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Anumber of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis.
Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global
mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In
view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the
size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach
based on a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) andD. melanogaster
(fly), E. coli K12 and S. typhimurium, E. coli K12 and C. crescenttus, we analyze all clusters identified in the alignment. The results
are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to
existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and
sensitivity, and can be extended to multiple alignments easily.

1. Introduction

Protein-protein interactions (PPI) are of central importance
for virtually every process in a living cell. For example, infor-
mation about these interactions improves our understanding
of diseases and can provide the basis for new therapeutic
approaches [1]. One of fundamental goals of system biology
is to understand how proteins in the cell interact with each
other. However, finding all protein interactions is costly and
labor intensive. For example, to find all pairwise interactions
for a species with 5000 proteins, one needs to do 12497500
pairwise tests. This is one reason that current known direct
interactions are incomplete. High-throughput experimental
techniques (e.g., yeast two-hybrid and coimmunoprecipita-
tion test) can be helpful in this case. Integrated probability
models are also used to predict the protein-protein inter-
actions [1, 2]. Quite a few databases, DIP [3], IntAct [4],
BioGRID [5], HPRD [6], and IntPro [7], are public available

for collecting and storing PPI network data. Researchers [1, 8–
14] are trying to identify conserved patterns such as ortholog
groups and functional similar pathways/complexes across
species using PPI network data. Figure 1 provides an example
of global visualization of protein interaction networks.

The exact solution of identifying conserved regions across
species, that is, the network alignment problem, is NP-hard
[1, 8–14]. This challenge attracts many researchers to find
efficient heuristic solutions for the problem.

A powerful way of representing and analyzing all PPI
network data is to use network models and classical graph-
theoretical approaches [16, 17]. In a PPI network, each protein
is represented as a node and a direct physical interaction
between proteins by an edge. When identifying conserved
patterns across PPI networks, highly similar sequence pro-
teins (homologues) are firstly identified, then conserved
interactions are clustered, and finally functional similarities
of each cluster should be validated.
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Figure 1: global visualization of protein interaction networks (from [15]).

An interesting hypothesis is that highly similar sequence
proteins (homologues) within a species and across species
may perform similar functions. This needs to be justified by
experimental, comparative, and statistical study. This is one
of major purposes of our research. Statistical and computa-
tional analyses of these networks by combination with gene
expression data can be used for inferring biological function
categories, gene ontology, orthologs, clusters, and so forth
[1, 8–14, 18].

Statistical and comparative analysis of PPI networks
across species is proved to be a valuable tool [1, 8–14]. Such
analysis provides more information and easier tools beyond
traditional sequence-based comparative genomic analyses.
Such an analysis can identify conserved interaction regions,
predict protein interactions and functions, and provide gene
ontology (GO) enrichment and so forth.

Most of previous network alignment tools focus on con-
served functional patterns cross species [1, 8, 11, 12] or on
maximizing the overall match between PPI networks globally
such as Isorank [13] and Isorank-M [14]. The existing tools
firstly find the conserved interaction regions by search algo-
rithms and then validate the results by gene annotations such
as gene ontology (GO) [19] or KEGG ortholog (KO) groups
[20].We observe that results that are good for one annotation
(KO, e.g.) may not be good for another (GO). Also scoring
functions that work for one set of parameters of an alignment
may not work for others [8, 9], andmost oftenmanual tuning
is needed. Researchers are still trying to improve the speed
and accuracy of network alignment. In view of this, we intro-
duce an iterative connected-components based algorithm,
HopeMap, aiming to improve the speed, scalability, and
accuracy of the alignment and also propose a generic scoring
system.

