
A Horizontal Fragmentation Algorithm for the Fact Relation in a
Distributed Data Warehouse

Amin Y. Noaman Ken Barker

ABSTRACT

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2

+I 2044748691

noaman@cs.umanitoba.ca

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2

+I 2044748669

barker@cs.umanitoba.ca

Data warehousing is one of the major research topics of applied-
side database investigators. Most of the work to date has focused
on building large centralized systems that are integrated repositories
founded on pre-existing systems upon which all corporate-wide
data are based. Unfortunately, this approach is very expensive
and tends to ignore the advantages realized during the past decade
in the area of distribution and support for data localization in
a geographically dispersed corporate structure. This research
investigates building distributed data warehouses with particular
emphasis placed on distribution design for the data warehouse
environment. The article provides an architectural model for a
distributed data warehouse, the formal definition of the relational
data model for data warehouse and a methodology for distributed
data warehouse design along with a “horizontal” fragmentation
algorithm for the fact relation.

Most of the work to date has focused on building large central-
ized systems that are integrated repositories founded on pre-existing
systems upon which all corporate-wide data is based. The cen-
tralized data warehouse is very expensive and tends to ignore the
advantages realized during the past decade in the areas of distribu-
tion and support for data localization in a geographically dispersed
corporate structure. Further, it would be unwise to enforce a cen-
tralized data warehouse when the operational systems exist over a
widely distributed geographical area.

The distributed data warehouse supports the decision makers
by providing a single view of data even though that data are
physically distributed across multiple data warehouses in multiple
systems at different branches. Currently, the field of distributed
data warehouse in terms of architecture and design is considered an
important research problem that needs investigation.

This research contributes to the problem of distributed data
warehouse architecture and design by:

Keywords
distributed data warehouse architecture, distributed data warehouse
design, horizontal fragmentation.

Extending the preliminary architecture model that has been
presented in [8] by proposing a distributed data warehouse
system architecture and describing the functionality of its
components.

1 INTRODUCTION
Decision Support Systems (DSSs) and Executive Information Sys-
tems (EISs) can only be effective tools if the data used are readily
available and represent the integration of all pertinent corporate-
wide data. Data warehouses provide this integrated environment by
extracting, filtering, and integrating relevant information from all
available data sources. Further, as new or additional relevant infor-
mation becomes available, or the underlying source data are modi-
fied by the operational systems, the new data are extracted from its
autonomous, distributed and heterogeneous sources into a common
model that is integrated with existing warehouse data. Once infor-
mation is available at the warehouse, queries can be answered and
data analysis (DSS and EIS) can be performed.

Proposing the formal definition of the relational data model
for data warehouse where the relational data model represents
the underlying model for the different level of schemas of the
proposed system architecture.

Proposing a methodology for the distributed data warehouse
design and a horizontal fragmentation algorithm that partitions
the huge fact relation into a set of fragments.

To the best of our knowledge, this is one of the first works to
propose a methodology and a horizontal fragmentation algorithm
for the distributed data warehouse design,

The reminder of the paper is organized as follows. Section 2
presents our proposal for the distributed data warehouse system
architecture and illustrates how the information flows in the
distributed data warehouse. Section 3 provides the data model for
data warehouse. Section 4 addresses our proposal for the distributed
data warehouse design and presents the horizontal fragmentation
algorithm for the fact relation. Finally, Section 5 draws conclusions.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant

-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
CIKM ‘99 11199 Kansas City, MO, USA
0 1999ACM l-58113-146.1/99/0010...$5.00

2 DISTRIBUTED DATA WAREHOUSE
ARCHITECTURE

This section extends the preliminary architecture model that has
been presented in [S]. It proposes distributed data warehouse sys-
tem architecture. and describes the functionality of its components

154

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357571220?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Distributed Data Warehouse System Architecture.

and how the information flow in the distributed data warehouse en-
vironment.

The proposed distributed data warehouse architecture represents
the classical solution for a large enterprise with various divisions
and geographic locations. It is based on the ANSVSPARC
architecture [13] that has three levels of schemas: internal,
conceptual and external.

Figure 1 illustrates the distributed data warehouse system archi-
tecture. It is a four-tiered architecture consisting of (1) The dura
integration layer. (2) The data staging layer. (3) The data distribu-
tion layer. (4) The distributed data warehouse manager layer. The
following sections discuss these layers in detail.

2.1 The data integration layer

The data integration layer consists of the sources databases avail-
able across the sites and the integration and transformation tools.
Figure I shows the multiple source databases available across the
sites. These sources run the gamut from full functioning On-Line
Transaction Processing (OLTP) to various unstructured external
data sources such as Rat files or spreadsheets. The individual source
at each site has its own Locallnternal Schema (LIS) and Local Con-
ceptual Schema (LCS). The LIS defines the physical data organiza-
tion on the source database while the LCS represents the abstract
definition of the data and the relationships between them. The inte-
gration and transformation tools extract data and information about
the data from the source databases, define the relationships among
data at multiple sources, detect duplicates and inconsistencies, add
any extra desired information such as timestamps and transform the
integrated data to the target database in the data staging layer.

