. 

4.2 The Horizontal Fragmentation Algorithm for the 
Fact Relation 

The algorithm consists of three major steps to generate the 
horizontal fragments of the fact relations. These steps are: 

1. optimize the set of simple predicates for each dimension 
relation by eliminating the predicates that have a lower position 
in the attributes hierarchy. 

2. apply the primary horizontal fragmentation algorithm, pre- 
sented in [IO, 21, on each dimension relation. The algorithm 

Algorithm 1 OptimizeDimension 
Input: 

l the set of simple predicates for the dimension relation (PDF = 
{Ppk,P;k, . ..1 p;I’, . ..J P,D”)). 

l the attributes hierarchy relation Dhk(AH, Level) of the dimension 
relation. 

output: 

l pal, an optimize set of simple predicates for the Dk relation. 

Begin 
N Identify the level of the highest attribute in Pok. 
HighestLevel = 0 
for each pFk E Pok do 

if Ahi of p Dk exist in Dhk.AH then 
if D,,k. 2 eve1 > HighestLevel then 

HighestLevel = Dhk.LeVd 

end {end for pFk } 
// Remove the predicates that have a lower level than the 
I/ HighestLevel. 

for each pFk E PDF do 

ifAki of ppk exist in Dhk.AH then 
if Dhk. 2 eve1 < HighestLevel then 

PDk = PDk -pi”” 

end {end for pFk } 
Retum(Po,) 

End {OptimizeDimension} 

generates the set of minterm predicates for each dimension re- 
lation along with the set of implications defined on eachdimen- 
sion. 

3. generate the set of fact minterm predicates and derive the 
horizontal fragments of the fact relation from the set of fact 
minterm predicates. 

Algorithm 4 (FactHorizontalFragmenrs) provides a formal pre- 
sentation of these steps. It has been assumed that all the input 
to the horizontal fragmentation algorithm are determined during 
the requirement analysis phase of the top-down design approach. 
The input to the algorithm are (1) the set of the dimension rela- 
tions (Dset = (01, Da, . . . . Dk, . . . . Ds)) that have applications 
and owner links with the fact relation Fi where Dset c V; (2) 
the attributes hierarchy relation Dhk (AH, Level) for each dimen- 
sion relation in the Dset; (3) the dimension relations predicates set 
(DPset = {pan, PO*, . . . . pDk, . . . . PO,}); (4) the set of semijoin 
predicates between the dimension relations (owners) and the fact re- 
lation (member) (SemiPsel = {PI, Pz, . . . . 9, . . . . PSI); and (5) 
the fact relation Fi. The output of the algorithm is the set of the 
horizontal fragmentation for the fact relation. 

Step One-Optimize the set of simple predicatesfor each dimen- 
sion relation Dk. 

The application information is required to process this step. 
There are two types of the user applications information defined 
on the relation: quantitative and qualitative information. The quan- 
titative information is essential for the allocation [IO]. Quantitative 
information is represented by two sets of data: minterm selectivity 
and access frequency. The rninterm selecfivi& is the cardinality of 
the minterm predicate in the relation and the access frequency is 
the number of times the user application accesses data in a given 
period. 
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The qlmlitarive information of user applications, defined on 
relation R,, is represented by a set of simple predicates used in user 
queries against R,. This set will generate a set of optimal minterm 
fragments A/ri = { mil, m,2 , . . ., mi,} for fragmenting the relation 
Ri (where the relation R, is an owner relation). 

In the data warehouse schema, by using the DSS user queries, 
a set of simple predicates will be identified for each dimen- 
sion relation involved in the queries. Let the set Porn = 
{pf” ,pp, . . . . $k , ..‘) p:” } represents the applications defined 

on the dimension relation Dk. The simple predicate $I’ in PD, 
set is defined as: pj Dk : Ahi 0 Value where p:” is the jth pred- 
icate of the PDF simple predicates set, Aki is the ith attribute of 
the dimension relation Dk, 8 is a relation operation from the set 
{=, <, f, I, >, 2}, and Value is the value from the domain QZ 
of Akt (i.e., Valzle E QZ). 

The dimension relation has a hierarchical structure among a 
subset of its attributes (as discussed in Section 3.1.1) and it is 
associated with the attributes hierarchy relation to show the level 
of each attribute in the hierarchy. The set of simple predicates PDF 
of the dimension relation could contain hierarchical predicates. The 
hierarchicalpredicate is the predicate whose attribute is involved in 
the attributes hierarchy of the dimension relation. 

Step One eliminates the hierarchial predicate from the pDk set, 
if and only if there is another hierarchial predicate in the PDF set 
with a higher level. The benefit of this elimination is to derive fact 
fragments from the minterm predicates of the dimension relation 
that (1) allow the roll-up and drill-down operations of the OLAP 
applications to be performed in the same fragment and (2) reduce 
the number ofjoin operations between the fragments. 

