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Abstract

We consider two classes of nonlinear stochastic differential equation with a.s.
positive solutions. In the first case the drift coefficient is strongly zero-reverting,
and dominates the diffusion, whereas in the second the diffusion is highly variable
and dominates the drift. In each case, the tendency to overshoot zero prevents a
uniform Euler discretisation from preserving positivity in solutions. To address
this, we construct adaptive meshes allowing the generation of positive trajectories
with arbitrarily high probability. For completeness, we generalise the analysis to
finite-dimensional systems of stochastic differential equations, investigating the ef-
fect of a uniform Euler discretisation on the positivity of systems with coefficients
satisfying linear bounds, and introducing an adaptive mesh to counter overshoot
when those bounds are violated.
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1 Introduction

In Appleby et al [1], the preservation of positivity in solutions of discretised stochastic
differential equations was addressed within the framework of numerical analysis. Using
a linear scalar test equation, it was shown that, for the Euler–Maruyama class of numer-
ical methods with uniform stepsize, the probability of positivity over a fixed interval of
simulation can be made arbitrarily close to one by choosing a sufficiently large number
of meshpoints. This analysis was generalised to a broad class of nonlinear equations
with coefficients satisfying linear bounds, and including weak discretisations. For the
linear case, the authors developed an a priori estimate of the number of meshpoints re-
quired to generate positive trajectories with a given probability of success. We refer
the reader to the introduction of that paper for an overview of the literature surrounding
positivity in solutions of deterministic and stochastic difference equations.

This article is a sequel to [1], and is intended to progress the analysis in two direc-
tions. First, we show that uniform discretisations fail to preserve positivity when coef-
ficients violate linear bounds, and investigate the usefulness of adaptive meshes in this
context. Second, we generalise this analysis to include systems of stochastic differential
equations, both for uniform and adaptive meshes. We restrict our investigation to the
Euler class of numerical methods in this paper; for an overview of numerical methods
for stochastic differential equation we refer the reader to, among others, [3,4,6,9,10].

Consider the scalar Itô stochastic differential equation

dX(t) = f(X(t)) dt + g(X(t)) dB(t), t ≥ 0, a.s.,

X(0) = ζ > 0.
(1.1)

Throughout the paper, an almost sure (a.s.) event is an event of probability one. In [1]
the following conditions were imposed on the drift coefficient:

f is locally Lipschitz continuous on(0,∞); (1.2)

f(0) ≥ 0; (1.3)

there isK1 > 0 such that f(x) ≥ −K1x for all x > 0; (1.4)

and on the diffusion coefficient:

g is locally Lipschitz continuous on(0,∞); (1.5)

g(0) = 0, g(x) > 0 for all x > 0; (1.6)

there existsK2 > 0 such that g(x) ≤ K2x for all x > 0. (1.7)

Solutions of (1.1) are defined with respect to the complete filtered probability space
(Ω,F , (F(t))t≥0, P), and(F(t))t≥0 is the natural filtration of a scalar standard Brownian
motionB = {B(t); 0 ≤ t < ∞;FB(t)}, i.e.,F(t) = FB(t) := σ{B(s) : 0 ≤ s ≤ t}.

Under conditions (1.2) and (1.5) there is a unique continuous adapted processX
which obeys (1.1) on the interval[0, τ ζ

e ). Hereτ ζ
e is the explosion time, defined by
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τ ζ
e = inf{t > 0 : |X(t, ζ)| 6∈ [0,∞)}. It was proved in Appleby, Mao and Rodkina [2],

that under conditions (1.2), (1.5), (1.6) andf(0) = 0 the solutionX cannot reach zero
in finite time if it does not start from the origin: they prove this by showing thatτ ζ

e ≤ ϑζ
0

a.s., whereϑζ
0 = inf{t > 0 : |X(t, ζ)| = 0} (see also Karatzas and Shreve [5] and

Mao [7]). In other words,X(t) > 0 for all t ∈ [0, τ ζ
e ). When the conditionf(0) = 0

is replaced by the nonnegativity conditionf(0) ≥ 0, i.e., condition (1.3), by applying a
stochastic comparison principle (see [5, Proposition 5.2.18]), we can also conclude that
X(t) > 0 for all t ∈ [0, τ ζ

e ).
Applying a uniform Euler discretisation withN meshpoints to solutions of (1.1)

over the interval[0, T ] requires that for eachN the stepsize satisfyhN = T/N , and the
resulting discretisation is

xN(n + 1) = xN(n) + hNf(xN(n)) +
√

hNg(xN(n))ξN(n + 1),

xN(0) = ζ > 0,
(1.8)

for n = 0, . . . , N − 1, where the stochastic component of (1.8) satisfies

ξN = {ξN(n) : n = 1, . . . , N} is a sequence of independent (1.9a)

and identically distributedFN–measurable r.vs.;

eachξN(n) has density symmetric about 0, and corresponding distribution functionF ;
(1.9b)

EN [ξN(n)2] =: ς2 < +∞, n = 1, . . . , N. (1.9c)

We may interpret eachxN(n) as the simulated approximation ofX(hNn), and for
eachN there is a probability triple(ΩN ,FN , PN) on which solutions of (1.8) are de-
fined. Moreover the sequenceξN generates a natural discrete filtration{FN(n)}N

n=1,
whereFN(n) = σ{ξN(j) : j ≤ n} for n = 1, . . . , N . Clearly, if xN is a solution of
(1.8) then it is aFN(n)–adapted process. In particular, if eachξN(n) is Gaussian, then
(1.8) is the uniform Euler–Maruyama discretisation of (1.1).

