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Abstract 
 
The generalized Riccati equation mapping is extended together with the ( )/G G′ -
expansion method and is a powerful mathematical tool for solving nonlinear 
partial differential equations. In this article, we construct twenty seven new exact 
traveling wave solutions including solitons and periodic solutions of the modified 
Benjamin-Bona-Mahony equation by applying the extended generalized Riccati 
equation mapping method. In this method, ( ) ( ) ( )2G p r G s Gμ μ μ′ = + +  is 
implemented as the auxiliary equation, where ,r s and p  are arbitrary constants 
and called the generalized Riccati equation. The obtained solutions are described 
in four different families including the hyperbolic functions, the trigonometric 
functions and the rational functions. In addition, it is worth mentioning that one of 
newly obtained solutions is identical for a special case with already published 
result which validates our other solutions.    
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1. Introduction  
 
The investigation of traveling wave solutions of the nonlinear partial differential 
equations (PDEs) plays the most important role in the study of nonlinear physical 
phenomena which arise in mathematical physics, engineering sciences and other 
technical arena [1-43]. In recent times, many researchers established various 
methods to construct exact traveling wave solutions of the nonlinear PDEs, such 
as, the inverse scattereing method [1], the variational iteration method [2,3], the 
Hirota’s bilinear transformation method [4], the Jacobi elliptic function expansion 
method [5], the tanh-coth method [6,7], the Backlund transformation method [8], 
the direct algebraic method [9], the Cole-Hopf transformation method [10], the 
sine-cosine method [11], the Exp-function method [12-14], the Adomian 
decomposition method [15] and others [16-22]. 
Recently, Wang et al. [23] presented a method, called the ( )/G G′ -expansion 
method and they established traveling wave solutions for some nonlinear PDEs. In 
this method, they employed the second order linear ordinary differential equation 
with constant coefficients ( ) ( ) ( ) 0,G G Gθ λ θ μ θ′′ ′+ + =  as an auxiliary equation. 

Subsequently, many researchers implemented this powerful ( )/G G′ -expansion 
method to investigate different nonlinear PDEs for obtaining exact traveling wave 
solutions. For example, Feng et al. [24] studied the Kolmogorov-Petrovskii-
Piskunov equation to construct exact solutions via this method. Naher et al. [25] 
applied the same method to obtain traveling wave solutions of the higher-order 
Caudrey-Dodd-Gibbon equation. In Ref. [26], Abazari investigated the Zoomeron 
equation for establishing solitary wave solutions by using this method. Zayed and 
Al-Joudi [27] concerned about this method for constructing analytical solutions of 
some nonlinear partial differential equations whilst Gepreel [28] studied nonlinear 
PDEs with variable coefficients in mathematical physics by using this method and 
found exact solutions. Ozis and Aslan [29] applied the ( )/G G′ -expansion 
method to establish traveling wave solutions for the Kawahara type equations 
using symbolic computation while Aslan [30] investigated three nonlinear 
evolution equations to construct exact solutions by applying this method. Naher et 
al. [31] concerned about the improved ( )/G G′ -expansion method to obtain 
traveling wave solutions of the higher dimensional nonlinear evolution equation 
while Naher  and Abdullah [32] constructed some new traveling wave solutions of 
the nonlinear reaction diffusion equation via this method and so on. 
 Zhu [33] introduced the generalized Riccati equation mapping with the extended 
tanh-function method to investigate the (2+1)-dimensional Boiti-Leon-Pempinelle 
equation. In this generalized Riccati equation mapping, the auxiliary equation 