In this paper, we explore a new approach to compara-
tive analysis of PPI networks with focus on clustering and
validating functional homologues (genome) with conserved
interactions (interactome). We firstly consider the network

alignment to globally identify conserved interaction in the
close homologues. By close homologues, we mean proteins
in the same homologs are highly similar in terms of sequence
similarity, for example, BLAST E value is much smaller
than 𝑒−7. To this end, KO groups [20] (and INPARANOID
[21] for pairwise) are used for clustering ortholog groups
across species. Even if protein-protein interaction databases
continue to grow in size and species coverage, the size of
true homologous groups will not increase too much but stay
manageable. For example, the current common number of
KO terms for Baker’s yeast (4738 proteins in PPI network)
and fruit fly (7165 proteins in PPI network) is about 767. KO
group is a dynamic system that can easily accept new genes
once they are identified.

As shown in Figure 2, we propose a graph-based algo-
rithm for the network alignment. This clustering and align-
ment algorithm combines information of homolog (genomic
similarity), physical interactions conservation, and equiv-
alent functions (HOPE), and we call our main algorithm
HopeMap.

1.1. Contributions. Our contributions may be in threefolds:
(1) developing a fast, accurate, and general tool for the
network alignment, which can work for both pairwise and
multiple species. Fast means linear computation cost; accu-
rate means the aligned results are highly correct in terms of
known functional annotations; general means the clustering
algorithm is parameter-free and can work for other networks
as well. (2) Proposing a generic scoring system, an open
system to accept new features and to refine the identified
conserved regions across species. (3) Introducing a multiple-
validating approach for functional homologues using known
annotated orthologs and pathways/complexes.

Our approach and focus are different from existing
tools. The existing tools firstly find the conserved interaction
regions by search algorithms and then validate the results by
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Figure 2: 3D alignment guided by physical interaction (interactome), sequence similarity (genome), and functional coherence (functome)
of proteins in the network.

gene annotations (GO, KO). Observing that the size of true
orthologs cross species is small comparing to the total
number of proteins in all species, we take a different approach
in three steps: starting from the similar orthologous clusters
across species, finding conserved interaction regions itera-
tively with a generic scoring system, and validating results
across multiple known functional annotations. Using known
ortholog clustering results such as KO groups reduces the
computational cost of finding sequence similar proteins.
Applying connected-components based algorithm to find
conserved region across species assures a fast approach to
maximize matches across species; it is also a parameter-free
clustering algorithm, unlike most of existing tools, which
need setting different sets of parameters for different align-
ment. Iterative process can be applied to refine the identified
regions. The generic scoring function is an open system; cur-
rently it combines evolutionary evidence such as genomic,
interaction, and functional similarities. It can incorporate
more features in the future if available and necessary.

1.2. Related Work from Pan-Similar Sequences to Functional
Similar Homologues. In general, network alignment may be
classified using following criterions:

(1) in terms of the number of networks aligned: pairwise
or multiple;

(2) in terms of number of nodes aligned simultaneously:
local or global;

(3) in terms of guided models: divergence/duplication
evolution, neighbouring topology in the PPI net-
works, and functional categories MIPS (or GO, KO,
orthologs, etc.).

Table 1 shows a summary of classification of different net-
work alignment tools. Some tools use the combination of pre-
vious three criterions. Our tool currently focuses on global
pairwise alignment guided by interacting and functional sim-
ilar homologues. Extending our tool to multiple alignments
is easy.The history and some future directions in the network
alignment were reviewed in [2].

Alignment of protein-protein interaction networks pas-
sed through two generations: in the first generation, con-
served pathways/complexes between two species are inden-
tified, often called pairwise alignment. PathBLAST [11] is one
of the pioneering works in this field and one of the first

Table 1: A summary of classification of different network alignment
tools.