2.2 The data staging layer

The data staging layer stores the integrated, subject oriented,
current-value and detailed data. The integrated data in the staging
layer stored using the Integrated Conceptual Schema (ICS) which
defines the local schema of the entire source databases. The
underlying model for the ICS is a canonical data model. The
ICS will be mapped into the Global Conceptual Schema (KS).
The underlying model for the GCS is the data warehouse model
(see Section 3 for the detail description of the data model for data
warehouse).

The data stored in the data staging layer can be classified into
new data and changed data. The new data represent the most recent
data that are added to the operational systems. The changed data

represent the update occurring on existing data in the operational
systems.

2.3 The data distribution layer
The data distribution layer provides the foIlowing processes: frag-
mentation, allocation and updating the distributed data warehouse.
Fragmentation process applies its algorithms to the data that have
been mapped into the data warehouse model (GCS). The fragmen-
tation algorithms partition these data into fragments. Allocation
process applies its algorithms to distribute the fragments to the sites
available across the network. Finally the update process applies its
algorithms to add the new information to the history of existing data
available in the fragments in the distributed data warehouse.

2.4 The distributed data warehouse manager layer
The distributed data warehouse manager layer manages the frag-
ments at each site. These fragments represent the integrated, sub-
ject oriented, non-volatile, time variant and detailed data. This
layer, also, provides a single view of the fragments even though
these fragments are physically distributed across multiple sites on
multiple systems.

At every site, the logical organizations of the fragments are
defined by the Local Conceptual Schema (LCS). Each LCS is
mapped to a Logical Internal Schema (LIS) which defines the
physical organization of the fragments stored at the local site. The
DSS end users at each local site are supported by External Schema
(ES) to allow them to execute the DSS applications against the data
warehouse.

The various sites are connected using a communication proto-
col. This communication protocol provides a single application to
operate “transparently” on data spread across different data ware-
houses, managed by a variety of different DBMSs, run on a variety
of different machines, supported by a variety of different operating
systems, and connected by a variety of different communication
networks [4].

3 THE DATA MODEL FOR DATA
WAREHOUSE

The data model for a data warehouse should be designed to
structure the data in a manner that could handle the On-Line
Analytical Processing (OLAP). There are two techniques for
modeling the data warehouse: the multidimensional data model
[I, 71 and the relational data model [3, 61. These two modeling
techniques provide a multidimensional view of data to support and
facilitate the OLAP applications. The distributed data warehouse
design presented in Section 4 is based on the relational data model.
The schema that is used for physical structures data warehouse
data using the relational data model is the star schema. The
following sections discuss the relational data warehouse schema
and its formal definition in detail.

3.1 Data Warehouse Schema
The data warehouse schema (star schema) design was introduced
by Kimball [6]. The basic principle behind it is building a highly
redundant data structure to improve database performance for
OLAP applications.

The data warehouse schemes are physical database structures
that store quantitative or factual data about the organization in large
central tables surrounded by a group of smaller tables that describe
the dimension of the organization [3, 121. The large central tables

155

Figure 2: The data warehouse schema.

are called the fact tables and the surrounding tables are called the
dimensional tables.

Definition 1 (Dara Warehouse Schema}:
Data warehouse schema S is an orderedpair (D,3); S = (23, F)
where:

0 v= {D~,D~,...,D~) . 1s a set of dimension relation schemas;

l 3= (FI , Fz, . , F,) is a set offact relation schemas. n

The data warehouse schema is a set of relation schemas.
Two types of relation schemas are available in data warehouse:
Dimensions and Facts. The relationship between the dimension
relation and fact relation is one to many as shown in Figure 2.

3.1.1 The Dimension Relations

The dimension relations are descriptive relations that add value to
the quantitative data available in the fact relation. They contain
multiple attribute columns containing text and codes that describe
the dimension key. The dimension relations are heavily attributed
to support the “what-if’ queries required to derive decision-making
information. They also represent the “by” criteria. For example, the
DSS end user may wish to see “sales 6 region” or “monthly sales -
by sales person”.
-The dimension relation is a denormalized relation. It is
constructed by applying a denormalization process.

Definition 2 (Denormalization):
Denormalization is the process ofpre-joining relations in a careful
way to introduce controlled redundant data into already normalized
relations, thereby improving database performance. n

The advantages of using denormalization in building data ware-
houses are [I I 1:

l Reducing the number of joined relations required to answer
queries. As a result, the run time application is improved.

l Mapping the physical database structure closely to the user
queries thereby improving the database performance.