( ) ( ) ( )2G p r G s Gμ μ μ′ = + +  is used, where ,r s  and p  are arbitrary constants. 
Bekir and Cevikel [34] implemented the tanh-coth method combined with the  
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Riccati equation to solve nonlinear coupled equation in mathematical physics. In 
Ref. [35], Guo et al. studied the diffusion-reaction and the mKdV equation with 
variable coefficient via the extended Riccati equation mapping method while  Li 
et al. [36] used the generalized Riccati equation expansion method to study the 
(3+1)-dimensional Jimbo-Miwa equation. Salas [37] utilized the projective 
Riccati equation  method to obtain some exact solutions for the Caudrey-Dodd-
Gibbon equation. Li and Dai [38] executed the generalized Riccati equation 
mapping method to construct traveling wave solutions for the higher dimensional 
nonlinear evolution equation and so on. 
Many researchers implemented different methods to obtain traveling wave 
solutions of the modified Benjamin-Bona-Mahony equation. For example, 
Taghizadeh and Mirzazadeh [39] used modified extended tanh method to establish 
traveling wave solutions of this equation. Yusufoglu [40] applied the Exp-
function method to construct traveling wave solutions of the same equation while 
Yusufoglu and Bekir [41] investigated this equation to seek exact solutions via the 
tanh and sine-cosine methods. In Ref. [42], Abbasbandy and Shirzadi executed the 
first integral method to obtain analytical solutions of the same equation. Gao [43] 
studied this equation by using the algebraic method to establish exact solutions. 
Aslan [30] studied the same equation for constructing traveling wave solutions by 
applying the basic ( )'/G G -expansion method. In the basic ( )'/G G -expansion 
method, the second order linear ordinary differential equation (LODE) with 
constant coefficients is considered, as an auxiliary equation. To the best of our 
knowledge, no body studied the modified Benjamin-Bona-Mahony equation to 
construct exact traveling wave solutions by applying the extended generalized 
Riccati equation mapping method.  
In this article, we investigate the modified Benjamin-Bona-Mahony equation to 
construct exact traveling wave solutions including solitons, periodic, and rational 
solutions via the extended generalized Riccati equation mapping method.  
 
 
2. The extended generalized Riccati equation mapping method  
 
Suppose the general nonlinear partial differential equation: 

( ), , , , , ,... 0,t x xt t t x xA v v v v v v =                      (1) 

where ( ),v v x t=  is an unknown function, A  is a polynomial in ( ),v v x t= and 
the subscripts indicate the partial derivatives. 
The most important steps of the generalized Riccati equation mapping together 
with the ( )/G G′ -expansion method [23,33] are as follows: 
 
Step 1. Consider the traveling wave variable: 

      ( ) ( ), , ,v x t p Kx H tμ μ= = +                           (2) 
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Now using Eq. (2), Eq. (1) is converted into an ordinary differential equation for 
( ) :p μ   

( ), ', , ,... 0,B p p p p′′ ′′′ =                              (3) 
where the superscripts stand for the ordinary derivatives with respect to .μ    
 
Step 2. Eq. (3) integrates term by term one or more times according to possibility, 
yields constant(s) of integration. The integral constant(s) may be zero for 
simplicity.   
 
Step 3. Suppose that the traveling wave solution of Eq. (3) can be expressed in the 
form [23,33]:  

           ( )
0

' jn

j
j

Gp a
G

μ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑                (4) 

where ( )0,1, 2,...,ja j n= and 0na ≠ , with ( )G G μ=  is the solution of the 
generalized Riccati equation: 

2 ,G p r G s G′ = + +            (5) 
where , ,r s p  are arbitrary constants and 0.s ≠   
 
Step 4. To decide the positive integer n , consider the homogeneous balance 
between the nonlinear terms and the highest order derivatives appearing in Eq. 
(3).  
 
Step 5. Substitute Eq. (4) along with Eq. (5) into the Eq. (3), then collect all the 
coefficients with the same order, the left hand side of Eq. (3) converts into 
polynomials in ( )mG μ  and ( ) ( ), 0,1,2,...mG mμ− = . Then equating each 
coefficient of the polynomials to zero, yield a set of algebraic equations for 

( )0,1, 2,..., , , , ,ja j n r s p K=  and .H   
 
Step 6. Solve the system of algebraic equations which are found in Step 5 with the 
aid of algebraic software Maple and we obtain values for ( )0,1, 2,...,ja j n=  and 
H . Then, substitute obtained values in Eq. (4) along with Eq. (5) with the value 
of n , we obtain exact solutions of Eq. (1). 
In the following, we have twenty seven solutions including four different families 
of Eq. (5). 
 