Tools Local Global Pairwise Guided models
PathBLAST × × Evolution
NetworkBLAST × Evolution
NetworkBLAST-
M × Evolution

MaWish × × Duplication/divergence
Graemlin 1.0 × General evolution

Graemlin 2.0 ×

Evolution, duplication,
and so forth

Isorank × × Evolution
Isorank-M × Evolution
HopeMap × × Evolution, function
Note∗. Formultiple alignment ofHopeMap, only results of yeast/fly/worm are
provided in this paper.We are preparingmore results in ongoing research. In
HopeMap, the global alignment concept is same as in Isorank and Graemlin
2.0.

generation tools in this line. NetworkBLAST [2] extends
PathBLAST to align up to three networks and introduces pro-
bability model for interactions. MaWish focuses on diver-
gence/duplication model guided by the evolution. Graemlin
1.0 introduces an integration probability model to predict the
interactions and can align more than three networks. Above-
mentioned tools are also called local alignment because their
search algorithms for the conserved regions start from small
local regions and then greedily expand. Later, Isorank intro-
duces the global alignment concept by adopting Google
Pagerank algorithm idea to the network alignment. Com-
paring to global alignment that finds maximum matches
across species, local alignment may just findmaximal results.
Another key issue for local search algorithms (Network-
BLAST, NetworkBLAST-M [10], Graemlin 1.0, and Mawish)
is that they produce many overlapped subnetworks which
need to be filtered. The paper [22] applies graph kernels for
pairwise alignment, and [23] extends Mawish pairwise align-
ment.

The first generation aligning tools focus on identifying
conserved interaction regions across species. However, the
accuracy, scalability, and scoring functions of the first gen-
eration tools still have limitations. Most of aligned results do
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Table 2: The PPI networks analyzed in this paper.

Species (tax id, short
name)

Number of
proteins

Number of
PPI Source

E. coli K12 (83333, eco) 4121 216426 SNDB
[22]

S. typhimurium (99287,
stm) 4239 94609 SNDB

[22]
C. crescentus (190650,
ccr) 3365 40524 SNDB

[22]
Yeast (4932, sce) 4738 15417 DIP [13]
Fly (7227, dme) 7165 23484 DIP [13]
Worm (6239, cel) 3029 3393 DIP [13]

not have high sensitivity or specificity in terms of biological
relevance. The first generation tools also used very crude
measurement for the specificity and sensitivity; for example,
a cluster that has more than three proteins with same com-
plexes IDs in MIPS (NetworkBLAST) or KEGG (Graemlin
1.0) is called a pure cluster or correct equivalence class; and if
more than half proteins in a cluster have same GO terms, the
cluster is called GO enrichment.

The second generation aligning tools, such as Graemlin
2.0 and NetworkBLAST-M, are trying to improve both accu-
racy and speed. Previous tools other than NetworkBLAST-
M are also called progressive alignment approach with
exponential possible representations of every set of potential
orthologous proteins, which make them slow and inefficient
of using memory.The computational cost of major algorithm
in Graemlin 2.0 is claimed to be linear with the number of
proteins and PPIs in all the species. Our major algorithm is
linear with the number of nodes and edges in the alignment
graph, which will be introduced later.

As reported in Graemlin 2.0, which may be the only one
to compare results of all tools against KO groups, the speci-
ficity of NetworkBLAST, Graemlin 1.0, MaWish, Isorank, and
Graemlin 2.0 is varying from species to species with average
accuracy (42%, 53%, 57%, 70%, and 81%). However, only KO
(Graemlin 2.0) or GO terms (NetworkBLAST-M) are used
in each tool. It is known that a tool that works fine for one
term (KO or GO) may be not good for another term (MIPS
FunCats [24], e.g.).We introducemultiple validation through
more than one functional annotation; that is, we align
networks using KO groups and validate through GO terms
and MIPS [25] complexes.

Most of existing tools use different scoring systems to sort
the identified subnetworks.NetworkBLAST andGraemlin 1.0
combine testing and prediction of interaction probabilities in
their scoring functions. Isorank uses network structure and
sequence similarity information to score each node. Notice
most of scoring systems need manual parameters tuning,
and Graemlin 2.0 develops an automatic parameters learning
scoring system. We propose a generic scoring function. Cur-
rently it combines evolutionary evidence such as genomic,
interaction, and functional similarities. It can incorporate
more features in the future if available and necessary.

