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Abstract 

Embedded systems are microchips containing software that is 
“burned into” the chip. Embedded systems include devices used 
to control, monitor or assist in the operation of equipment, 
machinery or plant. Artificial neural network (ANN) based 
models have been explored for use in various agricultural 
machinery applications. The typical application has been based 
on Multiple Input / Single Output ANNs which can be used to 
model linear and non-linear surfaces. These types of models may 
be effective where response surface modeling has been used in 
the past. The capabilities of ANNs with respect to configuration, 
adaptation, noise tolerance, and training are addressed. In 
addition, the use of ANN models in embedded systems is 
discussed. Combine harvesters, Weed detection in sprayers, 
blueberry Bush pruning, weed identification, Grain elevator and 
Precision agriculture are discussed. 

Keywords: Artificial Neural Network, Harvesters, modeling, 
embedded system 

1. Introduction 

Embedded systems often referred to as embedded chips, 
are one of the real unknowns related to Y2K issues. The 
real challenge for all sectors in a community is locating 
embedded systems because they exist in a wide variety of 
products. For example, from the most sophisticated 
manufacturing automation process to a simple VCR. The 
purpose of this fact sheet is to become familiar within the 
embedded systems, and ways to locate and remediate 
embedded system problems.The advent of 
microprocessors has opened up several product 
opportunities that simply did not exist earlier. These 
intelligent processors have invaded and embedded 
themselves into all fields of agriculture. As the 
complexities in the embedded applications increase, use of 
an operating system brings in lot of advantages. The use of 

an embedded system simplifies the design process by 
splitting the application code into separate tasks.  

2. Artificial Neural Network 

Potential applications of this type of ANN in machinery 
applications include predicting: 

 Spatial yield response in fields in precision farming 
applications (Drummond, 1995). 

 Machine performance, e.g. combine harvesters (Hall, 
1992). 

 Plant characteristics from sensor signals (Stone, 
1994a; Zheng et al., 1994). 

 Temporal dynamics in control systems (Altendorf, 
1993). 

 
3. Weed Detection in Sprayers 

 

An ANN was developed to allow color patterns to be 
recognized in an agricultural weed sprayer application by 
Stone, (1994a). The structure of the most successful 
network tested is shown in Fig 1. 

 

Fig1. Plant Color Recognition Model - Stone 1994a 

Fig 2 presents a schematic of the sensor and spray nozzle 
element component of the sprayer. The complete sprayer 
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consisted of many of the sensor-nozzle elements placed in 
parallel on a single spray boom. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 Sprayer Sensor and Nozzle Element. 

A sensor was fabricated to detect color on the surface of 
the ground in a 7.5 by 50-cm wide image. Three color 
bands; green, red, and near infra-red were sensed. The 
signals from the sensor were digitized with a 68HC11 
based controller using the on-chip 8-bit A/D converter. 
The 68HC11 based computer was also used to activate a 
solid-state switch that energized a solenoid valve in the 
spray nozzle. The intent of control in the system was to 
sense the presence of a weed by color and to activate the 
nozzle to spray the plant at the point in time that the plant 
was under the nozzle. A time budget is shown in the 
figure. If computing time plus the time required for the 
fluid to reach the ground once it emerges from the nozzle 
was insignificant, the sensor and nozzle could be located 
together. The 0.25 second time period between when the 
fluid emerges from the nozzle and when it reaches the 
ground cannot be changed. The configuration of the 
system places a practical limit on computing time. For a 
sprayer traveling in the field at 3 m/s, a typical ground 
speed, separation between sensor and spray nozzle must 
be 1.1 meters. This physical separation is near the 
maximum limit practical for the machine. 

Agricultural sprayers based on optical sensing and control 
of spray nozzle activation currently exist on the market. 
The current designs rely on look-up table based models. 
This approach limits the number of inputs that can be 
practically used in the controller. A look-up table with 
three or more variables and with 8 bit precision will not fit 
conveniently in a low-cost micro-controller memory. An 
alternative to a look-up table is to encode the necessary 
response into an equation. Determination of a simple 
equation to model the problem is not a simple task.  