The dimension relation represents the joining of more than
one normalized relations from legacy system. Figure 3 illustrates
normalized relations based on geographical regions. Clearly these
are in at least 3rd NE To perform OLAP analysis these should
be “pre-joined” to enhance the performance of the OLAP queries.

Rcgh

R-ID Re&,. _.. -

District

D-ID. D~smct. R-ID.

Slate

S-ID. Stare. D-ID. ..,

City

C-ID, City. S-ID. -

Figure 3: The OLTP store schema.

The normalized relations often have a hierarchical structure among
themselves. This hierarchical structure will be captured during the
denormalization process. Consider, for example, the hierarchical
structure between the normalized relations of the OLTP store
schema in Figure 3. The normalized relations (Region, District,
State, City and Store) have a hierarchical structure between them
where the highest level of the hierarchy is the Region relation and
the lowest level is the Store relation.

The denormalization process produces two outputs:

1. The dimension relation: Figure 4 shows the store dimension
relation after it has been denormalized out of the normalized
relation which was shown in Figure 3. In the store dimension
relation the store-key (of the lowest level relation in the
hierarchy of the normalized relations) has been associated with
the non-key attributes of the other normalized relations.

2. The attributes hierarchy for the dimension relation: The at-
tributes hierarchy will be represented by the relation Dm(Ail,
AQ) where &i is the attributes hierarchy relation of the di-
mension Di, the domain &ii of Ai1 represents the attributes
of the dimension Di involved in the hierarchy and the domain
Q~z of Ai represents the level of each attribute in the hierar-
chy. For instance, the attributes hierarchy of the store dimen-
sion relation is Store(Attributes-Hierarchy, Level) and it has the
following values:

m’r’l

The attributes hierarchy is used in rolling-up and drilling-
down operations of the OLAP applications. These two operations
represents the moving along the attributes hierarchy to decrease or
increase the level of the aggregation 131. The roll-up operation
increases the level of aggregation, such as viewing the sales data
from sales by city to sales by region. The drill-down operation
decreases the level of aggregation, such as viewing the sales data
from sales by region to sales by district. The attributes hierarchy
will be used later in the proposed algorithm for fragmenting the
data warehouse schema horizontally.

The context for the formal definition of a dimension’s relation
schema requires recalling Definition I of the data warehouse
schema where S = (2), 3).

156

1 S-Kev store Citv State District Keeion 1
I S.No. I New York NY New York Ea&n
2 S.No.2 L. Angeles CA L. Angeles Pacific
3 S.No.3 Boston MA Suffolk E;lSt~~n
4 S.No.4 Miami FL Dade south Easr

I

Figure 4: The Store Dimension relation

Definition 3 (Dimension):
The dimension relation schema for eny Di is represented by
Di(A;, Ai2, Ai3, Ail, A,,) where Ai : D, --+ Qij is an
attribute of Di (Di E V) and Qij is its domnin for 1 5 i < n and
l~j~rn. n

The dimension relation key At1 D is functionally determines all
attributes of the dimension relation Di, that is, AZ ---+ A,j for
1 5 i 5 n and 2 < j 5 m. The superscript letter D in A: implies
that AZ is a dimension key.

There are two types of the dimension relation attributes:

1. Non-hierarchical attribute: it contains descriptive information
about the dimension but it is not involve in the dimension
attributes hierarchy.

2. Hierarchical attribute: it contains descriptive information
about the dimension and involves in the dimension attributes
hierarchy.

3.1.2 The Fact Relations

The fact relation normally contains millions of rows and is highly
normalized [6]. The fact relation stores time-series factual data.
These data represent real values that the DSS end users need to
track. The fact relation is composed of foreign keys and raw data.
Each foreign key references a primary key on one of the dimension
relations. These dimension relations could be time, product,
market, vendor, customer, etc. The raw data represent the numerical
measurement of the organization such as sales amount, number
of units sold, prices and so forth. The raw data usually never
contain descriptive (textual) attributes because the fact relation is
designed to perform arithmetic operations such as summarization,
aggregation, average and so forth on such data.

The context for the formal definition of a fact’s relation schema
requires recalling Definition 1 of the data warehouse schema where
s = (V,3).

Definition 4 (Fact):
The fact relation schema for eny Fi is representedby Fi(K,F, AZ,
AZ, A?, A;) where A$: Fi ----f Qil is CI measurement
attribute of Fi (Fi E .F) and Qi3 is its domain for 1 5 i 5 q
and 1 5 j 5 p. The AT attribute contains a numeric value.
The superscript letter m in Al;” implies that AC is a measurement
attribute. n

The fact relation key, represented by the foreign key set IiF =
{Af, A?, Af, A:} where A? (1 5 1 5 g) is a foreign
key references a primary key on one of the dimension relations
and g is the number of the dimension relations referenced by the
fact relation F,. Each element Af of the KF set functionally
determines all the measurement attributes of the fact relation Fi,
that is, AP -&forl<I<g,l<i<qandl<jCp.