2. Network Alignment Problem Formulation

The network alignment problem has been formulated for-
mally. While there are some variations from one tool to
another, the major ideas are similar: combing gene-sequence
information and PPI network information to find conserved
interaction regions across species. Generally speaking, firstly
similar sequences proteins (based on BLAST scores) are put
into equivalence class groups which may have one-to-many
proteins from a single species, then alignment tools are used
to identify conserved interaction regions across species, and
finally KOgroups orGO terms are used to validate the results.

Each PPI network may be represented as an undirected
graph 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of nodes and 𝐸 is the
set of edges. (𝐺 may be a weighted graph; i.e., a weight
measure 𝑤(𝑒) may be associated with each edge 𝑒 in 𝐸). The
biological interpretation of network alignment is to find func-
tional orthologs or homologues across different organisms. In
analogy with sequence alignment, local and global network
alignment is defined in [9, 13, 14]. In this paper, the global
network alignment approach is applied.

Network comparative study or alignment helps to inter-
pret cellular machineries such as identifying common con-
served interaction pathways or complexes across two ormore
species. Although the general problem is NP-hard, heuristic
methods with the combination of sequence, interaction, and
functional similarities can be developed to tackle it. A net-
work alignment graph can be built across two or more species
based on protein sequence similarity, interaction conserva-
tion, and functional coherence. The nodes in the alignment
graph represent sets of proteins, ideally one from each species
and edges for the conserved PPIs across the compared
species. The heart of network alignment algorithms is to find
the highly conserved interaction regions across homologs
among different species.

As shown in Figure 3, usingKO group for similarity, three
nodes alignment graph of species A and B can be built, and
each node in the alignment graph has two proteins in this
example.Then alignment graph can be simplified as a normal
graph, and connected-components based graph algorithm
therefore can be applied. Connected components in this case
represent conserved patterns. Once connected components
are found in the simple graph, we can go back to alignment
graph and original protein interaction network of each
species to identify conserved patterns in each species.

Highly similar sequence proteins are believed to perform
same biological functions across species. We use them as the
starting point of alignment to find interactions conserved
between orthologs across species. The results are more bio-
logical relevant and can be evaluated through known func-
tional categories or gene ontology.

In graph theory, a connected component of an undirected
graph is a subgraph in which any two vertices are connected
to each other by paths, and which is connected to no addi-
tional vertices. For example, the graph shown in Figure 4 has
three connected components. Especially a graph that is itself
connected has exactly one connected component, consisting
of the whole graph.
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Table 3: A comparison of NetworkBLAST and HopeMap for yeast/fly.

Methods Specificity (%)
in GO

Specificity (%)
in KO

Specificity (%) in
INPARANOID

Number of GO
categories
enriched

Total
conserved
regions

Unique proteins in
alignment graph

1. NetworkBLAST [15]
S. cerevisiae 94.87 N/A 100 54 117 348
D. melanogaster 84.62 N/A 100 43 117 256

2. HopeMap-bestPairs
S. cerevisiae 97.18 N/A 100 51 71 1314
D. melanogaster 76.06 N/A 100 34 71 1314

3. HopeMap—data from 1
S. cerevisiae 98.73 N/A 100 54 79 1645
D. melanogaster 78.48 N/A 100 39 79 1913

4. HopeMap-KO
S. cerevisiae 100.00 100 N/A 20 26 747
D. melanogaster 92.31 100 N/A 19 26 753

Table 4: Specificity and sensitivity results for eco/stm and eco/ccr from HopeMap.

Species Specificity (%)
in GO

Specificity in
KO (%)

Number of GO categories
enriched (𝑃 value < 0.05)

Total conserved
regions

Number of unique
proteins in

alignment graph
E. coli K12 (eco) 100 100 49 58 2085
S. typhimurium (stm) 96.55 100 46 58 2183
E. coli K12 (eco) 95.24 100 37 42 1069
C. crescenttus (ccr) 90.48 100 31 42 1138

Mismatch/substitution

Similar (KO group)

Similar (KO group)

Similar (KO group)

(a) Align species A and species B using KO group

(b) Alignment graph (c) Simple graph of the
alignment graph

Figure 3: Building an alignment graph.