In Appleby et al [1] it was shown that, if we define the event

PN = {ω ∈ ΩN : xN(n, ω) > 0 for n = 0, . . . , N},

then
lim

N→∞
PN [PN ] = 1.

Additionally, in the special case where (1.1) is a geometric Brownian motion with drift
coefficientλ and diffusion coefficientσ, and eachξN(n) in (1.8) is Gaussian, it was
shown that positive trajectories of (1.8) could be generated on[0, T ] with probability
approximately1− η, η � 1, by choosing

N > 2σ2T log

(
σ2Teλ/σ2

√
π

√
log(1/η2)

η

)
. (1.10)
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In Section 2 we consider two particular violations of the linear bounds (1.4) and
(1.7). First, we relax condition (1.4) to introduce a dominant and strongly zero-reverting
drift coefficient. It turns out that the probability of positivity over the interval[0, T ]
following a uniform Euler discretisation tends to zero as the initial value grows large;
trajectories overshoot under pressure from the drift. A carefully chosen adaptive mesh
is then introduced allowing positive trajectories to be generated with an arbitrarily high
probability of success by adjusting a density parameter. Second, we demonstrate the
versatility of such meshes by relaxing condition (1.7) to allow a highly variable and
dominant diffusion coefficient. Even under such circumstances, an adaptive mesh may
be constructed to ensure positivity with arbitrarily high probability.

The use of adaptive, and therefore random, meshes means that our analysis no longer
aims to preserve positive trajectories over a fixed simulation interval[0, T ], but rather
over a fixed number of timestepsN . This excludes the possibility of developing a priori
estimates of the form (1.10).

In Section 3 we develop an analogue of the analysis in [1] for finite-dimensional sys-
tems with diagonal noise, placing similar linear constraints on coefficients. Once again
we demonstrate that the probability of generating positive trajectories over an interval
of simulation[0, T ] can be made arbitrarily close to one by increasing the density of
meshpoints. Following this, we introduce an adaptive mesh to counter overshoot when
the coefficients of the system are highly nonlinear. Finally, in Section 4 we summarise
our results and suggest future developments of this research.

2 Nonlinear Equations and the Use of Adaptive Meshes

Suppose that the discretisation of (1.1) is

xN(n + 1) = xN(n) + h(N, xN(n))f(xN(n))

+
√

h(N, xN(n))g(xN(n))ξN(n + 1),

xN(0) = ζ > 0,

(2.1)

for n = 0, . . . , N − 1, whereξN is a sequence of random variables obeying (1.9), so

that xN(n) can be viewed as an approximation toX

(
n−1∑
j=0

hj

)
. For eachN there is

a probability triple on which solutions of (1.8) are defined:(ΩN ,FN , PN). Moreover
the sequenceξN generates a natural discrete filtration{FN(n)}N

n=1, whereFN(n) =
σ{ξN(j) : j ≤ n} for n = 1, . . . , N . Notice that the stepsize functionh is now
dependent on the solutionxN at each step, and is therefore a random variable adapted
to the filtrationFN .
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2.1 Strongly Zero-Reverting Drift Coefficient

We proceed by relaxing the restriction on the drift and diffusion coefficients given by
(1.4) and (1.7) so that the drift coefficient dominates the diffusion, and is strongly di-
rected towards zero. Suppose that we impose the conditions

f is locally Lipschitz continuous on(0,∞); (2.2)

f(0) ≥ 0; (2.3)

lim
x→∞

f(x)

x
= −∞, (2.4)

on the drift coefficient, and

g is locally Lipschitz continuous on(0,∞); (2.5)

g(0) = 0, g(x) > 0 for all x > 0; (2.6)

sup
x≥0

g2(x)

x(1 + |f(x)|)
=: Γ1 < +∞, (2.7)

on the diffusion coefficient. As discussed in the introduction, conditions (2.2), (2.3),
(2.5), and (2.6) ensure the existence of a unique continuous adapted processX which
obeys (1.1) and is a.s. positive up to a random explosion timeτ ζ

e . Imposing the con-
straint (2.4) onf ensures that the Feller’s test criteria for the existence of a unique global
solution on(0,∞) are satisfied (see Karatzas & Shreve [5, Theorem 5.5.29]).

2.1.1 Failure of a Uniform Mesh

Recall from [1, Remark 3.2] that the probability of positivity of solutions of the uniform
Euler-discretisation of (1.1) with coefficients satisfying (1.2)–(1.4) and (1.5)–(1.7) on a
fixed interval[0, T ] has lower bound

PN [PN ] ≥
(

1− F

(
−
(

1−K1T/N

K2

√
T

)√
N

))N

,

which is independent of the initial valueX(0) = ζ, and which tends to limit one as
N →∞, again independently ofX(0).