3.1.3 The Relations Size

The size of the dimension relations is smaller than the size of
the fact relations [6]. The size of the dimension relations could
be thousands of rows while the fact relation could be millions of
rows. For example, suppose that the sales history in a sales data
warehouse holds data for three years (see Figure 5). The number
of records of the time dimension relation would be (3 Years * 365
Days = 1095 Days (records)). Also suppose that there are 200
stores (records) in the store dimension relation and 50,000 products
in the product dimension relation. Let us assume that the daily sales
of each stores are 6000 items. Then the number of records in the
sales fact relation would be (1095 * 200 * 6000 = 1314 millions
records). Therefore, it is clear that the size(D) << size(F).

4 DISTRIBUTED DATA WAREHOUSE
DESIGN

The distributed data warehouse design proposed in this research
is based on the top-down design approach. There are two fun-
damental issues in the top-down design approach: fragmentation
and allocation. The problem of fragmentation and allocation has
been addressed for distributed relational database system [2, IO]
and the distributed object based system [5]. Previous research work
on fragmentation and allocation for distributed relational database
system has been based on highly normalized relations’.

In the data warehouse environment, the integrated data from
different resources are modeled into a denormalized relations to
facilitate the on-line data analysis (see Section 3). The existing
distributed relational databasedesign techniques for fragmentation
will not work for distributed data warehouse because of the
underlying model.

This section proposes a methodology for the distributed data
warehouse design and a horizontal fragmentation algorithm for the
huge fact relation. The main idea of the methodology will be
discussed first, followed by a detailed description of the algorithm.

4.1 The Design Methodology
The main ideas of the methodology are (I) to replicate the dimen-
sion relations across the network and (2) to generate horizontal
fragments of the huge fact relation only. The reasons are:

l The size of the dimension relations is relatively small compared
to the fact relations (see Section 3.1.3 for details).

l The dimension relations are changing slowly, the cost of
updating the replicas is relatively low.

l If the dimension relations are fragmented and allocated across
the network, query processing will be costly because the
DSS user queries usually nm against the fact relation and its
dimension relations.

Since the dimension relations will be replicated across the
network, the main objective of the proposed methodology is to
generate horizontal fragments of the huge fact relation.

There are two approaches for horizontal fragmentation: primary
and derived [2, IO]. Applying the primary horizontal fragmentation
requires a set of simple predicates used in user queries against the
relation. The fact relation represents the numerical measurements

‘Clearly much work has been done in the area of horizontal fragmen-
tation in the distributed relational database systems. Instead of providing a

complete review, we will point to the relevant work as we present the algo-
rithms in subsequent sections.

157

Figure 5: A simple data warehouse schema for sales.

of the organization. The DSS user queries perform arithmetic
operations on the fact relation such as summarization, aggregation,
average and so forth.

It is unlikely that a set of simple predicates for the fact relation
could be determined from the DSS user queries. Therefore, the
primary horizontal fragmentation approach could not be applied on
the fact relation.

The other approach is to apply the derived horizontal fragmenta-
tion on the fact relation. In the data warehouse schema, the fact re-
lation is owned by more than one dimension relations (owners) and
represents the many-to-many relationship among the dimension re-
lations. For example, in Figure 5 the many-to-many relationship
among the dimension relations (Store, Product, Time) is expressed
with three links (~51, ~52, La) to the sales fact relation (member).

Since the fact relation is owned by more than one dimension
relations, there are two approaches for deriving the horizontal
fragments of the fact relation:

l the first approach derives the horizontal fragments of the
fact relation from the predicates that are defined on only
one dimension relation. This dimension relation has more
applications than the other dimension relations. The algorithm
for implementing this approach has been presented in 191.
Unfortunately, this approach has the following drawbacks: (1)
the generated fragments of this approach does not reflect all
the user applications against the data warehouse because they
based on the applications of one dimension relation; (2) the
number of generated fragments is small but they are large in
terms of size. The small number of fragments will decrease the
level of executing the query in parallel and therefore the system
performance. The large size of fragments may not be desirable
if storage is limited in the distributed sits.

l the second approach derives the horizontal fragments of the
fact relation from the predicates that are defined on al1 the
dimension relations. The following section proposed an
algorithm for implementing this approach.

4.2 The Horizontal Fragmentation Algorithm for the
Fact Relation

The algorithm consists of three major steps to generate the
horizontal fragments of the fact relations. These steps are:

1. optimize the set of simple predicates for each dimension
relation by eliminating the predicates that have a lower position
in the attributes hierarchy.