Table 5: Specificity comparison in terms of KO groups for different
alignment tools.

Tools eco/stm eco/cce sce/dme
𝐶eq 𝐶node 𝐶eq 𝐶node 𝐶eq 𝐶node

GrG 0.86 0.86 0.72 0.72 0.68 0.68
ISO 0.91 0.91 0.65 0.65 0.63 0.63
Gr2.0 0.96 0.96 0.78 0.78 0.73 0.73
HopeMap 1.0 1.0 1.0 1.0 1.0 1.0

Table 6: Sensitivity comparison in terms of KO groups.

Tools eco/stm eco/cce sce/dme
𝐶or Tot 𝐶or Tot 𝐶or Tot

GrG 1496 720 384
ISO 2026 1014 534
Gr2.0 2024 1012 637
HopeMap 2159 3151 1061 1365 768 1664

It is straightforward to compute the connected compon-
ents of a graph in linear time using either breadth-first search
or depth-first search. To find all the connected components
of a graph, loop through its vertices, starting a new breadth
first or depth first search whenever the loop reaches a vertex
that has not already been included in a previously found con-
nected component.
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Table 7: A comparison of networkBLAST, NetworkBLAST-M, and
HopeMap for yeast/fly/worm.

Species Specificity
(%) in GO

Number of GO
categories
enriched (𝑃
value < 0.05)

Total
conserved
regions

NetworkBLAST
S. cerevisiae 100 14 59
C. elegans 88 13 59
D. melanogaster 94.9 16 59

NetBLast-M
restriceted

S. cerevisiae 100 29 64
C. elegans 68.8 32 64
D. melanogaster 98.4 37 64

NetBLASt-M relaxed
order

S. cerevisiae 94.6 45 92
C. elegans 67 29 92
D. melanogaster 90.1 41 92

HopeMap-KO
S. cerevisiae 100 15 18
C. elegans 80 5 18
D. melanogaster 88.89 14 18

Table 8: Specificity in MIPS for homologues cluster of yeast/fly in
HopeMap.

Type Note

Homolog clusters 71 Results of HopeMap-bestPairs
in Table 3 for yeast and fly

MIPS complexes 70%

percent of clusters in the same
complexes of MIPS for yeast

(not available for fly)

MIPS FunCats 86%

Percent of clusters in the same
FunCats, using 28 main levels
of FunCats in MIPS for Yeast

MIPS FunCats 76%

Percent of clusters in the same
FunCats using 28 main levels
of FunCats in MIPS for fly and

GO2MIPS conversion
(excluding 30 proteins in fly
without available FunCats)

Table 9: The run-time results for pairwise alignment.

Number of
species

Number of
proteins

Number of
PPI edges

Number of
nodes

Runtime
(sec)

2 8360 311035 3151 35.21

Figure 4: Three connected components in a graph.

3. Our Algorithm: HopeMap

Our algorithm, called HopeMap, can be described as follows
(Figure 5 shows the five-step flow of HopeMap).

(1) The First Step. Obtaining the PPI networks data and pre-
processing them, DIP, IntAct, and SNDB [26], and UniProt
[27], are some of PPI network databases. We need to find all
protein pairs that are interacting with each other in a species
and store them in a sparsematrix to save space. All-against-all
BLAST scores for all the species can be obtained for homolog
clustering of the next step.