However when the constraints on the coefficientsf andg are loosened to (2.2)–(2.4)
and (2.5)–(2.7), this is no longer the case.

Proposition 2.1. Let{xN(n)}N−1
n=0 be a solution of(2.1)with f satisfying(2.2)–(2.4), g

satisfying(2.5)–(2.7), andh(N, xN(n)) = hN = T/N . Then

lim
ζ→∞

PN [xN(1) > 0] = 0.
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Proof.

xN(1, ω) = ζ + hNf(ζ) +
√

hNg(ζ)ξN(1, ω)

= ζ

(
1 + hN

f(ζ)

ζ
+
√

hN
g(ζ)

ζ
ξN(1, ω)

)
= ζ

√
1 + |f(ζ)|

(
1√

1 + |f(ζ)|
+ hN

f(ζ)

ζ
√

1 + |f(ζ)|

+
√

hN

√
g2(ζ)

ζ2(1 + |f(ζ)|)
ξN(1, ω)

)
.

In order thatxN(1, ω) > 0 it is necessary and sufficient to have

1√
1 + |f(ζ)|

+
hN√

1 + |f(ζ)|
f(ζ)

ζ
+

√
hN

ζ

√
g2(ζ)

ζ(1 + |f(ζ)|)
ξN(1, ω) > 0,

or equivalently

ξN(1, ω) > −

 1√
1+|f(ζ)|

+ hN√
1+|f(ζ)|

f(ζ)
ζ√

hN

ζ

√
g2(ζ)

ζ(1+|f(ζ)|)


> −

 1√
1+|f(ζ)|

+ hN√
1+|f(ζ)|

f(ζ)
ζ√

hN

ζ
Γ1

 > −

 1 + hN
f(ζ)

ζ√
1 + |f(ζ)|

√
hN

ζ
Γ1


> − 1

Γ1

√
hN

 1 + hN
f(ζ)

ζ√
1
ζ

+ |f(ζ)|
ζ

 =

√
hN

Γ1

− 1
hN

+ |f(ζ)|
ζ√

1
ζ

+ |f(ζ)|
ζ

 .

By (2.4) we have

lim
ζ→∞

P

ξN(1) >

√
hN

Γ1

− 1
hN

+ |f(ζ)|
ζ√

1
ζ

+ |f(ζ)|
ζ

 = 0,

and the statement of the proposition follows.

Remark2.2. Proposition 2.1 is indicative of the tendency for large negative feedback
from f to cause overshoot in solutions; without the use of an adaptive mesh for large
values there is no guarantee that positivity will be preserved in the uniform discretisa-
tion.
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2.1.2 Construction of an Adaptive Mesh

Since a uniform mesh is inadequate, we define a state-dependent mesh as follows: for
fixedN let dN ∈ (0, 1) be a constant density parameter and set

h (N, xN(n)) := dN
xN(n)

1 + |f(xN(n))|
, tn :=

n−1∑
j=0

h (N, xN(j)) , n = 0, . . . , N − 1,

with t0 = 0. Then (2.1) becomes

xN(n + 1) = xN(n)

(
1 + dN

f(xN(n))

1 + |f(xN(n))|

+
√

dN

√
g2(xN(n))

x(n)(1 + |f(xN(n))|)
ξN(n + 1)

)
,

xN(0) = ζ > 0,

(2.8)

for n = 0, . . . , N − 1.

Remark2.3. Condition (2.4) ensures that, for fixedn,

lim
N→∞

dN
xN(n)

1 + |f(xN(n))|
= 0, a.s.

Moreover, whenf is close to linear andxN(n) is large,xN(n)/1 + |f(xN(n))| will be
close to1, and the adaptive meshh(N, xN(n)) will be similar to a uniform discretisation.

2.1.3 Main Result

The adaptive mesh defined in Section 2.1.2 allows us to generate positive trajectories
with arbitrarily high probability by adjusting the density parameterdN .

Theorem 2.4. Let {xN(n)}∞n=0 be the solution of(2.8), with f satisfying(2.2)–(2.4)
andg satisfying(2.5)–(2.7), and letdN = τ/N . Define the event

PN = {ω ∈ ΩN : xN(n, ω) > 0 for n = 0, . . . , N}.

Then
lim

N→∞
PN [PN ] = 1.

Proof. Define

RN(n) =

{
ω : ξN(n + 1, ω) > − 1− dN√

dNΓ1

}
, n = 0, . . . , N − 1.
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First, we show that

PN ⊇
N−1⋂
n=0

RN(n). (2.9)

Define the sequence of events{P̃N(n)}N
n=1 so that

P̃N(n) = {ω ∈ ΩN : xN(i, ω) > 0, i ≤ n} . (2.10)

Now each
n⋂

i=1

P̃N(i) = P̃N(n), and in particular
N⋂

n=1

P̃N(n) = P̃N(N) = PN .