2. apply the primary horizontal fragmentation algorithm, pre-
sented in [IO, 21, on each dimension relation. The algorithm

Algorithm 1 OptimizeDimension
Input:

l the set of simple predicates for the dimension relation (PDF =
{Ppk,P;k, . ..1 p;I’, . ..J P,D”)).

l the attributes hierarchy relation Dhk(AH, Level) of the dimension
relation.

output:

l pal, an optimize set of simple predicates for the Dk relation.

Begin
N Identify the level of the highest attribute in Pok.
HighestLevel = 0
for each pFk E Pok do

if Ahi of p Dk exist in Dhk.AH then
if D,,k. 2 eve1 > HighestLevel then

HighestLevel = Dhk.LeVd

end {end for pFk }
// Remove the predicates that have a lower level than the
I/ HighestLevel.

for each pFk E PDF do

ifAki of ppk exist in Dhk.AH then
if Dhk. 2 eve1 < HighestLevel then

PDk = PDk -pi””

end {end for pFk }
Retum(Po,)

End {OptimizeDimension}

generates the set of minterm predicates for each dimension re-
lation along with the set of implications defined on eachdimen-
sion.

3. generate the set of fact minterm predicates and derive the
horizontal fragments of the fact relation from the set of fact
minterm predicates.

Algorithm 4 (FactHorizontalFragmenrs) provides a formal pre-
sentation of these steps. It has been assumed that all the input
to the horizontal fragmentation algorithm are determined during
the requirement analysis phase of the top-down design approach.
The input to the algorithm are (1) the set of the dimension rela-
tions (Dset = (01, Da, Dk, Ds)) that have applications
and owner links with the fact relation Fi where Dset c V; (2)
the attributes hierarchy relation Dhk (AH, Level) for each dimen-
sion relation in the Dset; (3) the dimension relations predicates set
(DPset = {pan, PO*, pDk, PO,}); (4) the set of semijoin
predicates between the dimension relations (owners) and the fact re-
lation (member) (SemiPsel = {PI, Pz, 9, PSI); and (5)
the fact relation Fi. The output of the algorithm is the set of the
horizontal fragmentation for the fact relation.

Step One-Optimize the set of simple predicatesfor each dimen-
sion relation Dk.

The application information is required to process this step.
There are two types of the user applications information defined
on the relation: quantitative and qualitative information. The quan-
titative information is essential for the allocation [IO]. Quantitative
information is represented by two sets of data: minterm selectivity
and access frequency. The rninterm selecfivi& is the cardinality of
the minterm predicate in the relation and the access frequency is
the number of times the user application accesses data in a given
period.

158

The qlmlitarive information of user applications, defined on
relation R,, is represented by a set of simple predicates used in user
queries against R,. This set will generate a set of optimal minterm
fragments A/ri = { mil, m,2 , . . ., mi,} for fragmenting the relation
Ri (where the relation R, is an owner relation).

In the data warehouse schema, by using the DSS user queries,
a set of simple predicates will be identified for each dimen-
sion relation involved in the queries. Let the set Porn =
{pf” ,pp, $k , ..‘) p:” } represents the applications defined

on the dimension relation Dk. The simple predicate $I’ in PD,
set is defined as: pj Dk : Ahi 0 Value where p:” is the jth pred-
icate of the PDF simple predicates set, Aki is the ith attribute of
the dimension relation Dk, 8 is a relation operation from the set
{=, <, f, I, >, 2}, and Value is the value from the domain QZ
of Akt (i.e., Valzle E QZ).

The dimension relation has a hierarchical structure among a
subset of its attributes (as discussed in Section 3.1.1) and it is
associated with the attributes hierarchy relation to show the level
of each attribute in the hierarchy. The set of simple predicates PDF
of the dimension relation could contain hierarchical predicates. The
hierarchicalpredicate is the predicate whose attribute is involved in
the attributes hierarchy of the dimension relation.

Step One eliminates the hierarchial predicate from the pDk set,
if and only if there is another hierarchial predicate in the PDF set
with a higher level. The benefit of this elimination is to derive fact
fragments from the minterm predicates of the dimension relation
that (1) allow the roll-up and drill-down operations of the OLAP
applications to be performed in the same fragment and (2) reduce
the number ofjoin operations between the fragments.

To perform this elimination, the following two phases are
required:

1. Identify the attribute that has the highest level among the
hierarchical predicates.

2. Remove from the predicate set PDk = {pfk , $I’, pFk,
pf’; } all the predicates whose attributes have a lower level than
the highest attribute identified in the previous phase.

Algorithm 1 (OprimizeDinlension) provides a formal presenta-
tion of Step One.

Step Two-Determine the set of dimension minterm predicates.
The objective of this step is to generate a set of dimension

minterm predicates A/~D, = {mfk, mfk, mfk, m?“} for
each dimension relation along with its set of implications ID, =
{if” ,i;y ‘..) is”“}.