Family 1: When 2 4 0r sp− >  and 0rs ≠ or 0,sp ≠  the solutions of Eq. (5) are: 

2
2

1
41 4 tanh ,

2 2
r sp

W r r sp
s

μ
⎛ ⎞⎛ ⎞−− ⎜ ⎟⎜ ⎟= + −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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2
2

2
41 4 coth ,

2 2
r sp

W r r sp
s

μ
⎛ ⎞⎛ ⎞−− ⎜ ⎟⎜ ⎟= + −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

( ) ( )( )( )2 2 2
3

1 4 tanh 4 sec 4 ,
2

W r r sp r sp i h r sp
s

μ μ−
= + − − ± −  

( ) ( )( )( )2 2 2
4

1 4 coth 4 csc 4 ,
2

W r r sp r sp h r sp
s

μ μ−
= + − − ± −  

2 2
2

5
4 41 2 4 tanh cot ,

4 4 4
r sp r sp

W r r sp h
s

μ μ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− −− ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= + − +

⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

( )( ) ( )
( )

2 2 2 2 2

6 2

4 4 cosh 41 ,
2 sinh 4

Q R r sp Q r sp r sp
W r

s Q r sp R

μ

μ

⎛ ⎞+ − − − −⎜ ⎟= − +⎜ ⎟
− +⎜ ⎟

⎝ ⎠

 

( )( ) ( )
( )

2 2 2 2 2

7 2

4 4 sinh 41 ,
2 cosh 4

R Q r sp Q r sp r sp
W r

s Q r sp R

μ

μ

⎛ ⎞− − + − −⎜ ⎟= − −⎜ ⎟
− +⎜ ⎟

⎝ ⎠

 

where  Q  and R  are two non-zero real constants and satisfies  2 2 0.R Q− >  
2

8 2 2
2

4
2 cosh

2
,

4 4
4 sinh cosh

2 2

r sp
p

W
r sp r sp

r sp r

μ

μ μ

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2

9 2 2
2

4
2 sinh

2
,

4 4
sinh 4 cosh

2 2

r sp
p

W
r sp r sp

r r sp

μ

μ μ

⎛ ⎞−
⎜ ⎟−
⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

( )
( ) ( )

2

10 2 2 2 2

2 cosh 4
,

4 sinh 4 cosh 4 4

p r sp
W

r sp r sp r r sp i r sp

μ

μ μ

−
=

− − − − ± −
 

( )
( ) ( )

2

11 2 2 2 2

2 sinh 4
,

sinh 4 4 cosh 4 4

p r sp
W

r r sp r sp r sp r sp

μ

μ μ

−
=
− − + − − ± −
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2 2

12 2 2 2
2 2 2

4 4
4 sinh cosh

4 4
,

4 4 4
2 sinh cosh 2 4 cosh 4

4 4 4

r sp r sp
p

W
r sp r sp r sp

r r sp r sp

μ μ

μ μ μ

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + − − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 
 
Family 2: When 2 4 0r sp− <  and 0rs ≠ or 0,sp ≠  the solutions of Eq. (5) are: 
 

2
2

13
41 4 tan ,

2 2
sp r

W r sp r
s

μ
⎛ ⎞⎛ ⎞−⎜ ⎟⎜ ⎟= − + −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

2
2

14
41 4 cot ,

2 2
sp r

W r sp r
s

μ
⎛ ⎞⎛ ⎞−− ⎜ ⎟⎜ ⎟= + −

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

( ) ( )( )( )2 2 2
15

1 4 tan 4 sec 4 ,
2

W r sp r sp r sp r
s

μ μ= − + − − ± −  

( ) ( )( )( )2 2 2
16

1 4 cot 4 csc 4 ,
2

W r sp r sp r sp r
s

μ μ−
= + − − ± −  

2 2
2

17
4 41 2 4 tan cot ,

4 4 4
sp r sp r

W r sp r
s

μ μ
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟= − + − −

⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 

( )( ) ( )
( )

2 2 2 2 2

18 2

4 4 cos 41 ,
2 sin 4

Q R sp r Q sp r sp r
W r

s Q sp r R

μ

μ

⎛ ⎞± − − − − −⎜ ⎟= − +⎜ ⎟
− +⎜ ⎟

⎝ ⎠

 

( )( ) ( )
( )