If we can show by induction that each
n−1⋂
i=0

RN(i) ⊆ P̃N(n), then (2.9) holds. First,

let n = 0. Forω ∈ RN(0) we have

xN(1, ω) = ζ

(
1 + dN

f(ζ)

1 + |f(ζ)|
+
√

dN

√
g2(ζ)

ζ(1 + |f(ζ)|)
ξN(1, ω)

)

> ζ

(
1 + dN

f(ζ)

1 + |f(ζ)|
−

√
g2(ζ)

ζ(1 + |f(ζ)|)
1√
Γ1

(1− dN)

)

> ζdN

(
1 +

f(ζ)

1 + |f(ζ)|

)
> 0.

HenceRN(0) ⊆ P̃N(1), and we have demonstrated the base case. Next, we assume that
k−1⋂
i=0

RN(i) ⊆ P̃N(k). Then, ifω ∈ RN(k) we havexN(k, ω) > 0 and

xN(k + 1, ω) = xN(k, ω)

(
1 + dN

f(xN(k, ω))

1 + |f(xN(k, ω))|

+
√

dN

√
g2(xN(k, ω))

xN(k, ω)(1 + |f(xN(k, ω))|)
ξN(k + 1, ω)

)

> xN(k, ω)

(
1 + dN

f(xN(k, ω))

1 + |f(xN(k, ω))|

−

√
g2(xN(k, ω))

xN(k, ω)(1 + |f(xN(k, ω))|)
1√
Γ1

(1− dN)

)

> xN(k, ω)

(
1 +

f(xN(k, ω))

1 + |f(xN(k, ω))|

)
> 0.
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Hence, by induction
n−1⋂
i=0

RN(i) ⊆ P̃N(n) and (2.9) holds.

Since each term in the sequence of events{RN(n)}N−1
n=0 is independent of all the

others, and by (2.9), it follows that

PN [PN ] ≥
(

1− F

(
−1− τ/N√

τΓ1

√
N

))N

.

The remainder of the proof is identical to that of [1, Theorem 3.1].

Remark2.5. Note that we cannot ensure a prespecified probability of{xN} being pos-
itive on a given compact interval[0, T ] by choosingN arbitrarily large and choosing a

fixed τ > T , because the timeτ
1

N

N−1∑
j=0

xN(j)/{1 + |f(xN(j))|} is random. Hence it

is only possible to determine a lower bound on the probability of obtaining a positive
solution over a given number of timesteps, rather than over a pre-determined interval of
simulation.

2.2 Highly Variable Diffusion Coefficient

Next, we relax the requirement thatf dominate the diffusion coefficient. The drift
satisfies

f is locally Lipschitz continuous on(0,∞); (2.11)

f(0) ≥ 0, (2.12)

and the diffusion is highly variable, and dominatesf :

g is locally Lipschitz continuous on(0,∞); (2.13)

g(0) = 0, g(x) > 0 for all x > 0; (2.14)

lim
x→∞

g(x)

x
= ∞; (2.15)

sup
x>0

x|f(x)|
1 + g2(x)

=: Γ2 < +∞. (2.16)

Once againX(0) = ζ > 0, (2.11), (2.12), (2.13) and (2.14) ensure the existence of a
unique adaptive process obeying (1.1) and which is a.s. positive up to an explosion time
τ ζ
e . Additionally imposing (2.15) and (2.16) ensures that the Feller’s test criteria for the

existence of a unique global solution are satisfied (see [5, Theorem 5.5.29]).
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2.2.1 Failure of a Uniform Mesh

Conditions (2.14)–(2.16) describe a highly variable diffusion that dominates the drift.
In this case, the variation due to the stochastic term cannot be offset by the drift, and is
likely to cause overshoot on a uniform mesh when directed towards zero. Proposition
2.6 below illustrates this effect when the dominance of the diffusion is expressed by

lim
x→∞

f(x)

g(x)
= 0, (2.17)

rather than (2.16).

Proposition 2.6. Let {xN(n)}N−1
n=0 be a solution of(2.1) with f satisfying(2.11)and

(2.12), g satisfying(2.13)–(2.15)and (2.17), andh(N, xN(n)) = hN = T/N . Then

lim
ζ→∞

PN [xN(1) > 0] =
1

2
.

Proof. By (2.17),

xN(1, ω) = ζ + hNf(ζ) +
√

hNg(ζ)ξN(1, ω)

= ζ

(
1 + hN

f(ζ)

ζ
+
√

hN
g(ζ)

ζ
ξN(1, ω)

)
.

In order thatxN(1, ω) > 0 it is necessary and sufficient to show

1 + hN

(
f(ζ)

ζ

)
+
√

hN

(
g(ζ)

ζ

)
ξN(1, ω) > 0,

or equivalently

ξN(1, ω) >
−1− hN

(
f(ζ)

ζ

)
√

hN

(
g(ζ)

ζ

) = − ζ√
hNg(ζ)

−
√

hN

(
f(ζ)

g(ζ)

)
.