Many potential interferences exist in detecting the plant, 
including: amount of target plant in the image, light level, 

dead plant matter, many soil colors, and variation in the 
color of the target plant. The inteferences result in an 
unusual map of sensor response based on color inputs. A 
non-linear model of some type is necessary. An ANN 
appeared to be a suitable model for the problem. 

Training data were created by exposing the sensor to many 
different conditions intended to span the possible 
conditions that would be seen in actual application of the 
system. Soils of different colors were collected from six 
locations in Oklahoma. The soils were exposed to the 
sensor, dry and wet. In addition, various percentages of 
plant cover including 0%, 10%, and 100% were placed on 
the soils. In addition, the system was tested under various 
natural lighting conditions from heavy overcast to bright. 
Early testing revealed that in-door conditions could not 
easily be made to model out-door lighting. All 
combinations of the input conditions were tested resulting 
in nearly 80 sets of training conditions. The tests were 
repeated with similar conditions resulting in nearly 80 sets 
of test conditions that could be used to determine the 
performance of the system. Lighting, and plant placement 
could not be repeated exactly, resulting in significant 
variations between the test and training data. 

Neural networks with one and two hidden layers were 
tested with different numbers of nodes in each layer. Table 
1 presents results of training different configurations. The 
table presents the performance of the model after training 
on the training data and evaluation of errors that were 
found comparing model predictions of the test data. Two 
types of errors were computed to evaluate performance of 
the model. they were percentage of tests where the plant 
was present and detected (Plant % correct), and the 
percentage of tests where the plant was not present and not 
detected (No Plant % correct). Many more training 
iterations were performed, but are not shown. The table 
presents only tests where the "% correct when the plant 
was present" was maximized. For the current application 
of the sprayer, it is much more important to assure a plant 
has been sprayed than to avoid spraying when 
unnecessary. Current sprayer designs operate continuously 
and would have values of 0 and 100% for the "No Plant % 
Correct" and the "Plant % Correct" performance measures. 

Table 1. Performance of network configurations 

Nodes in 
Hidden 
Layer 1 

Nodes in 
Hidden 
Layer 2 

No Plant 
% Correct 

Plant  
% Correct

Epochs 

3 2 75 90 85000 

3 3 80 92.5 60000 

4 4 70 92.5 55000 
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5 5 70 92.5 55000 

6 6 70 92.5 50000 

7 7 65 92.5 70000 

8 8 75 90 55000 

3 0 45 100 20000 

4 0 45 97.5 20000 

5 0 50 100 20000 

6 0 50 100 30000 

7 0 40 100 25000 

10 0 92.5 70 20000 

Models with a single hidden layer in general were able to 
detect plants but were not as effective at rejecting 
situations where no plant was present. The training 
"epochs," the number of cases for which the network was 
optimized for ranged between 20,000 and 85,000. As 
expected, the number of epochs required to optimize the 
single hidden layer model was less than the two layer 
models. Training was done on a SUN IPX workstation 
using NeuralWare'sNeuralWorks Professional II/Plus 
neural network development package. Training required 2 
to 5 minutes for each configuration.  

The model described in the second entry in Table 1 with 
three nodes in each of two hidden layers was selected for 
use in the prototype sprayer. More complex models did 
not improve the accuracy, and the single layer models 
were judged to have too large an error when no plant was 
present. The less complex model also allowed faster 
executing and smaller code to be used in the embedded 
application.  

The resulting model was coded in C, compiled, and placed 
in the micro-controller. Two approaches were used to 
develop the code for the application. NeuralWare's 
developers package, DPACK, was used to automatically 
convert the network description into C. Additionally, the 
network was hand coded in C using equation 1. Table 2 
presents code size and execution times for different 
optimizations of the embedded code.  

Several techniques were tested to reduce the execution 
time of the code. The hand-coded version of the model 
was converted to a look-up table rather than the C function 
htan(x). The look-up table increased code size but reduced 
execution time by more than 50%. An alternative 
activation function, f(x) = 1/(1-x) was also tested and 
compiled in a floating-point form. The model had to be 
retrained using the alternative activation function with the 
same results as the originally selected activation function, 
f(x) = htan(x). The look-up table based model performed 

better than using f(x) = 1/(1-x) coded in floating point. 
Finally, the whole implementation of the model in C was 
coded in integer arithmetic. Some components of the 
calculation required double precision integers to retain 
accuracy. The resulting code produced an output in 0.07 
seconds, after supplying inputs. This computational speed 
permits the time budget presented in figure 4 to be met and 
allows a feasible geometry for the physical components of 
the system.  