2 2 2 2 2

19 2

4 4 cos 41 ,
2 sin 4

Q R sp r Q sp r sp r
W r

s Q sp r R

μ

μ

⎛ ⎞± − − + − −⎜ ⎟= − −⎜ ⎟
− +⎜ ⎟

⎝ ⎠

 

 
where  Q  and R  are two non-zero real constants and satisfies 2 2 0.Q R− >   
 

2

20 2 2
2

4
2 cos

2
,

4 4
4 sin cos

2 2

sp r
p

W
sp r sp r

sp r r

μ

μ μ

⎛ ⎞−
⎜ ⎟−
⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟− +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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2

21 2 2
2

4
2 sin

2
,

4 4
sin 4 cos

2 2

sp r
p

W
sp r sp r

r sp r

μ

μ μ

⎛ ⎞−
⎜ ⎟
⎜ ⎟
⎝ ⎠=

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟− + −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

( )
( ) ( )

2

22 2 2 2 2

2 cos 4
,

4 sin 4 cos 4 4

p sp r
W

sp r sp r r sp r sp r

μ

μ μ

− −
=

− − + − ± −
 

 

( )
( ) ( )

2

23 2 2 2 2

2 sin 4
,

sin 4 4 cos 4 4

p sp r
W

r sp r sp r sp r sp r

μ

μ μ

−
=
− − + − − ± −

 

 
2 2

24 2 2 2
2 2 2

4 4
4 sin cos

4 4
,

4 4 4
2 sin cos 2 4 cos 4

4 4 4

sp r sp r
p

W
sp r sp r sp r

r sp r sp r

μ μ

μ μ μ

⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠=

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− + − − −
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 
 
Family 3: when 0p =  and 0,rs ≠  the solution Eq. (5) becomes: 
 

( ) ( )( )
1

25
1

,
cosh sinh

r gW
s g r rμ μ

−
=

+ −
 

( ) ( )( )
( ) ( )( )26

1

cosh sinh
,

cosh sinh
r r r

W
s g r r

μ μ
μ μ

− +
=

+ +
 

where  1g  is an arbitrary constant. 
 
 
Family 4: when 0s ≠  and 0,p r= =  the solution of Eq. (5) becomes: 
 

27
1

1 ,W
s dμ

−
=

+
 

 
where  1d  is an arbitrary constant. 
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3. Applications of the method 
 
We construct twenty seven exact traveling wave solutions including solitons, 
periodic, and rational solutions of the modified Benjamin-Bona-Mahony equation 
in this section.  
 
3.1 The Modified Benjamin-Bona-Mahony equation  
 
We consider the modified Benjamin-Bona-Mahony equation with parameters 
followed by Aslan [30]:  

2 0,t x x xxtu u u u uα β γ+ + − =                     (6) 
where ,α γ  are free parameters and 0.β ≠  
Now, we use the transformation Eq. (2) into the Eq. (6), which yields: 

( ) 2 2 0,H K p K p p HK pα β γ′ ′ ′′′+ + − =         (7) 
Eq. (7) is integrable, therefore, integrating with respect μ  once yields: 

( ) 3 2 0,
3

KH K p p HK p Cβα γ ′′+ + − + =       (8) 

where C is an integral constant which is to be determined later. 
Taking the homogeneous balance between 3p and p′′ in Eq. (8), we obtain 1.n =  
Therefore, the solution of Eq. (8) is of the form: 

( ) ( )1 0 1'/ , 0.p a G G a aμ = + ≠      (9) 
Using  Eq. (5), Eq. (9) can be re-written as: 

( ) ( )1
1 0 ,p a r pG s G aμ −= + + +      (10) 

where  ,r s  and p are free parameters. 
By substituting Eq. (10) into Eq. (8), collecting all coefficients of kG  and 

( )0,1, 2,...kG k− =  and setting them equal to zero, we obtain a set of algebraic 
equations for 0 1, , , , ,a a r s p C  and  H  (algebraic equations are not shown, for 
simplicity). Solving the system of algebraic equations with the help of algebraic 
software Maple, we obtain 
 
 

( )( ) ( )( ) ( )

( ) ( )( )

0 1 2 22 2 2 2

4

2 2 2 2

3 3 2, 2 , ,
2 82 8 2 8

8 3 ,
2 8 2 8

Ka Kr a K H
K r spK r sp K r sp

K rstC
K r sp K r sp

αγ αγ α
γβ γ β γ

αγ αγ
γ β γ

− − −
= = ± =

+ ++ + + +

−
= ±

+ + + +

m
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where ,α γ  are free parameters and 0.β ≠  
 