SinceξN(1) satisfies (1.9b), by (2.15) and (2.17) we have

lim
ζ→∞

PN

[
ξN(1) > − ζ√

hNg(ζ)
−
√

hN

(
f(ζ)

g(ζ)

)]
=

1

2
,

and the proof is complete.

Remark2.7. The statement of Proposition 2.6 is consistent with the fact that when the
terms of the stochastic sequence{ξN} are symmetrically distributed around zero, as
required by Condition (1.9), the stochastic component of (2.1) will act towards zero
exactly half the time: only then is overshoot possible. Note also that (2.17) is somewhat
more restrictive than (2.16), and indeed the latter is implied by the former. Alternative
dominance conditions may be chosen which illustrate the same principle.
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2.2.2 Construction of an Adaptive Mesh

Let f satisfy (2.11) and (2.12), and letg satisfy (2.13)–(2.16). For fixedN let dN ∈
(0, 1) be a constant density parameter and set

h (N, xN(n)) := dN
x2

N(n)

1 + g2(xN(n))
, tn :=

n−1∑
j=0

h (N, xN(j)) , (2.18)

for n = 0, . . . , N − 1, and witht0 = 0. Then (2.1) becomes

xN(n + 1) = xN(n)

(
1 + dN

xN(n)f(xN(n))

1 + g2(xN(n))

+
√

dN

√
g2(xN(n))

1 + g2(xN(n))
ξN(n + 1)

)
,

xN(0) = ζ > 0,

(2.19)

for n = 0, . . . , N−1. (2.19) is well defined since eachh(N, xN(n)) is anFn-measurable
random variable.

2.2.3 Main Result

As before, the adaptive mesh (2.18) allows us to generate positive trajectories with ar-
bitrarily high probability.

Theorem 2.8. Let {xN(n)}∞n=0 be the solution of(2.19), wheref satisfies(2.11)and
(2.12), g satisfies(2.13)–(2.16), anddN = τ/N . Define the event

PN = {ω ∈ ΩN : xN(n, ω) > 0 for n = 0, . . . , N}.

Then
lim

N→∞
PN [PN ] = 1.

Proof. Define

QN(n) =

{
ω : ξN(n + 1, ω) >

−1 + dNΓ2√
dN

}
, n = 0, . . . , N − 1.

Just as in the proof of Theorem 2.4, we must prove by induction that, for eachn,

n−1⋂
i=0

QN(i) ⊆ P̃N(n),

whereP̃N(n) is as defined as (2.10). We demonstrate here the induction step:



140 J. A. D. Appleby, C. Kelly and A. Rodkina

If ω ∈ ∩k
i=0QN(i), then we havexN(k, ω) > 0 and

xN(k + 1, ω) = xN(k, ω)

(
1 + dN

xN(k, ω)f(xN(k, ω))

1 + g2(xN(k, ω))

+
√

dN

√
g2(xN(k, ω))

1 + g2(xN(k, ω))
ξN(n + 1)

)

> xN(k, ω)

(
1− dN

xN(k, ω)|f(xN(k, ω))|
1 + g2(xN(k, ω))

−

√
g2(xN(k, ω))

1 + g2(xN(k, ω))
(1− dNΓ2)

)

> xN(k, ω)

(
1− dN

xN(k, ω)|f(xN(k, ω))|
1 + g2(xN(k, ω))

− (1− dNΓ2)

)
= xN(k, ω)

(
dN

(
Γ2 −

xN(k, ω)|f(xN(k, ω))|
1 + g2(xN(k, ω))

))
> 0.

The remainder of the proof follows as before.

3 Finite-Dimensional Equations

When the drift and diffusion coefficients of (1.1) have linear bounds, the probability
of positivity of solutions of the uniform discretisation (1.8) on a finite interval tends
to one as the number of equidistant mesh points increases. This was proved as [1,
Theorem 3.1]. In this section we investigate the generalisation of this result for systems
of nonlinear stochastic differential equations. For simplicity we consider only a system
of two equations; the analysis generalises to systems of finite dimension. Following
this, we weaken the linear bounds on the coefficients of the system, demonstrating that
trajectories will overshoot zero, and introduce an adaptive mesh to counter this effect.

3.1 A Two-Dimensional System

Let B = (B1, B2) be a two–dimensional standard Brownian motion and consider the
stochastic differential equation

dX(t) = f1(X(t), Y (t)) dt + g1(X(t), Y (t)) dB1(t),

dY (t) = f2(X(t), Y (t)) dt + g2(X(t), Y (t)) dB2(t),

(X(0), Y (0)) = (ζ1, ζ2) ∈ R+ × R+,

(3.1)

for t ≥ 0. We assume that there existK > 0 andκ > 0 such that the following hold for
k = 1, 2:

fk, gk are locally Lipschitz continuous on[0,∞)× [0,∞); (3.2a)
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gk(0, 0) = 0 and0 < gk(x, y) ≤ Kx, x, y > 0; (3.2b)

fk(x, y) ≥ −κx, x, y ≥ 0. (3.2c)

Under these conditions, it was shown in Appleby, Mao & Rodkina [2] that there is a
unique continuous adapted solution(X, Y ) of (3.1) such thatX(t) > 0 andY (t) > 0
for all t ≥ 0 a.s.