(2)TheSecond Step.Finding highly similar sequences proteins
across species. Using homolog clustering to identify homolog
groups across different species based on all-virus-all BLAST
scores and ortholog annotations. To this end, existing tools
such as KO groups and INPARANOID can be used. Our
approach can use any reliable ortholog annotations available;
it is an open system. KO groups are one of the best-known
functional ortholog group annotations across species. Besides
sequence similarity (homolog), all the genes in the same KO
groups perform same functions. Once homolog groups are
identified across species, a network alignment graph can be
built based on them.The nodes in the graph represent sets of
proteins, ideally one from each species in the same homolog
group and edges for the conserved PPIs across the com-
pared species. One way of adding edges between node pairs
(𝑎
1

, 𝑎
2

) and (𝑎
2

, 𝑏
2

) is when both (𝑎
1

, 𝑏
1

) and (𝑎
2

, 𝑏
2

) are
directly interacting with each other in their PPI networks.
Other rules for adding edges can be incorporated such as
those introduced in NetworkBLAST.

(3) The Third Step. Identifying conserved protein interaction
regions in the alignment graph. Global alignment of proteins
homolog groups is applied to identify conserved interaction
regions. The major algorithm is based on finding connected
components (clusters) in the alignment graph.The basic idea
of the connected-component algorithm (Pseudocode 1) is a
depth-first search begins from a start node. The strongly
connected components form the subtrees of the search tree,
the roots of which are the roots of the strongly connected
components. The nodes are placed on a stack in the order in
which they are visited. When the search returns from a sub-
tree, the nodes are taken from the stack, and it is determined
whether each node is the root of a strongly connected
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(1) Input: Graph G = (V, E), Start node v0
(2) index = 0 // DFS node number counter
(3) S = empty // An empty stack of nodes
(4) tarjan (v0) // Start a DFS at the start node
(5) procedure tarjan (v)
(6) v.index = index // Set the depth index for v
(7) v.lowlink = index
(8) index = index + 1
(9) S.push (v) // Push 𝑣 on the stack
(10) For all (v, 𝑣) in E do // Consider successors of v
(11) if (𝑣.index is undefined) // Was successor 𝑣 visited?
(12) tarjan (𝑣) // Recurse
(13) 𝑣.lowlink = min (𝑣.lowlink, 𝑣.lowlink)
(14) elseif (𝑣 in S) // Is 𝑣 on the stack?
(15) 𝑣.lowlink = min (𝑣.lowlink, 𝑣.index)
(16) if (𝑣.lowlink == 𝑣.index) // Is 𝑣 the root of an SCC?
(17) print “SCC:”
(18) repeat
(19) 𝑣

 = 𝑆.pop
(20) print 𝑣
(21) until (𝑣 == v)

Pseudocode 1: Pseudocode of the connected-component algorithm.

Subnetwork search
Maximal conserved
clustering and scoring

Global alignment graph
Homologs clustering
Protein groups: node
PPIs: edge 

Input data processing 
PPI network data
Protein sequence and 
similarity

Results validation
Comparing to known 
functional annotations

GO, KEGG, and so forth

1
2

4 5

3

Subnetworks refining 
Scores>? Yes

Output

No

Scores > threshold?
Alignment refining?

Figure 5: HopeMap network alignment in five steps.

component. If a node is the root of a strongly connected com-
ponent, then it and all of the nodes are taken off before it
forms that strongly connected component.

(4) The Fourth Step. Once connected components (clusters)
in the alignment graph are identified, our scoring system is
used to find high scores subnetworks (clusters). Our scoring
functions of clusters combine genomic similarity score, inter-
action conservation, and functional coherence. It is a nor-
malized function with values in interval [0, 1], so that it is
convenient to compare the scores of different clusters. The
scoring function of a cluster 𝐶 is defined as

Score (𝐶) = 𝑤
1

𝑆 (𝐶) + 𝑤
2

𝐼 (𝐶) + 𝑤
3

𝐹 (𝐶) , (1)

where 𝑆(𝐶) is the sequence similarity score or the average
confidence of homolog nodes in cluster 𝐶, 𝐼(𝐶) is the inter-
action conservation coefficient of cluster 𝐶, 𝐹(𝐶) is the func-
tional coherence score of cluster 𝐶, (𝑤

1

, 𝑤
2

, 𝑤
3

) is the corre-
spondingweight coefficient of 𝑆(𝐶), 𝐼(𝐶), and𝐹(𝐶), and one-
third for each is set as the default.

