
Unifying JIAC Agent Development with AWE

Marco Lützenberger, Tobias Küster, Axel Heßler, and Benjamin Hirsch

DAI-Labor, Technische Universität Berlin
{marco.luetzenberger|tobias.kuester|axel.hessler|benjamin.hirsch}@dai-labor.de

Abstract. In this paper we describe the Agent World Editor, a tool
for designing multi-agent systems and generating executable agent code.
The tool also unifies the handling of different agent frameworks through
an abstract agent model and an extensible transformation infrastruc-
ture. Currently, the tool supports three different agent frameworks of
the JIAC family, and we feel confident that the approach holds for other
frameworks as well as for the generation of multi-agent systems on het-
erogenous platforms.

1 Introduction

Over the last decade, Agent Oriented Software Engineering (AOSE) has gained
attention as a suitable methodology for providing quality assurance within soft-
ware development processes. However, there are at least as many agent method-
ologies as there are agent frameworks, and each has its own drawbacks and ad-
vantages. At present, the DAI-Labor has three derivatives of its agent framework
JIAC in use, each one streamlined to a specific field of application:

– JIAC IV [8] has been developed as an agent framework for telecommunica-
tion related MAS. The system design is specified in an XML syntax which
differentiates three type of agents (platforms, agents and roles) and a set of
components like knowledge, services, or plan elements.

– JIAC V [5] was designed to support large agent systems in a scalable way. To
this end, the successful features of JIAC IV have been rebuilt with current
technologies, which provided an overall improvement in performance and
maintainability. The system design is based on the Spring framework to
represent the supported agent types (platforms and agents) as well as their
components (services or knowledge).

– MicroJIAC [3] is JIAC’s lightweight edition for devices with limited re-
sources. The system design is done by an XML based domain model, which
provides classes for both supported agent types (platforms and agents) and
the framework components (e.g. services and rules), which are used to define
specific functionalities or reactive behaviours.

Although the JIAC frameworks — and other agent frameworks as well —
feature similarities, there are subtle differences, too. Each framework uses a
different model file syntax and provides different libraries.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357571219?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. Agent World Editor showing the Service Centric Banking scenario

An abstract conceptualisation of these native library elements enables a com-
prehensive, framework independent design and constitutes the main idea of the
Agent World Editor, or AWE, which is described in this paper. AWE allows to
design multi-agent systems (MAS) and translate the results into different agent
frameworks, namely JIAC IV, JIAC V, and MicroJIAC. This paper is based on
the diploma thesis of the first author [7].

2 Introducing the Agent World Editor

In AWE, complex multi-agent systems can be conveniently modelled in a single
diagram, showing the various agent types, their components and their relation-
ships (see Figure 1). Formal background to these diagrams is a highly generic
domain model, which is capable of representing agent system instances of each
JIAC derivative. After the MAS has been designed, a framework associated
transformation unit can be invoked in order to produce executable agent code
and stubs for potentially unimplemented components.

2.1 Generalising JIAC — The AWE Domain Model

The Domain model was designed to encompass the configuration metamodels
of at least the three JIAC derivatives, but also to hold for capabilities beyond
JIAC. To this end, we accounted for the diverging agent types, i.e. agents, roles
and platforms, and countered the remaining challenges by more elaborate mech-
anisms, which we describe below.

Components: JIAC, like other agent frameworks as well, provides a set of basic
agents which are capable of elementary functionality (like communication or
environment awareness) and allow individual extension by appending closed
and reusable components. The domain model reflects this mechanism with
the Component class, which is used as an abstraction from the component
architectures of specific frameworks.

Library Support: In order to provide support for library elements of multiple
agent frameworks, AWE’s domain model features the Concept class, which is
used to provide a framework independent description of their functionality.
These conceptualisations are part of AWE’s base application and accessed
by each installed framework extension by defining an according implementa-
tion. Although a comprehensive set of concepts is already provided, AWE’s
modular architecture allows for easy extension as well. Currently we sup-
port development with basic concepts like standard agency, but also provide
advanced concepts like an SMS gateway, a calendar feature, and others.