To perform this elimination, the following two phases are 
required: 

1. Identify the attribute that has the highest level among the 
hierarchical predicates. 

2. Remove from the predicate set PDk = {pfk , $I’, . . . . pFk, . . . . 
pf’; } all the predicates whose attributes have a lower level than 
the highest attribute identified in the previous phase. 

Algorithm 1 (OprimizeDinlension) provides a formal presenta- 
tion of Step One. 

Step Two-Determine the set of dimension minterm predicates. 
The objective of this step is to generate a set of dimension 

minterm predicates A/~D, = {mfk, mfk, . . . . mfk, . . . . m?“} for 
each dimension relation along with its set of implications ID, = 
{if” ,i;y ‘..) is”“}. 

Algorithm 2 (DimenMintermPredicates) provides a formal pre- 
sentation of Step Two. The input to this step are the set of simple 
predicates PD, that has been refined in Step One and the dimen- 
sion relation Dk. There are three phases required to process this 
step [IO, 21: 

1. Apply the COM-MIN algorithm [IO]. The objective of this 
algorithm is to generate a complete and minimal set of pred- 
icates Pb, from the optimized set of simple predicates PDF. 
The COM-MIN algorithm includes, into the set of predicates 
pb &, predicates that partition the relation or fragment into at 
least two parts which are accessed differently by at least one 
application. 

2. Generate the set of dimension minterm predicates MD, = 
{mf”, m,D”, . . . . m?, . ..) mfk). The minterm predicate 

Algorithm 2 DimenMintermPredicates 
Input: 

. The dimension relation D,+ 

. the set of optimized simple predicates for the dimension relation Dk 
(PDk = ($l-, pfk, . . . . Pp”, . . . . p,flk)). 

output: 

*A set of dimension minterm 
MD, = {mfk,m,Dk, . . . . m,D’, . . ..mf’}. 

predicates 

0 A set of implication 10, = {ifk, irk, . . . . ifk} 

Begin 
I=;, + COMwMIN( Dk, pDk ) 
Generate the minterm predicates set MD, 

Determine the set ID, of implications amongp,D” E PA, 
//Eliminate the contradictory minterm from MD, 

for each m,Dk E k!fDk do 
if mDk is contradictory according to ID,, then v 

MDk 
Dk 

+--MDk-mv 

Dk end {end form, } 
Return(MD,. ID, ) 

End { DinlenMb7tern?Predicutes} 

3. 

(mf”) is the conjunction of simple predicates that exist in the 
set of simple predicates PA, = {pf’ ,pfk, . . . . p3eI’, . . ., ~2) 
of the dimension relation Dk. Each simple predicate can occur 
in its natural form or its negated form. The number of minterm 
predicates in the ?VfD, set is z = 2”’ where m is the number 
of simple predicates in Pb, set. The set of minterm predicates 
defined as follows n[D,, = {mfk Imfk = f\ppk 

I EPDkpPk*~ 
Dk* where pj =pykorpyk* =~p~k,l<k<n(nisthe 

number of dimension relations in D set), 1 < u 5 .z (z is the 
number of minterm predicates defined on Dk) and 1 5 j <_ m 
(m is the number of complete and minimal predicates defined 
on Dk). 

Determine the set of implication ID, = {ifk , iFk, . . . . is”“} 
and eliminate the meaningless minterm predicates. The set 
of implication 10, will be determined depending on the 
semantic of the domains and not on the current values of 
the database. The implication set will reduce the large 
(exponential) number of minterm predicates by eliminating the 
meaningless (contradictory) minterm predicates. 

Step Two is performed on all the dimension relations that are 
owners of the fact relation and have applications on them (i.e., 
set of simple predicates). The determined dimension minterm 
predicates sets will be collected in one set called DMsel where 
DMset = U,“=, filD,, (s is the number of dimension relations that 
has applications and owner links with the fact relation pi). The 
implication sets of the dimension relations will be collected also in 
one set called Iset. Algorithm 4 (FactHorizontalFragments) shows 
the details of generating the DAJset and the Iset. 

Step Three-determine the set of fact minterm predicates and 
derive the fact horizontalfragments. 

The objectives of this step are to 

I. determine the set of fact minterm predicates i,‘fF, = 
{mfl, mf2 ,..., mfj, . . . . m.fz}; 

2. eliminate the meaningless (contradictory) fact minterm predi- 
cates from the generated set; 
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Algorithm 3 FactDHorizontal Algorithm 4 FactHorizontalFragments 
Input: Input: 

. The set of all dimension minterm predicates DMset. 

l The set of all dimension implications Iset. 

a The semijoin predicates set SemiPset. 

l The set of the dimension relations Dset 

l The fact relation Pi 

output: 

l A set of derived horizontal fragments of the fact relation fan = 

{F;,F: )..., F,‘,..., FC}. 