3.1.1 A Uniform Euler Discretisation of (3.1)

We now formulate the discretisation of (3.1). LetT > 0, N ∈ N and supposeh(N) =

T/N . Let (ΩN ,FN , PN) be a probability triple. Letξ(k)
N = {ξ(k)

N (n) : n = 1, . . . , N}
for k = 1, 2 be sequences of mutually independentFN–measurable random variables
each obeying (1.9). The pair of sequencesξN := (ξ

(1)
N , ξ

(2)
N ) generates a discrete fil-

tration (FN(n))N
n=1, whereFN(n) = σ(ξN(j) : j ≤ n} for n = 1, . . . , N . Let

(xN , yN) = {(xN(n), yN(n)) : n = 0, . . . , N} be the unique solution of the two–
dimensional stochastic difference equation

xN(n + 1) = xN(n) + h(N)f1(xN(n), yN(n))

+
√

h(N)g1(xN(n), yN(n))ξ
(1)
N (n + 1),

yN(n + 1) = yN(n) + h(N)f2(xN(n), yN(n)) (3.3)

+
√

h(N)g2(xN(n), yN(n))ξ
(2)
N (n + 1),

(xN(0), yN(0)) = (ζ1, ζ2) ∈ R+ × R+,

wheren = 0, . . . , N−1. Then{(xN(n), yN(n))}∞n=0 is aFN–adapted process. We may
interpret(xN(n), yN(n)) as the simulated approximation of(X(nh(N)), Y (nh(N)).

3.1.2 Positivity of Trajectories of(3.4)

Theorem 3.1.LetT > 0, N ∈ N and supposeh(N) = T/N . Suppose thatf1, f2, g1, g2

obey(3.2), and letξ(1)
N andξ

(2)
N be two sequences of mutually independent random vari-

ables obeying(1.9). Let(xN , yN) be the solution of(3.4). If P̃N is the event

P̃N = {ω ∈ ΩN : xN(n, ω) > 0, yN(n, ω) > 0 for n = 0, . . . , N},

then
lim

N→∞
P[P̃N ] = 1.

Proof. Applying conditions (3.2b)–(3.2c) we estimate

P
{

xN(n + 1) > 0

∣∣∣∣xN(n), yN(n) > 0

}
= P

{
xN(n) +

T

N
f1(xN(n), yN(n))

+

√
T

N
g1(xN(n))ξ

(1)
N (n + 1) > 0

∣∣∣∣xN(n), yN(n) > 0

}
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= P

{
ξ

(1)
N (n + 1) > −

√
N

T

xN(n)

g1(xN(n), yN(n))

−
√

T

N

f1(xN(n), yN(n))

g1(xN(n), yN(n))

∣∣∣∣xN(n), yN(n) > 0

}

= P

{
ξ

(1)
N (n + 1) > −

√
N

T

1

K
+

√
T

N

κ

K

∣∣∣∣xN(n), yN(n) > 0

}
= P

{
ξ

(1)
N (n + 1) > Q(N)

}
= 1− F (Q(N))

where

Q(N) = −
√

N

T

1

K
+

√
T

N

κ

K
.

Similarly,

P
{

yN(n + 1) > 0

∣∣∣∣xN(n), yN(n) > 0

}
≥ P

{
ξ

(2)
N (n + 1) > Q(N)

∣∣∣∣xN(n), yN(n) > 0

}
= P

{
ξ

(2)
N (n + 1) > Q(N)

}
= 1− F (Q(N)).

Also,

P
{

xN(n + 1) > 0, yN(n + 1) > 0

∣∣∣∣xN(n), yN(n) > 0

}
= P

{
xN(n + 1) > 0

∣∣∣∣xN(n), yN(n) > 0

}
×P

{
yN(n + 1) > 0

∣∣∣∣xN(n), yN(n) > 0, x(n + 1) > 0

}
= P

{
ξ

(1)
N (n + 1) > Q(N)

∣∣∣∣xN(n), yN(n) > 0

}
×P

{
ξ

(2)
N (n + 1) > Q(N)

∣∣∣∣xN(n), yN(n) > 0, xN(n + 1) > 0

}
.

SincexN(n + 1) does not depend onξ(2)
N (n + 1), we have

P
{

ξ
(2)
N (n + 1) > Q(N)

∣∣∣∣xN(n), yN(n) > 0, xN(n + 1) > 0

}
≥ P

{
ξ

(2)
N (n + 1) > Q(N)

}
= 1− Φ(Q(N)),
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which implies that

P
{

xN(n + 1) > 0, y(n + 1) > 0

∣∣∣∣xN(n), yN(n) > 0

}
≥ (1− F (Q(N)))2 .

Then

P{P̃N} = P{xN(n) > 0, yN(n) > 0, n = 1, 2, . . . , N}

=
N−1∏
n=0

P
{

xN(n + 1) > 0, yN(n + 1) > 0

∣∣∣∣xN(n), yN(n) > 0

}
≥ (1− F (Q(N)))2N .

We complete the proof in the same way as in [1, Theorem 3.1].