Algorithm 2 (DimenMintermPredicates) provides a formal pre-
sentation of Step Two. The input to this step are the set of simple
predicates PD, that has been refined in Step One and the dimen-
sion relation Dk. There are three phases required to process this
step [IO, 21:

1. Apply the COM-MIN algorithm [IO]. The objective of this
algorithm is to generate a complete and minimal set of pred-
icates Pb, from the optimized set of simple predicates PDF.
The COM-MIN algorithm includes, into the set of predicates
pb &, predicates that partition the relation or fragment into at
least two parts which are accessed differently by at least one
application.

2. Generate the set of dimension minterm predicates MD, =
{mf”, m,D”, m?, . ..) mfk). The minterm predicate

Algorithm 2 DimenMintermPredicates
Input:

. The dimension relation D,+

. the set of optimized simple predicates for the dimension relation Dk
(PDk = ($l-, pfk, Pp”, p,flk)).

output:

*A set of dimension minterm
MD, = {mfk,m,Dk, m,D’,mf’}.

predicates

0 A set of implication 10, = {ifk, irk, ifk}

Begin
I=;, + COMwMIN(Dk, pDk)
Generate the minterm predicates set MD,

Determine the set ID, of implications amongp,D” E PA,
//Eliminate the contradictory minterm from MD,

for each m,Dk E k!fDk do
if mDk is contradictory according to ID,, then v

MDk
Dk

+--MDk-mv

Dk end {end form, }
Return(MD,. ID,)

End { DinlenMb7tern?Predicutes}

3.

(mf”) is the conjunction of simple predicates that exist in the
set of simple predicates PA, = {pf’ ,pfk, p3eI’, . . ., ~2)
of the dimension relation Dk. Each simple predicate can occur
in its natural form or its negated form. The number of minterm
predicates in the ?VfD, set is z = 2”’ where m is the number
of simple predicates in Pb, set. The set of minterm predicates
defined as follows n[D,, = {mfk Imfk = f\ppk

I EPDkpPk*~
Dk* where pj =pykorpyk* =~p~k,l<k<n(nisthe

number of dimension relations in D set), 1 < u 5 .z (z is the
number of minterm predicates defined on Dk) and 1 5 j <_ m
(m is the number of complete and minimal predicates defined
on Dk).

Determine the set of implication ID, = {ifk , iFk, is”“}
and eliminate the meaningless minterm predicates. The set
of implication 10, will be determined depending on the
semantic of the domains and not on the current values of
the database. The implication set will reduce the large
(exponential) number of minterm predicates by eliminating the
meaningless (contradictory) minterm predicates.

Step Two is performed on all the dimension relations that are
owners of the fact relation and have applications on them (i.e.,
set of simple predicates). The determined dimension minterm
predicates sets will be collected in one set called DMsel where
DMset = U,“=, filD,, (s is the number of dimension relations that
has applications and owner links with the fact relation pi). The
implication sets of the dimension relations will be collected also in
one set called Iset. Algorithm 4 (FactHorizontalFragments) shows
the details of generating the DAJset and the Iset.

Step Three-determine the set of fact minterm predicates and
derive the fact horizontalfragments.

The objectives of this step are to

I. determine the set of fact minterm predicates i,‘fF, =
{mfl, mf2 ,..., mfj, m.fz};

2. eliminate the meaningless (contradictory) fact minterm predi-
cates from the generated set;

159

Algorithm 3 FactDHorizontal Algorithm 4 FactHorizontalFragments
Input: Input:

. The set of all dimension minterm predicates DMset.

l The set of all dimension implications Iset.

a The semijoin predicates set SemiPset.

l The set of the dimension relations Dset

l The fact relation Pi

output:

l A set of derived horizontal fragments of the fact relation fan =

{F;,F:)..., F,‘,..., FC}.

Begin
Generate the fact minterm predicates set MF~

N Eliminate the contradictory minterm from MF;
for each rnfj E Mq do

if rnf is contradictory according to Zset then
1yI)F, - MF, - mfj

end {end for mfj }
// Derived the fact horizontal fragments
for each mfj E MF~ do

F,j = Fi
for each rnDk E mfj AND DK E Dset do

F/ + Fj K (cr&.(Dk))
end {end for rnDk,j

fF, - fF, u Fi’
end {end for rnfj }
Retum(fFi)

End {FactDHorizontaI)

3. derive the horizontal fragments set of the fact relation (f~: =
{F;,Ft” ,..., F,j ,..., Ff)).