Family 1: The soliton and soliton-like solutions of Eq. (6) (when 2 4 0r sp− >  and 

0rs ≠ or 0sp ≠ ) are: 
2 2

1 1 0

sec
2 ,

2 tanh
2

h
p a a

r

μ

μ

Φ⎛ ⎞Φ ⎜ ⎟
⎝ ⎠= +

⎛ Φ ⎞⎛ ⎞+Φ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

where 2 4r spΦ = − ,   2 2 4r spΦ = − ,  
( )( )0 2 2

3
2 8

a Kr
K r sp

αγ
β γ

−
=

+ +
m ,    

( )( )1 2 2

32
2 8

a K
K r sp

αγ
β γ

−
= ±

+ +
   and 

( )2 2

2 .
2 8

KKx t
K r sp

αμ
γ

= −
+ +

 

2 2

2 1 0

csc
2 ,

2 coth
2

h
p a a

r

μ

μ

Φ⎛ ⎞− Φ ⎜ ⎟
⎝ ⎠= +

⎛ Φ ⎞⎛ ⎞+Φ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

( ) ( ) ( )( )
( ) ( )( )

2 2

3 1 0

sec tanh sec
,

tanh sec

h i h
p a a

r i h

μ μ μ

μ μ

Φ Φ Φ Φ
= +

+Φ Φ ± Φ

m
 

( ) ( ) ( )( )
( ) ( )( )

2 2

4 1 0

csc coth csc
,

coth csc

h h
p a a

r h

μ μ μ

μ μ

− Φ Φ ± Φ Φ
= +

+Φ Φ ± Φ

2 2 2

5 1 0

sec csc
4 4 ,

8 4 tanh coth
4 4

h h
p a a

r

μ μ

μ μ

⎛ Φ Φ ⎞⎛ ⎞ ⎛ ⎞Φ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠= +
⎛ Φ Φ ⎞⎛ ⎞ ⎛ ⎞+ Φ +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

2 2 2 2 2

6 1 0
2 2

sinh 4 4 sinh cosh
,

sinh sinh cosh

Q r Q r R spQ spR Q R
p a a

Q R r Q r R Q R Q

μ μ μ

μ μ μ

− − Φ − + Φ −Φ + Φ
= +

Φ + Φ + −Φ + + Φ Φ

( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

2 2 2 2 2

7 1 0
2 2

sinh 4 4 sinh cosh
,

sinh sinh cosh

Q r Q r R spQ spR Q R
p a a

Q R r Q r R Q R Q

μ μ μ

μ μ μ

− − Φ − + Φ +Φ + Φ
= +

Φ + Φ + +Φ + + Φ Φ

 
where  Q  and R  are two non-zero real constants and satisfies  2 2 0.R Q− >  
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2

8 1 0 ,
2cosh sinh cosh

2 2 2

p a a
rμ μ μ

−Φ
= +

Φ ⎛ Φ Φ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞Φ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

2

9 1 0 ,
2sinh sinh cosh

2 2 2

p a a
rμ μ μ

Φ
= +

Φ ⎛ Φ Φ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− +Φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

( ) ( )
( ) ( ) ( )

2 2

10 1 0

sinh 4 sinh
,

sinh cosh cosh
i r i sp

p a a
r i

μ μ
μ μ μ

−Φ + Φ − Φ
= +

Φ Φ − Φ + Φ Φ
 

( ) ( )
( ) ( )( ) ( )

2 2

11 1 0

cosh 4 cosh
,

sinh cosh sinh
r sp

p a a
r

μ μ
μ μ μ

Φ + Φ − Φ
= +

− Φ +Φ Φ +Φ Φ
 

2

12 1 0
2

,
4sinh cosh 2 sinh cosh 2 cosh

4 4 4 4 4

p a a
rμ μ μ μ μ

Φ
= +

Φ Φ ⎛ Φ Φ Φ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + Φ −Φ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 
Family 2:  The periodic form solutions of Eq. (6) (when 2 4 0r sp− <  and 