Table 2. Execution time and code size for the production model 

Model 
Description

Arithmetic
Activation 
Function 

Code 
Length
(Bytes)

Execution 
Time 
(s) 

DPACK1 
generated 

Floating 
Point 

Floating 
Point, f(x) = 
htan(x) 

36K - 

Hand 
Coded 

Floating 
Point 

Floating 
Point, f(x) = 
htan(x) 

3.5K 0.3 

Hand 
Coded 

Floating 
Point 

Floating 
Point, f(x) = 
x/(1-x) 

3.5K 0.15 

Hand 
Coded 

Floating 
Point 

Look-Up 
Table, f(x) 
= htan(x) 

3.8K 0.13 

Hand 
Coded 

Integer 
Look-Up 
Table, f(x) 
= htan(x) 

3.5K 0.07 

Some degradation in the accuracy in detection of plants 
was expected when the model was converted to look-up 
tables and integerized. Testing of the resulting models on 
the original test data revealed no significant difference 
between the integerized model and the original floating 
point model. 

A prototype sprayer using nozzle elements based on the 
design was tested in the field. Though performance of the 
prototype was consistent with initial testing of the model, 
field tests revealed several unexpected operating 
limitations. The sensitivity of the prototype detectors was 
greatly diminished under low light conditions. Training of 
the model was not done under light conditions as low as 
those experienced in the field. In addition, during dawn 
and dusk periods, the color of the natural light is shifted 
toward red. Both conditions resulted in reduced 
sensitivity.  

 

4. Blueberry Bush Pruning  
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Zheng and Rohrbach (1994) reported the development and 
testing of an ANN which would process ultra-sonic 
distance measurements to determine plant position. They  

Fig 3. Bush Ultra-Sonic Sensor Arrangement - Zheng and Rohrbach - 
1994 

designed an array of 6 ultrasonic range finder devices 
which were focused towards the center of a target 
blueberry plant as depicted in Fig 3.  

The purpose of the resulting system was to position a 
trimming apparatus to trim branches from the blueberry 
plant. The ultra-sonic transducers were set to sense the 
closest branch intercepted by the sound beam for a  

Fig 4. Bush Centroid Prediction - Zheng and Rohrbach - 1994 

particular sampling. A 6-20-1 configuration of an ANN 
was trained to use the distance measurements from the 
ultrasonic transducers and to predict the center position of 
the target plant, as shown in Fig 4. 

A total of 343 cases were collected and divided, with 75% 
of the cases used for training and 25% used to test and 
compute error for a combined model. Of that total, 269 of 
the cases were taken with a single plant stem target and 74 
cases with multiple stem targets. The ANN was trained 
until the test dataset MSE was minimized, A total of 343 
cases were collected and divided, with 75% of the cases 
used for which required slightly more than 300,000 epochs 
(number of times cases were individually presented to the 
network.). A second network configuration consisting of 
three 6-20-1 networks was also tested. One of the 
networks was used only to determine distance for cases 
with a single stem, another to determine distance for cases 
with multiple stems, and a third network was used to 
classify cases as single or multiple stems. The strategy is 
depicted in Fig 5. 

 

 

Fig 5. Modular network design - Zheng and Rohrbach - 1994 

This configuration of the network required less than half 
the training time, while producing slightly less error in the 
predicted position. Training time was an issue with the 
software and problem combination presented here, taking 
4.3 hours on a DEC 5000/25 computer. The authors 
estimated the training could have been shortened to 
slightly over an hour on a Cray Y-MP super-computer. 
Standard deviations of the position errors produced by 
both configurations of networks were approximately 0.008 
m and were distributed with a central tendency. 