Begin 
Generate the fact minterm predicates set MF~ 

N Eliminate the contradictory minterm from MF; 
for each rnfj E Mq do 

if rnf is contradictory according to Zset then 
1yI)F, - MF, - mfj 

end {end for mfj } 
// Derived the fact horizontal fragments 
for each mfj E MF~ do 

F,j = Fi 
for each rnDk E mfj AND DK E Dset do 

F/ + Fj K (cr&.(Dk)) 
end {end for rnDk,j 

fF, - fF, u Fi’ 
end {end for rnfj } 
Retum(fFi ) 

End {FactDHorizontaI) 

3. derive the horizontal fragments set of the fact relation (f~: = 
{F;,Ft” ,..., F,j ,..., Ff)). 

Algorithm 3 (FactDHorizonral) provides a formal presentation 
of Step Three. The input to this step are the set of all dimension 
minterm predicates DMset, the set of all dimension implications 

Iset, the semijoin predicates set SemiPset, the set of the 
dimension relations Dset and the fact relation Fi. There are three 
phases required to process this step: 

1. Generate the set of fact minterm predicates MF, = {mf 1, mfs, 
. . . . mfj, . . . . mfl}. The fact minterm predicate rnfj repre- 
sents the conjunction of the dimensions mintertn predicates in 
DMset that have been generated from Step Two. Each di- 
mension minterm predicate can occur in its natural form or 
its negated form. The number of fact minterm predicates in 
the MF, set is z = 2p where p is the total number of all 
the dimension minterm predicates in DMset. The set of 
fact minterm predicates defined as I\/rF, = {rnfjlrnfj = 
A nap kEDA,fsetm~k*} where myk* = mFk or mFb* = 

lr$k, 1 2 k 5 s (s is the number of dimension relations in 
the dimension set Dset), 1 5 fj 5 z (z is the number of fact 
minterm predicates defined on the dimension relations in Dset) 
and 1 < j 5 p @ is the total number of all the dimension 
minterm predicates in DMset). Consider, for example, the 
following dimension minterm predicates generated from Step 
Two MD, = (mfk,mFk, . . . . mfk, . . . . mfk), MD, = 

m, m, and the set that unite them is DMset = 
{~~‘~.::.,~~!,,,p ,..., mf’,mf” ,..., m$). Asaresult, 
the set of fact minterm predicates will be MP% = {m,fl, rnfz, , 

The set of the dimension relations that have applications and owner 
links with the fact relation Fi where Dset c 2) (Dset = 
(01, D2, . . . . Dk, . . ..Ds)). 

The attributes hierarchy relation Dhk(AH, Level) for each dimension 
relation in the Dset. 

The dimension relations predicates set 
DPset = {P,,, Paz, . . . . PDF, . . . . PDF}. 

The set of semijoin predicates between the dimension relations (owners) 
and the fact relation (member) SemiPset = { 9, P2, . . . . Pk, . . . . PS}. 

The fact relation 4. 

output: 

l A set of derived horizontal fragments of the fact relation f~, = 

{F;, F,2, . . . . F;, . . . . F,“}. 

Var 
Temp-DPset: dimension predicates set. 
DMset: dimension minterm set. 
Zset: Implications set. 
Begin 

for each PO& E DPset do 
PDk = OptimizeDimension( Pal,, Dhk) 
TempBPset + Temp-DPset u Pal, 

end {end for Pal, } 
// Derived the horizontal fragments of the fact relation 
for each DK f Dset AND Pok E Temp-DPset do 

DimenMintermPredicates( DK, PDF , MD,, ID, ) 
DMset +-- DMset U Mok 
Iset +- Iset u ID, 

end {end for DK } 
fF, = FactDHorizontal(DMset, Zset, SemiPset, Dset, Fi) 

End {FactHorizontalFragments} 

mfj, . . ..mfr} where mfj = mfk A rn?’ A mFU. 

2. Eliminate the contradictory fact minterm predicates. The gen- 
erated fact minterm predicates will be reduced by eliminating 
the contradictory fact minterm predicates with the set of impli- 
cation Iset that have been generated from Step Two. 

3. Derive the horizontal fragments set of the fact relation fF, = 
(Fj , Fi2, . . . . Fj, . ., Fiz}. The derived horizontal fragments 
of the fact relation (member), in this algorithm, are based on 
the dimension minterm predicates defined on the dimension 
relations that have owner links with the fact relation. Given 
(1) a link set L = {11,/2,...,Zn}; (2) a set of dimension 
relations Dset = { DI, D2, . . . . D,}; and (3) the fact relation 
Fi, the derived horizontal fragments of Fi are defined as F! = 

FZ K (gntfjEAtFi (Dset)). 