3.2 Use of an Adaptive Mesh for Systems of Stochastic Differential
Equations

Consider again the system of stochastic differential equations given by (3.1), with coef-
ficients satisfying (3.2a). In this section we loosen the linear bounds (3.2b) and (3.2c),
instead assuming that

lim
x,y→∞

fk(x, y)√
x2 + y2

= −∞, k = 1, 2, (3.4)

and that there existsΓ3 ∈ R+ such that

gk(x, y) ≤ Γ3

√
x2 + y2, k = 1, 2. (3.5)

Let hN = h(N, xN(n), yN(n)) be a state-dependent mesh, and suppose that the
discretisation of (3.1) is

xN(n + 1) = xN(n) + hNf1(xN(n), yN(n))

+
√

hNg1(xN(n), yN(n))ξ
(1)
N (n + 1),

yN(n + 1) = yN(n) + hNf2(xN(n), yN(n)) (3.6)

+
√

hNg2(xN(n), yN(n))ξ
(2)
N (n + 1),

(xN(0), yN(0)) = (ζ1, ζ2) ∈ R+ × R+,

wheren = 0, . . . , N − 1.

3.2.1 Failure of a Uniform Mesh

First, we show that under conditions (3.2a), (3.4) and (3.5), a uniform mesh fails to pre-
serve positivity, in the sense that as the initial valuesζ1 andζ2 grow large, the probability
of positivity overN steps tends to zero.
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Proposition 3.2. Let {xN(n)}N−1
n=0 and {yN(n)}N−1

n=0 be solutions of(3.7) with hN =
h(N, xN(n), yN(n)) = T/N . Assume that(3.2a), (3.4)and (3.5)hold. Then

lim
ζ1,ζ2→∞

PN [yN(1) > 0] = 0, lim
ζ1,ζ2→∞

PN [xN(1) > 0] = 0.

Proof. We have for sufficiently largeζ1, ζ2,

ξ
(1)
N (1, ω) > −ζ1 + hNf1(ζ1, ζ2)√

hNg1(ζ1, ζ2)
= −

ζ1√
ζ2
1+ζ2

2

+ hN
f1(ζ1,ζ2)√

ζ2
1+ζ2

2√
hN

g1(ζ1,ζ2)√
ζ2
1+ζ2

2

≥ −
ζ1√

ζ2
2+ζ2

2

+ hN
f1(ζ1,ζ2)√

ζ2
1+ζ2

2√
hNΓ3

>
−1 + hN

|f1(ζ1,ζ2)|√
ζ2
1+ζ2

2√
hNΓ3

,

and

lim
ζ1,ζ2→∞

PN

ξ
(1)
N (1, ω) >

−1 + hN
|f1(ζ1,ζ2)|√

ζ2
1+ζ2

2√
hNΓ3

 = 0.

The proof that lim
ζ1,ζ2→∞

PN [yN(1) > 0] = 0 is similar.

3.2.2 Construction of a State-Dependent Mesh

Suppose that, forx, y > 0,

g2
k(x, y) ≤ Γ3 min {x(1 + |f1(x, y)|), y(1 + |f2(x, y)|)} , k = 1, 2. (3.7)

Remark3.3. Note that (3.7) is consistent with (3.4) and (3.5) for large values ofx
andy. Since Proposition 3.2 indicates that large trajectory values lead to drift-induced
overshoot when (3.4) and (3.5) hold, a uniform mesh will not be adequate to preserve
positivity in solutions of (3.7) wheng satisfies (3.7).

For fixed N let dN ∈ (0, 1) be a constant density parameter and set, forn =
0, . . . , N − 1,

h(N, xN(n), yN(n))

:= dN min

{
xN(n)

1 + |f1(xN(n), yN(n))|
,

yN(n)

1 + |f2(xN(n)), yN(n))|

}
. (3.8)

3.2.3 Main Result

We present the following as the natural extension of Theorem 2.4 to the system (3.7)
with adaptive mesh (3.7), thus demonstrating that our results may be adapted to finite-
dimensional systems.
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Theorem 3.4. Let {xN(n)}∞n=0 and{yN(n)}∞n=0 be solutions of(3.7), where the state-
dependent meshh(N, xN(n), yN(n)) satisfies(3.8) with dN = τ/N , andf1, f2, g1, g2

satisfy(3.2a), (3.4), (3.5), and(3.7). Define the event

PN = {ω ∈ ΩN : xN(n, ω) > 0, yN(n, ω) > 0 for n = 0, . . . , N}.

Then
lim

N→∞
PN [PN ] = 1.

Proof. Define for eachn = 0, . . . , N − 1,

RN,x(n) =

{
ω : ξ

(1)
N (n + 1, ω) > − 1− dN√

dNΓ3

}
,

RN,y(n) =

{
ω : ξ

(2)
N (n + 1, ω) > − 1− dN√

dNΓ3

}
.

First, we show that

PN ⊇
N−1⋂
n=0

(
RN,x(n)

⋂
RN,y(n)

)
. (3.9)

Define the sequence of events{P̃N(n)}N
n=1 so that

P̃N(n) = {ω ∈ ΩN : xN(i, ω) > 0, , yN(i, ω) > 0, i ≤ n} .