Similarity Scoring 𝑆(𝐶): Node Scoring.We find highly similar
proteins cross species by identifying close homologues first.
For each node (one protein from each species) of cluster 𝐶 in
the alignment graph, we can find their confidence score based
on BLAST scores or ortholog confidence score as follows:

𝑆 (𝐶) =

∑
𝑘=|𝐶|

𝑘=1

𝑠 (𝑘)

|𝐶|

, (2)
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where 𝑠(𝑘) is the similarity (or ortholog) confidence score of
node 𝑘 in cluster𝐶 and |𝐶| is the size of cluster𝐶. Normaliza-
tion of confidence scores can be done as follows: the average
BLAST score of each cluster is defined as the total BLAST
scores of all nodes in a cluster divided by the size of the cluster.
If a node’s BLAST E value is smaller than the average BLAST
score, its confidence value is set to 1; otherwise, its confidence
value is set to ratio of the average BLAST score to its E value.
Similar approach is applied to each cluster. For simplicity, the
confidence score of a cluster in the alignment graph is set to 1
if all nodes of the cluster are in the same known ortholog an-
notation such as KO groups or INPARANOID; otherwise the
confidence score is set to zero.The same idea can be extended
to other ortholog terms.

InteractionConservation Scoring 𝐼(𝐶): Node andEdge Scoring.
The conserved interactions are edges connecting all nodes
in an identified cluster of the alignment graph. We use only
the ratio of direct interactions conserved in a local cluster;
that is, if all the proteins in a cluster are directly connected,
𝐼(𝐶) is set to 1.0; otherwise, 𝐼(𝐶) is set to the portion of the
direct interactions conserved in the clusters. 𝐼(𝐶) is formally
defined as

𝐼 (𝐶) =

𝑖 (𝐶)

|𝐶| (|𝐶| − 1) /2

, (3)

where 𝑖(𝐶) is the total number of conserved interactions
(defined previously), that is, the total number of edges in
cluster 𝐶, |𝐶| is the number of nodes in the cluster 𝐶, and
|𝐶|(|𝐶|−1)/2 is cliqueness measurement of the cluster𝐶; that
is, if cluster 𝐶 is a clique (a complete graph), then there are
(|𝐶|(|𝐶| − 1)/2) interactions (edges) connecting all nodes.

Since we are comparing scores of all identified subnet-
works, normalization (similar to the sequence similarity)may
be needed; that is, we compute the interaction conservation
coefficient 𝐼(𝐶)first for all the clusters, and thenwenormalize
the 𝐼(𝐶) over all clusters. If the 𝐼(𝐶) of a cluster is larger than
the average 𝐼(𝐶), the 𝐼(𝐶) is reset as 1.0; otherwise, the 𝐼(𝐶)
is reset to the ratio of its original value to the average value of
all clusters.

Functional Coherence Scoring 𝐹(𝐶): Node and Edge Scoring.
Known functional annotations such as GO terms, FunCats
and complexes in MIPS, pathways/complexes in KEGG can
be used as functional coherence score of a cluster. Currently,
we use set intersection over union of the number of GO bio-
logical process terms covered in a cluster of a local species as
the 𝐹(𝐶) as follows:

𝐹 (𝐶) =

Intersection (GO ⋅ process ⋅ terms ⋅ in ⋅ 𝐶)
Union (GO ⋅ process ⋅ terms ⋅ in ⋅ 𝐶)

. (4)

The larger the 𝐹(𝐶), the higher the significance of the cluster
𝐶 in GO process coherence. Normalization similar to the one
used in sequence similarity scores can be applied here for all
compared species too.