Framework Openness: In order to support frameworks beyond the JIAC scope,
each domain model element provides a Key-Value property mechanism. Sim-
ple aspects which are not covered by the current model (e.g. teams) can thus
be defined. The decision on how these additional attributes are specified as
well as their interpretation lies with the developer of the framework ex-
tension. An additional object property mechanism enables extensions in an
arbitrary granularity.

2.2 Implementation

AWE has been implemented using Eclipse GMF and is based on a plug-in ar-
chitecture, where each plug-in realises a distinct part of functionality. Support
for each agent framework is respectively encapsulated by an individual plug-
in, which is loosely coupled to the base application. The standardised structure
of these extension plug-ins encourages development of custom solutions, as de-
scribed in the next section. AWE provides system design in a Drag-and-Drop
manner and supports the developer during this process with on-the-fly error val-
idation, an expressive customised visual notation and mechanisms which help to
accelerate and simplify recurring tasks. Furthermore, AWE inherits many useful
features from GMF, such as unlimited undo and redo, auto-arrange, snap-to-
grid, modelling assistance, a graphical outline, picture export, and many more.

2.3 Framework Extensions

Each extension plug-in includes the framework’s components, defines a map-
ping from AWE’s abstract concepts to a specific counterpart and defines a code
generation for the respective configuration files. The code generation procedure
works straight-forward: After the diagram has been validated, the Agent World
model is exported, iterating over the several agents, roles and platforms, where-
upon the several abstract concept elements are substituted with the respective
framework-specific implementations provided by the plug-in. Currently, AWE
provides extension plug-ins for the three frameworks of the JIAC family.

2.4 Transformation Example

In the following example, a setup consisting of a platform with two agents, a
custom Component (DetectorBean) and a Concept element (SMS Gateway) is
mapped to both MicroJIAC and JIAC V. In both cases an XML file is created
according to the syntax used for the respective framework. The component in
both cases yields a reference to a Java class (creating a stub, if the class does not
yet exist). Most interesting, however, is the mapping of the Concept element:
Here, different classes are used for MicroJIAC and JIAC V, namely the library
elements implementing this concept as specified in the transformation plug-ins.
Figure 2 shows a schematic representation of the transformation.

Fig. 2. Code Generation to JIAC V (left) and MicroJIAC (right)

3 Related Work

We have evaluated a number of similar tools, some of them already seeing the
3rd generation [1, 9].

The agentTool system [10, p. 245–259] is a visual design environment for
top-down design of multi-agent systems. In its 3rd edition it is supplemented by
a consistency checker, code generation, a metrics calculator and process engi-
neering support. All aspects of an agent-oriented design can be modelled nicely,
whereas the code generation feature is more or less an open issue.

The INGENIAS Development Kit (IDK) [4] is a visual development tool,
targeting the INGENIAS Agent Framework. Any model element results in a
skeleton that can be extended by the programmer. The IDK has been developed
on the basis of an extensible plug-in architecture [4], while the main focus here
lies on code generation extensions. Currently, a full translation of the design into
executable JADE code is provided.

The JACK Development Environment(JDE) [10, p. 261–277] supports the
development of JACK based applications. It provides for the creation and ma-
nipulation of each JACK component by means of visual engineering and en-
compasses several other specialised tools. MAS design is accomplished by the
JDE Design Tool [2], which provides visual engineering on the basis of Drag-
and-Drop. Code generation and execution is provided by the JDE as well. The
Compiler Utility Tool translates the developed diagrams into Java classes and
supports both, execution and debugging.

The Component Agent Framework for domain-Experts (CAFnE) Toolkit [6]
provides domain experts a suitable way to easily build multi-agent systems.
CAFnE operates on a framework-unspecific domain model, which allows for
platform independent design. The toolkit supports visual modelling, code gener-
ation, compilation and execution of agent based applications. Currently, a com-
plete transformation module for JACK is available, which converts the platform
independent domain model to an executable agent design by using a transfor-
mation configuration and a set of transformation rules. The entire mechanism
is particularly interesting for this work, since a similar feature is developed as
well.