Algorithm 3 (FactDHorizonral) provides a formal presentation
of Step Three. The input to this step are the set of all dimension
minterm predicates DMset, the set of all dimension implications

Iset, the semijoin predicates set SemiPset, the set of the
dimension relations Dset and the fact relation Fi. There are three
phases required to process this step:

1. Generate the set of fact minterm predicates MF, = {mf 1, mfs,
. . . . mfj, mfl}. The fact minterm predicate rnfj repre-
sents the conjunction of the dimensions mintertn predicates in
DMset that have been generated from Step Two. Each di-
mension minterm predicate can occur in its natural form or
its negated form. The number of fact minterm predicates in
the MF, set is z = 2p where p is the total number of all
the dimension minterm predicates in DMset. The set of
fact minterm predicates defined as I\/rF, = {rnfjlrnfj =
A nap kEDA,fsetm~k*} where myk* = mFk or mFb* =

lr$k, 1 2 k 5 s (s is the number of dimension relations in
the dimension set Dset), 1 5 fj 5 z (z is the number of fact
minterm predicates defined on the dimension relations in Dset)
and 1 < j 5 p @ is the total number of all the dimension
minterm predicates in DMset). Consider, for example, the
following dimension minterm predicates generated from Step
Two MD, = (mfk,mFk, mfk, mfk), MD, =

m, m, and the set that unite them is DMset =
{~~‘~.::.,~~!,,,p ,..., mf’,mf” ,..., m$). Asaresult,
the set of fact minterm predicates will be MP% = {m,fl, rnfz, ,

The set of the dimension relations that have applications and owner
links with the fact relation Fi where Dset c 2) (Dset =
(01, D2, Dk,Ds)).

The attributes hierarchy relation Dhk(AH, Level) for each dimension
relation in the Dset.

The dimension relations predicates set
DPset = {P,,, Paz, PDF, PDF}.

The set of semijoin predicates between the dimension relations (owners)
and the fact relation (member) SemiPset = { 9, P2, Pk, PS}.

The fact relation 4.

output:

l A set of derived horizontal fragments of the fact relation f~, =

{F;, F,2, F;, F,“}.

Var
Temp-DPset: dimension predicates set.
DMset: dimension minterm set.
Zset: Implications set.
Begin

for each PO& E DPset do
PDk = OptimizeDimension(Pal,, Dhk)
TempBPset + Temp-DPset u Pal,

end {end for Pal, }
// Derived the horizontal fragments of the fact relation
for each DK f Dset AND Pok E Temp-DPset do

DimenMintermPredicates(DK, PDF , MD,, ID,)
DMset +-- DMset U Mok
Iset +- Iset u ID,

end {end for DK }
fF, = FactDHorizontal(DMset, Zset, SemiPset, Dset, Fi)

End {FactHorizontalFragments}

mfj,mfr} where mfj = mfk A rn?’ A mFU.

2. Eliminate the contradictory fact minterm predicates. The gen-
erated fact minterm predicates will be reduced by eliminating
the contradictory fact minterm predicates with the set of impli-
cation Iset that have been generated from Step Two.

3. Derive the horizontal fragments set of the fact relation fF, =
(Fj , Fi2, Fj, . ., Fiz}. The derived horizontal fragments
of the fact relation (member), in this algorithm, are based on
the dimension minterm predicates defined on the dimension
relations that have owner links with the fact relation. Given
(1) a link set L = {11,/2,...,Zn}; (2) a set of dimension
relations Dset = { DI, D2, D,}; and (3) the fact relation
Fi, the derived horizontal fragments of Fi are defined as F! =

FZ K (gntfjEAtFi (Dset)).

Consider, for example, the link set is L = (11, /2,/3},
the dimension relations set is Dset = {Dk, Dl, Du}. the
fact relation is F;. and the set of fact minterm predicates is
MC = {tnfl,mf2 ,..., mfj, mfz} where owner(lt) =
Dk,ouu~e~(I~) = DL,ownerjls) = D, and member(ll) =
F,, member(l2) = F,, member(/s) = Fi. Consider, also, the fact
minterm predicate (fragment) rnf3 is rnfj = m, Dk Am:’ Am:-
then

Fi = Fi CC (ornf,~~fFt (Dset))

Fi’ = (((Fi WC (CQA. (W) K (qn~i (Dd)) !x hp VU).

160

4.3 Correctness of the Horizontal Fragments of the
Fact Relation

This section validates the horizontal fragmentation algorithm of
the fact relation with respect to the three correctness rules of
fragmentation: completeness, reconstruction and disjointness.

4.3.1 Completeness
Completeness ensures that all tuples from a relation are mapped
into at least one fragment without any loss. The completeness of
the primary horizontal fragmentation is guaranteed as long as the
set of simple predicates are complete and minimal. The COM-MIN
algorithm [IO] ensures the complete and minimality of the simple
predicates.