0rs ≠ or 0sp ≠ ) are: 
2

13 1 0 ,
2cos cos sin

2 2 2

p a a
rμ μ μ

Π
= +

Π ⎛ Π Π ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− +Π⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 

where 2 4 ,r spΠ = − +   2 24 ,sp rΠ = −
( )( )0 2 2

3
2 8

a Kr
K r sp

αγ
β γ

−
=

+ +
m ,    

( )( )1 2 2

32
2 8

a K
K r sp

αγ
β γ

−
= ±

+ +
   and 

( )2 2

2 .
2 8

KKx t
K r sp

αμ
γ

= −
+ +

 

2

14 1 0
2

,
2 1 cos cot

2 2

p a a
rμ μ

Π
= +

⎛ Π ⎞⎛ Π ⎞⎛ ⎞ ⎛ ⎞− + +Π⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 

( )( )
( ) ( ) ( )( )

2

15 1 0

1 sin
,

cos cos sin
p a a

r
μ

μ μ μ
Π + Π

= +
Π − Π +Π Π +Π

 

( )
( ) ( ) ( ) ( )

2

16 1 02

sin
,

cos sin cos sin
p a a

r r
μ

μ μ μ μ
Π Π

= +
Π Π +Π Π − Π −Π

 

2

17 1 0
2 2

,
4cos 1 cos 2 tan cot

4 4 4 4

p a a
rμ μ μ μ

−Π
= +

⎛ ⎞Π ⎛ Π ⎞ ⎛ Π Π ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − +Π −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
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( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( )

2 2 2 2 2 2 2

18 1 0
2 2

2 2 2 2

4 4 sin sin 4 cos cos
,

cos 2 sin cos
sin

Q spQ spR r Q r R sp Q R r Q R
p a a

Q R
Q Q QR R r Q

Q R

μ μ μ μ

μ μ μ
μ

− − Π + + Π + − Π − − Π
= +

⎛ ⎞Π −⎜ ⎟− + Π − Π − − + − Π Π⎜ ⎟Π +⎜ ⎟
⎝ ⎠

 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) ( )
( ) ( )

2 2 2 2 2 2 2

19 1 0
2 2

2 2 2 2

4 4 sin sin 4 cos cos
,

cos 2 sin cos
sin

Q spQ spR r Q r R sp Q R r Q R
p a a

Q R
Q Q QR R r Q

Q R

μ μ μ μ

μ μ μ
μ

− − Π + + Π − − Π + − Π
= +

⎛ ⎞Π −⎜ ⎟− + Π − Π − − − + Π Π⎜ ⎟Π +⎜ ⎟
⎝ ⎠

 where  Q  and R  are two non-zero real constants and satisfies 2 2 0.Q R− >  

2

20 1 0
2 2 2 2

sec sin cos
2 2 2 ,

2 4 4 cos 2 cos 2 sin cos
2 2 2 2

r
p a a

sp sp r r r

μ μ μ

μ μ μ μ

Π ⎛ Π Π ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞−Π Π +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠= +
⎛ Π Π Π Π ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − + + Π⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 
2

21 1 0
2 2 2 2

sin cos
2 2 ,

2sin 2 cos 2 sin cos 4 cos
2 2 2 2 2

r
p a a

r r r sp

μ μ

μ μ μ μ μ

⎛ Π Π ⎞⎛ ⎞ ⎛ ⎞−Π − +Π⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠= +
Π ⎛ Π Π Π Π ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + Π −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2 2
1

22 02 2 2 2 2

1 sec 4 sin sin sin cos
2 ,

4 2 cos cos sin cos 4 sin sin cos

a sp r r
p a

sp sp r r r sp r r

μ μ μ μ μ

μ μ μ μ μ μ μ

Π −Π − Π + Π Π Π + Π +Π
= +

− Π − + Π +Π Π Π + Π − Π + Π Π

 
( ) ( )( )

( ) ( ) ( ) ( )( )
2

23 1 02

sin cos
,

2sin 2 cos cos sin 2
r

p a a
sp r r sp

μ μ

μ μ μ μ

−Π − Π +Π Π +Π
= +

Π − Π + Π + Π Π −
 

2
2

1

24
2 2 2 4 3 4

csc sec 2 sin cos 2 cos
4 4 4 4 4 4

8 cos 8 cos 8 cos sin 4 sin cos 16 cos 16 c
4 4 4 4 4 4 4

a r
p

r r r r sp sp

μ μ μ μ μ

μ μ μ μ μ μ μ

⎛ ⎞−Π Π Π Π Π Π⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + Π −Π⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠=