Now each
n⋂

i=1

P̃N(i) = P̃N(n), and in particular
N⋂

n=1

P̃N(n) = P̃N(N) = PN . If we can

show that each
n−1⋂
i=0

(
RN,x(i)

⋂
RN,y(i)

)
⊆ P̃N(n), then (3.9) holds.

We proceed by induction. Ifω ∈ RN,x(0), then

xN(1, ω) = ζ1 + h(N, ζ1, ζ2)f1(ζ1, ζ2) +
√

h(N, ζ1, ζ2)g1(ζ1, ζ2)ξ
(1)
N (1, ω)

> ζ1 + dNf1(ζ1, ζ2)
ζ1

1 + |f1(ζ1, ζ2)|
−

√
dNζ1g2

1(ζ1, ζ2)

(1 + |f1(ζ1, ζ2)|)
|ξ(1)

N (1, ω)|

= ζ1

(
1 + dN

f1(ζ1, ζ2)

1 + |f1(ζ1, ζ2)|
−

√
dNg2

1(ζ1, ζ2)

ζ1(1 + |f1(ζ1, ζ2)|)
|ξ(1)

N (1, ω)|

)

> ζ1

(
1 + dN

f1(ζ1, ζ2)

1 + |f1(ζ1, ζ2)|
−

√
g2
1(ζ1, ζ2)

ζ1(1 + |f1(ζ1, ζ2)|)
1√
Γ3

(1− dN)

)

> ζ1dN

(
1 +

f1(ζ1, ζ2)

1 + |f1(ζ1, ζ2)|

)
> 0.
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A similar argument shows that, ifω ∈ RN,y(0), yN(1, ω) > 0. ConsequentlyRN,x(0) ∩
RN,y(0) ⊆ P̃N(1). Thus the base case is proved.

Next, assume that∩k
i=1 (RN,x(i) ∩RN,y(i)) = P̃N(k). Then ifω ∈ P̃N(k + 1) we

havexN(k, ω) > 0 andyN(k, ω) > 0, and

xN(k + 1, ω) = xN(k, ω) + h(N, xN(k, ω), yN(k, ω))f1(xN(k, ω), yN(k, ω))

+
√

h(N, xN(k, ω), yN(k, ω))g1(xN(k, ω), yN(k, ω))ξ
(1)
N (1, ω)

> xN(k, ω) + dNf1(xN(k, ω), yN(k, ω))
xN(k, ω)

1 + |f1(xN(k, ω), yN(k, ω))|

−

√
dNxN(k, ω)g2

1(xN(k, ω), yN(k, ω))

(1 + |f1(xN(k, ω), yN(k, ω))|)
|ξ(1)

N (1, ω)|

> xN(k, ω)

(
1 + dN

f1(xN(k, ω), yN(k, ω))

1 + |f1(xN(k, ω), yN(k, ω))|

−

√
g2
1(xN(k, ω), yN(k, ω))

xN(k, ω)(1 + |f1(xN(k, ω), yN(k, ω))|)
1√
Γ3

(1− dN)

)

> xN(k, ω)

(
dN

(
1 +

f1(xN(k, ω), yN(k, ω))

1 + |f1(xN(k, ω), yN(k, ω))|

))
> 0.

Hence, by induction
n−1⋂
i=0

(
RN,x(i)

⋂
RN,y(i)

)
⊆ P̃N(n) and (3.9) holds.

Since each term in the sequence of events{RN,x(n) ∩ RN,y(n)}N−1
n=0 is independent

of all the others, and by (3.9), it follows that

PN [PN ] ≥
(

1− F

(
−1− τ/N√

τΓ3

√
N

))2N

.

The remainder of the proof follows as before.

4 Conclusions and Further Work

We have continued the investigation of positivity in strong and weak Euler discreti-
sations of stochastic differential equations that was begun in [1]. Moving beyond the
near-linear analysis of that paper, we find that a dominant zero-reverting drift coeffi-
cient, or a dominant and highly variable diffusion coefficient, will cause overshoot in a
uniform discretisation. However, positive trajectories may be generated with arbitrarily
high probability by choosing an appropriate adaptive mesh. We also extend the analysis,
both in [1] and here, to Euler discretisations of finite-dimensional systems of stochastic
differential equations.
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All equations examined in this paper satisfy local Lipschitz conditions on both drift
and diffusion. However, adaptive meshes may be applied more generally. As discussed
in [1, Section 6], for equations with a zero equilibrium solution, relaxing one or other
of these Lipschitz conditions can cause solutions to strike equilibrium in finite time. An
important example where this happens is the square-root diffusion stochastic differential
equation

dX(t) = λ(µ−X(t))dt + σ
√
|X(t)|dB(t), t ≥ 0,

with X(0) > 0. Such equations arise in mathematical finance and population dynamics,
and more details may be found in [8]. In future work, we investigate the usefulness of
an adaptive mesh in preserving the dynamics of this equation.
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