The JIAC IV Toolipse [9] is an IDE which facilitates MAS development
within the JIAC IV framework. Toolipse provides visual engineering of agent
applications in terms of diagrams and supports the JIAC Methodology. Toolipse
encompasses a set of tools, each one for a specific task. Particularly interesting
for this work is the Agent Role Editor (ARE), which is used during the ap-
plication deployment, in order to define the MAS design. Since ARE has been
applied for several years now, various improvement ideas have been considered
and inspired this work. Especially its separated representation of agent roles,
agents and platforms is considered a major drawback in the system design of
multi-agent systems using Toolipse.

4 Conclusion

The Agent World Editor (AWE) is a tool for the visual design of multi-agent
systems. It can be used for configuring the various roles, agents, their distribu-
tion on several platforms, as well as the components to be used by the agents,
e.g. knowledge and capabilities. The aim of the AWE is to be framework inde-
pendent and highly extensible, such that one agent world model can be used
to create setups for different agent frameworks. For this purpose, we introduced
the notion of the Concept element, representing an abstract capability of an
agent without the need to commit to a specific framework. Upon code gener-
ation, Concept elements referenced by an agent in the design are mapped to
counterparts in the targeted agent framework. Until now, we have implemented
framework extension plug-ins for the JIAC family: JIAC IV, JIAC V and Micro-
JIAC. For the near future we are planning to extend this scope by a respective
implementation for the JACK framework. Furthermore, AWE will be extended
with additional functionality – e.g. a visualisation of the interdependencies of

the several components, especially regarding communication – and it will be
integrated into a larger tool suite: While AWE allows for connecting existing
components to agents, the development of these components is as yet not sup-
ported. Altogether, a versatile set of tools will be combined to an IDE to provide
a uniform development application for agent systems.

References

1. The agentTool III Project. http://agenttool.cis.ksu.edu/.
2. Agent Oriented Software Pty. Ltd. JACK Intelligent

Agents — Design Tool Manual, 5.3 edition, June 2005.
http://www.aosgrp.com/documentation/jack/DesignTool Manual.pdf.

3. Tuguldur Erdene-Ochir and Marcel Patzlaff. Programming Multi-Agent Systems,
chapter Collecting Gold: MicroJIAC Agents in Multi-Agent Programming Contest,
pages 251–255. Springer Berlin/Heidelberg, 2008.

4. Ivan Garćıa-Magariño, Jorge J. Gómez-Sanz, and José R. Pérez Agüera. A
Complete-Computerised Delphi Process with a Multi-agent System. In Proceed-
ings of the Sixth International Workshop on Programming Multi-Agent Systems,
Estoril, Portugal, pages 187–202, 2008.

5. Benjamin Hirsch, Thomas Konnerth, and Axel Heßler. Merging Agents and Ser-
vices — the JIAC Agent Platform. In Rafael Bordini, Mehdi Dastani, Jürgen Dix,
and Amal El Fallah Seghrouchni, editors, Multi-Agent Programming: Languages,
Tools and Applications, pages 159–185. Springer Berlin/Heidelberg, 2009. To ap-
pear.

6. Gaya Jayatilleke, John Thangarajah, Lin Padgham, and Michael Winikoff. Com-
ponent Agent Framework for domain-Experts (CAFnE) Toolkit. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan, pages 1465–1466. ACM, May 2006.

7. Marco Lützenberger. Development of a Visual Notation and Editor for Unifying
the Application Engineering within the JIAC Framework Family. Diploma thesis,
Technische Universität Berlin, Berlin, Germany, March 2009.

8. Ralf Sesseler. Eine modulare Architektur für dienstbasierte Interaktionen zwischen
Agenten. PhD thesis, Technische Universität Berlin, January 2002.

9. Erdene-Ochir Tuguldur, Axel Heßler, Benjamin Hirsch, and Sahin Albayrak.
Toolipse: An IDE for Development of JIAC Applications. In Proceedings of PRO-
MAS08, Estoril, Portugal, May 2008.

10. Gerhard Weiß and Ralf Jakob. Agentenorientierte Softwareentwicklung — Metho-
den und Tools. Xpert.press. Springer Berlin/Heidelberg, 2005.