Π Π Π Π Π Π Π⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + Π − Π − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

0
2 2

,
os

4

a
μ

+
⎛ ⎞Π⎛ ⎞ −Π⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 
 
Family 3: The soliton and soliton-like solutions of Eq. (6) (when 0p =  and  
 

0rs ≠ ) are: 
( ) ( )( )
( ) ( )25 1 0

1

cosh sinh
,

cosh sinh
r r r

p a a
g r r

μ μ
μ μ
−

= +
+ −
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( ) ( )
1

26 1 0
1

,
cosh sinh

r gp a a
g r rμ μ

= +
+ +

 

where 1g  is an arbitrary constant, 
( )( )0 2 2

3
2 8

a Kr
K r sp

αγ
β γ

−
=

+ +
m ,    

( )( )1 2 2

32
2 8

a K
K r sp

αγ
β γ

−
= ±

+ +
   and 

( )2 2

2 .
2 8

KKx t
K r sp

αμ
γ

= −
+ +

 

 
 
Family 4: The rational function solution (when 0s ≠  and 0p r= = ) is: 

1
27

1

,
 

a sp
s dμ
−

=
+

 

where 1d  is an arbitrary constant , 
( )( )1 2 2

32
2 8

a K
K r sp

αγ
β γ

−
= ±

+ +
   and 

( )2 2

2 .
2 8

KKx t
K r sp

αμ
γ

= −
+ +

 

 
 
4. Results and discussion  
 
It is important to point out that our solution 27p  is identical for a special case with 

( )5,6 ,u x t  in subsection 3.3 of section 3 of Aslan [30]. If we substitute 
2

3 21, 0, 4 0, 1, 6C C λ μ α γ β= = − = = = = −  and  1k =  in solution ( )5,6 ,u x t of 

Aslan [40] and becomes ( )5,6
1, .u x t

x t
=

−
m  Also, if we substitute ( )27 5,6 ,p u x t=  

and 11, 1, 0, 1, 6, 0K p r s dα γ β= = = = = = = − = , in our solution 27p  and 

becomes ( )5,6
1, .u x t

x t
=

−
m  Beyond this, we obtain new traveling wave solutions 

1p  to 26p , and to the best of our knowledge, which have not been reported in the 
previous literature.  Furthermore, the graphical demonstrations of some obtained 
solutions are shown in figure 1 to figure 12 in the following subsection. 
 
4.1 Graphical illustrations of the solutions 
 
Some of our obtained traveling wave solutions are represented in the following 
figures with the aid of commercial software Maple:  
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Fig. 1: Periodic solution for      Fig. 2: Periodic solution for     Fig. 3: Periodic solution for                              
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Fig. 4: Solitons solution for                  Fig. 5: Solitons solution for      Fig. 6: Solitons solution for                                         
              

1
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r s p
K g

α β
γ
= = = = =
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= = = =
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Fig. 7: Periodic solutions for            Fig. 8: Solitons solution for          Fig. 9: Solitons solution for 
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β γ
= = = =
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                     5, 1, 7, 4,
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Fig. 10: Solitons solution for         Fig. 11: Periodic solution for       Fig. 12: Periodic solution for   
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= = =
= = = =
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5. Conclusions  
 
By applying the extended generalized Riccati equation mapping method, abundant 
new exact traveling wave solutions of the modified Benjamin-Bona-Mahony 
equation are constructed in this article. In this method, the auxiliary equation 

( ) ( ) ( )2G p r G s Gμ μ μ′ = + +  is used with constant coefficients, instead of the 
second order linear ordinary differential equation with constant coefficients. The 
obtained solutions disclose noteworthy properties of the shapes in that the 
solutions come as solitons and periodic solutions. Further, it is imperative to 
mention out that one of our solutions are identical with the solutions available in 
the literature and some are new. We hope that this straightforward method can be 
more successfully used to  investigate nonlinear evolution equations which arise 
in mathematical physics, engineering sciences and other technical arena.  
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