5. Weed Identification  

Zhang et al. (1994) reported the use of ANNs to process 
color images of weeds in a winter-wheat environment with 
the objective of being able to distinguish between weeds 
and other components of the image. They were 
particularly interested in detecting weeds with reddish 
stems. They initially attempted to apply a 6-10-5 network 
to process 6 spectral indices and classify the inputs into 
five classes; weed stem, leaf, soil, cracks and shadows, 
and stones and bright spots. They were unsuccessful in 
training the network to acceptably classify the image. A 
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second configuration, a 48-24-5 network configuration as 
shown in Figure 7 was tested.  

 

 

Fig 7. Image Classification - Zhang et al. - 1994 

The input spectral indices were coded as 8-bit values with 
one input for each bit of the index. This resulted in 6 
indices x 8 bits or 48 inputs which had 1 or 0 values. Six 
hundred pixels taken from three images were pre-
classified and used to form training and testing data sets. 
The trained network was then tested on six images, three 
originally containing the training data and three additional 
images. 

The ANN was compared with a discriminant analysis 
approach to classifying pixels in the images. The ANN 
approach was not successful in classifying images of weed 
varieties different from the wild buckwheat images of the 
training data. The ANN did perform well on images 
similar to the training data. Overall error rates where test 
data sets were different from training data sets were 
slightly under 40%, while overall error rates for 
discriminant analysis were slightly less than 30%. In this 
study, ANNs did not perform better than a conventional 
approach. The authors did not report efforts to optimize 
the ANN to improve performance. 

 

 

6. Modeling Variability in Fields  

Drummond et al. compared the performance of three 
different types of multivariate modeling techniques for use 
in predicting crop yield. Soil fertility was sampled on a 
30-m grid and top soil depth was measured with a finer 

resolution using a soil conductivity meter. Yield was 
measured for two crops; corn, grown in the field in 1993, 
and soybeans grown in the field in 1994. Yield was 
measured at one-second intervals during harvest on the 
combine harvester with a yield monitor and position 
measured with a GPS unit. The spatial resolution of the 
combine data were not reported, but is estimated here at 
approximately 2 m in the direction of travel and 6 m 
across the direction of travel. The instantaneous yield was 
corrected in position for delay through the combine 
harvester. Both the yield data and the soils data were 
kriged to a 10 m grid. A 25-ha field was sampled, 
resulting in a 2576-point data set. The data were randomly 
divided into training and testing data sets for the neural 
network development, but the r2 results are reported for 
the combined dataset. The network geometry used is 
shown in Fig 6. Experimentation with other geometries 
was not reported. 

Fig 6. Yield Prediction Model - Drummond et al. 1995 

The authors reported that the training did not result in 
overfitting, based on comparisons of the results on the 
training and testing data sets. Further, additional training 
in the 1993 data set may have resulted in higher r2 but was 
not done to retain consistency with the 1994 data set. 
Table 3, taken from Drummond et al. (1995) compares the 
performance of the different modeling techniques. 

The authors concluded that weather variations were 
potentially the major cause of un-explained variability in 
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the modeling. In addition, they also concluded that some 
further un-explained variability may have been due to non-
weather related factors not included in the models. 
Measurements of soil nitrogen levels or nitrogen 
application was not reported in the study.  

Table 3. Goodness-of-fit for yield prediction for various modeling 
techniques (Drummond et al., 1995) 

Model 
1993 Yield 
Estimation   

1994 Yield 
Estimation  

 
r2 

Std. Error 
(Mg/ha) 

r2 
Std. Error 
(Mg/ha) 