Consider, for example, the link set is L = (11, /2,/3}, 
the dimension relations set is Dset = {Dk, Dl, Du}. the 
fact relation is F;. and the set of fact minterm predicates is 
MC = {tnfl,mf2 ,..., mfj, . . . . mfz} where owner(lt) = 
Dk,ouu~e~(I~) = DL,ownerjls) = D, and member(ll) = 
F,, member(l2) = F,, member(/s) = Fi. Consider, also, the fact 
minterm predicate (fragment) rnf3 is rnfj = m, Dk Am:’ Am:- 
then 

Fi = Fi CC (ornf,~~fFt (Dset)) 

Fi’ = (((Fi WC (CQA. (W) K (qn~i (Dd)) !x hp VU). 
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4.3 Correctness of the Horizontal Fragments of the 
Fact Relation 

This section validates the horizontal fragmentation algorithm of 
the fact relation with respect to the three correctness rules of 
fragmentation: completeness, reconstruction and disjointness. 

4.3.1 Completeness 
Completeness ensures that all tuples from a relation are mapped 
into at least one fragment without any loss. The completeness of 
the primary horizontal fragmentation is guaranteed as long as the 
set of simple predicates are complete and minimal. The COM-MIN 
algorithm [IO] ensures the complete and minimality of the simple 
predicates. 

The completeness of derived horizontal fragmentation is guar- 
anteed as long as the referential integrity rule is satisfied among 
the relations involved in the fragmentation design. The referential 
integrity between the dimension relations and the fact relation are 
satisfied as discussedin the data model for data warehouse (see Sec- 
tion 3). Moreover the two functions: Owner and Member identify 
the type of the relations through the join link between the relations 
[IO]. This must be completed before the fragmentation design pro- 
cess. 

Since the input relations to the fact horizontal fragmentation 
algorithm follows the referential integrity rule, then the fact derived 
horizontal fragments are complete. 

4.3.2 Reconsrruction 
Reconstruction of a relation from its fragments ensures that con- 
straints defined on the data are preserved. The reconstruction is per- 
formed by the union operator. For example, the derived horizontal 
fragments of the fact relation fF, = {F$, Fj, . . . . F{, . . . . Ff} can 
be reconstructed as follows: F, = IJ F,’ for 1 5 j 5 Z. 

4.3.3 Disjointness 
Disjointness ensures that the generated fragments are non- 
overlapping. The disjointness of the primary horizontal fragments 
is guaranteed as long as the minterm predicates that determining 
the fragments are mutually exclusive. The COM-MIN algorithm 
ensures that the set of simple predicates is minimal (i.e., non- 
overlap). This, also, ensures that the generated minterm predicates 
from the set of simple predicates are non-overlapping. Therefore, 
the primary horizontal fragments are disjoint. 

The disjointness of the derived horizontal fragments are guaran- 
teed as long as the minterm predicates that determining the frag- 
ments of the owner relation are mutually exclusive. The following 
points support the claim that the fact table derived horizontal frag- 
ments are disjoint: 

l Algorithm 3 “FactHorizontalFragments” fragments the fact 
relation based on fact minterm predicates. These fact minterm 
predicates generated from all the dimension minterm predicates 
of the dimension relations that have owner links with the fact 
relation. 

l The dimension minterm predicates of each dimension relation 
are guaranteed to be non-overlapping and this is taken care of 
by Algorithm 2 “DimenMintermPredicates”. 

l The dimension relations themselves are mutually exclusive be- 
cause each dimension relation represents a specific dimension 
of the organization (see Section 3). 

Therefore, the generated fact minterm predicates are non- 
overlapping, which ensures that the fact derived horizontal frag- 
ments are disjoint. 

5 CONCLUSION 
This paper presented the framework for applying distributed tech- 
nology to data warehousing and OLAP systems, We have pro- 
posed a system architecture for distributed data warehouse, a for- 
mal definition of the relational data model for data warehouse, and 
a methodology for distributed data warehouse design. The pro- 
posed methodology for distributed data warehousedesign replicates 
the dimension relations and provides an algorithm to fragments the 
fact relation horizontally. The algorithm derives the horizontal frag- 
ments of the fact relation based on the applications that are defined 
on all the dimension relations reference by the fact relation. 

Future research in this area includes (1) devising meaningful 
metrics to judge the performance of the proposed algorithm; (2) 
developing an algorithm to allocate the generated fragments of the 
fact relation across the sites of the distributed system. There are 
many technical issues of distributed data warehouse have yet to be 
posed and answered. 
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