The completeness of derived horizontal fragmentation is guar-
anteed as long as the referential integrity rule is satisfied among
the relations involved in the fragmentation design. The referential
integrity between the dimension relations and the fact relation are
satisfied as discussedin the data model for data warehouse (see Sec-
tion 3). Moreover the two functions: Owner and Member identify
the type of the relations through the join link between the relations
[IO]. This must be completed before the fragmentation design pro-
cess.

Since the input relations to the fact horizontal fragmentation
algorithm follows the referential integrity rule, then the fact derived
horizontal fragments are complete.

4.3.2 Reconsrruction
Reconstruction of a relation from its fragments ensures that con-
straints defined on the data are preserved. The reconstruction is per-
formed by the union operator. For example, the derived horizontal
fragments of the fact relation fF, = {F$, Fj, F{, Ff} can
be reconstructed as follows: F, = IJ F,’ for 1 5 j 5 Z.

4.3.3 Disjointness
Disjointness ensures that the generated fragments are non-
overlapping. The disjointness of the primary horizontal fragments
is guaranteed as long as the minterm predicates that determining
the fragments are mutually exclusive. The COM-MIN algorithm
ensures that the set of simple predicates is minimal (i.e., non-
overlap). This, also, ensures that the generated minterm predicates
from the set of simple predicates are non-overlapping. Therefore,
the primary horizontal fragments are disjoint.

The disjointness of the derived horizontal fragments are guaran-
teed as long as the minterm predicates that determining the frag-
ments of the owner relation are mutually exclusive. The following
points support the claim that the fact table derived horizontal frag-
ments are disjoint:

l Algorithm 3 “FactHorizontalFragments” fragments the fact
relation based on fact minterm predicates. These fact minterm
predicates generated from all the dimension minterm predicates
of the dimension relations that have owner links with the fact
relation.

l The dimension minterm predicates of each dimension relation
are guaranteed to be non-overlapping and this is taken care of
by Algorithm 2 “DimenMintermPredicates”.

l The dimension relations themselves are mutually exclusive be-
cause each dimension relation represents a specific dimension
of the organization (see Section 3).

Therefore, the generated fact minterm predicates are non-
overlapping, which ensures that the fact derived horizontal frag-
ments are disjoint.

5 CONCLUSION
This paper presented the framework for applying distributed tech-
nology to data warehousing and OLAP systems, We have pro-
posed a system architecture for distributed data warehouse, a for-
mal definition of the relational data model for data warehouse, and
a methodology for distributed data warehouse design. The pro-
posed methodology for distributed data warehousedesign replicates
the dimension relations and provides an algorithm to fragments the
fact relation horizontally. The algorithm derives the horizontal frag-
ments of the fact relation based on the applications that are defined
on all the dimension relations reference by the fact relation.

Future research in this area includes (1) devising meaningful
metrics to judge the performance of the proposed algorithm; (2)
developing an algorithm to allocate the generated fragments of the
fact relation across the sites of the distributed system. There are
many technical issues of distributed data warehouse have yet to be
posed and answered.

References

PI

[31

141

PI

161

[71

PI

[91

UOI

1111

1121

[I31

R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidi-
mensional databases. Technical report, IBM Almaden Re-
search Center, 650 Harry Road, San Jose, CA 95 120, 1995.

S. Ceri and G. Pelagatti. Distributed Databases Principles
and Systems. McGraw-Hill, 1984.

S. Chaudhuri and U. Dayal. An overview of data warehousing
and OLAP technology. ACM SIGMOD Record, 26(l), March
1997.

C.J. Date. An Introduction to Database Systems. Addison-
Wesley, sixth edition edition, 1995.

C. Ezeife and K. Barker. Comprehensive approach to
horizontal class fragmentation in a distributed object based
system. lnternationat Journal of Distributed and Parallel
Databases, 2, 1995.

R. Kimball. The Data WarehouseToolkit. John Wiley & Sons,
Inc., 1996.

W. Lehner, J. Albrecht, and H. Wedekind. Multidimensional
normal forms. 10th International Conference on Scientific
and Statistical Data Managment (SSDBM ‘98), Capri, Italy,
jul 1-3 1998.

A.Y. Noaman and K. Barker. Distributed data warehouse
architectures. Journal of Data Warehousing, 2(2):37-50,
April 1997.

A.Y. Noaman and K. Barker. Distributed data warehouse
architecture and design. Fourteenth International Symposium
on Copmuter and Information Sciences (ISCLS ‘99), Kusadasi,
Turkey, act I S-20 1999.

M.T. ozsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, 199 1.

V. Poe. Building A Datu Warehouse for Decision Support.
Prentice Hall, 1996.

A. Shoshani. OLAP and statistical databases: Similarities and
differences. in Proc. ACM PODS, pages 185-196, 1997.

D. Tsichritzis and A. Klug. The ANSt/X3/SPARC framework.
AFIPS Press, Montval, N.J., 1978.

161