Multiple Linear 
Regression 

0.21  1.20 0.42 0.26  

Stepwize Multiple 
Linear Regression  

9 soil parms., 6 
best terms  

0.23 1.19 0.43  0.26 

Stepwize Multiple 
Linear Regression 
6 soil parms.+ 
interactions, Sig. 
terms  

0.27 1.16 0.57  0.22 

Partial Least 
Squares Regression 
6 soil parameters  

0.21 1.20 0.41  0.26 

Projection Pursuit 
Regression 6 soil 
parameters  

0.57 0.88 0.73  0.18 

ANN 
6 soil parameters 

0.54  0.94 0.67 0.19  

 
7. Precision Agriculture 

 Precision agriculture is a new agriculture technology 
system development quickly in recent years. Integrating 
agronomy, geography, biology, agrology, botany, geo-
spatial science, and precision agriculture can be defined as 
a comprehensive system designed to help farming. It 
involves various problems in crop planning and includes 
tillage, planting, chemical applications, harvesting, and 
post harvest processing of the crop. Precision farming is a 
pro-active approach that reduces some of the risk and 
variables common to agriculture, so we think that it has 
the potential of optimizing cost and ecological effects 
through the application of crop information, advanced 
technology and management practices. Accordingly, how 
to get these information and data quickly and accurately 

becomes the foundation of precision agriculture 
construction, while how to manage the information and 
make decision quickly and intelligently is the key 
technology in precision agriculture.  

It is obvious that information technologies are foundation 
of precision agriculture, and positioning, timing, mapping 
and analysis are most important among them. Accordingly 
Mobile Mapping System can help agriculturist with a new 
capability of gathering information for implementing 
decision-based Precision Agriculture.  

7.1 Improve the Accuracy of Soil Sampling 

Soil conditions and soil quality influence crop 
growth greatly. Usually how often do farmers fertilize the 
soil or water the land depends on the soil conditions and 
plant type. So it is a basic work to master the soil 
conditions. From the view of precision agriculture soil is 
different meter by meter. Thereby soil sampling becomes 
the foundation step. The accuracy of soil sampling is 
requested higher. Accuracy of soil sampling refers mainly 
to accurate degree of the position information where the 
soil samples were taken. With the accurate knowledge 
about the coordinate location of the soil samples, a soil 
data layer can be developed accordingly. With the 
accurate position information, navigating back to those 
locations for re-sampling is possible.  

Mobile Mapping System has equipped navigation 
sensors, such as GPS and INS, so the time and position 
information can be recorded at the same time when soil 
samples are taken. Consequently a soil difference map can 
be create, on which physical attribute of soil is described.  

7.2 Plant Growth, Diseases and Insect Pests Monitor 

Generally precision  agriculture is constructed in 
a large area. Hereby it is impossible for all plants growing 
in like manner. Sometime only a single part suffers the 
diseases and insect pests. Then it is unnecessary and even 
harmful for all plants to spray pesticide or other medicine 
in the same way. Different solution should be taken 
according to the real conditions of plants.  
 
Mobile Mapping System can finish the monitor task of all 
the plants. Using the scanners, the peculiar plants can be 
found quickly, and its position also can be recorded. In 
fact satellite remote sensing data also can provide such 
distinction information. Compare with Mobile Mapping 
System, its spatial range is much larger but space 
resolution is lower and constrained by satellite calendar.  

7.3 Analysis of the Crop and Field Information 
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The purpose to get so much data about the soil, 
plant and so on is to master the planting conditions and to 
make decisions for all planting process. Accordingly GIS 
and Agriculture Expert System are usually imported in 
precision agriculture in order to edit, process, integrate 
and analyze the crop and field information and get 
corresponding resolve scheme. 

Mobile Mapping System may Load multi-source 
information and different types of agricultural data to 
master the conditions of the field. Comparing the 
information or data, relationships within and between data 
sets can be found. That is the relationships among 
different factors can be made certain. By the relation, 
agronomist or Agriculture Expert System can make 
production plan.After the production plan has been made, 
farmers can command the farming machines to work 
automatically, for these machines has been equipped 
intelligent implement and positioning devices. Moreover 
the entire process of one year farming also can be recorded 
and evaluated, and the experience can be analyzed to help 
next year work. 

8. Conclusion 

Five cases of application of the embedded systems in 
agriculture machinery are reviewed. The application and 
performance of models in each case were discussed. Some 
general conclusion can be drawn from the applications: 

 Embedded systems also have its application with 
artificial neural networks. 

 Embedded systems are allowed to the need for the 
effective speed and memory utilization. 

 Artificial neural networks are an effective alternative 
to non-linear regression analysis in fitting surfaces. 

 Precision agriculture with the help of embedded 
systems becomes more efficient, intelligent and 
steady. 
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