Statistical Significance Assessment. To measure the statistical
significance of the score functions, for each cluster (or

ortholog pairs), we randomly sample 𝑁 clusters of the same
size and compute the corresponding scores. Then we find
empirical 𝑃 value of each cluster using the methods intro-
duced in [28, 29]. Typically, the empirical 𝑃 value can be
estimated as 𝑃 = (𝑅+1)/(𝑁+1)where𝑁 is the total number
of random samples and 𝑅 is the number of these samples that
produce a test statistic greater than or equal to the value for
the actual data. Finally the score function can be formulated
as follows:

Score (𝐶) = 𝑤
1

𝑅
𝑆(𝐶)

+ 1

𝑁
𝑆(𝐶)

+ 1

+ 𝑤
2

𝑅
𝐼(𝐶)

+ 1

𝑁
𝐼(𝐶)

+ 1

+ 𝑤
3

𝑅
𝐹(𝐶)

+ 1

𝑁
𝐹(𝐶)

+ 1

,

(5)

where𝑁
𝑆(𝐶)

is the number of sample clusters (ortholog pairs),
𝑅
𝑆(𝐶)

is the number of clusters which have values larger than
𝑆(𝐶), and (𝑁

𝐼(𝐶)

, 𝑅
𝐼(𝐶)

) and (𝑁
𝐹(𝐶)

, 𝑅
𝐹(𝐶)

) are similarly for
𝐼(𝐶) and 𝐹(𝐶), respectively. For equality and simplicity, one-
third is set as default for the weight coefficient of each of three
functions.

Note. The three factors in the scoring system can be applied
alone or in combination. (1) 𝑆(𝐶) currently measures the
functional ortholog groups across species using KO groups.
Basically genes in the same KO groups have same function.
Using 𝑆(𝐶) alone shows how well the nodes in the alignment
graph belong to the same functional orthologs. Graemlin 2.0
[5] therefore measures their nodes in alignment graph using
KO groups. (2) 𝐼(𝐶) is used to measure the interaction con-
servation across species. The higher the 𝐼(𝐶) is, the more
interaction conservation is in a cluster. (3) Using 𝑆(𝐶) + 𝐼(𝐶)
is enough to identify the maximum (global) conserved inter-
action regions across species. (4) 𝐹(𝐶) currently measures
roughly the functional coherence of a cluster in terms of
GO biological processes. The higher the 𝐹(𝐶) is, the more
significant of the cluster is regarding GO terms. Using 𝐹(𝐶)
alone, we can filter some clusters with low scores (e.g., zeros)
to improve the specificity of all identified clusters regarding
functional coherence. (5) Iterationmay be needed to improve
the results based on the combination of three factors. Termi-
nation conditions (convergence conditions) can be based on
the required results.

(5) The Fifth Step. Results validation. Since our homolog
groups are based on known annotation KO groups, currently
we evaluate functional coherence of the identified local clus-
ters in each species using gene ontology (GO). This is part of
local alignment and refinement. To this end, GO TermFinder
tool [30] is used, which computes empirical enrichment 𝑃
values and corrected values formultiple testing using the false
discovery rate procedure. Similar to NetworkBLAST-M, to
measure the specificity of the results in terms of biological
process in GO, the percent of process coherent clusters in
each species is computed. The number of distinct GO cat-
egories covered in all the clusters is used as the sensitivity
metric. Other known functional annotations such as FunCats
and complexes in MIPS, pathways/complexes in KEGG may
also be used as multiple validation.
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After the fourth step, local alignment in each species can
be iteratively applied to improve the score of a cluster if nec-
essary. If an identified cluster has score less than a threshold
(e.g., 0.5), our HopeMap algorithm can be used iteratively to
refine clusters until the score of each cluster is higher than the
threshold. Or GO biological process terms covered in each
cluster can be used as the indicator to keep or remove the
cluster. To be more specific, we can use the intersection over
union (𝐼/𝑈) number of GO biological process terms covered
in each cluster as the threshold to keep or remove the cluster
regardingGO terms. If the value of 𝐼/𝑈 is zero, we can remove
the cluster, otherwise keep it. We call this process iterative
connected-components finding (ICCF). Only two iterations
are currently needed for the convergence.

Ourmajor algorithm is based on strongly connected com-
ponents, and it is well known that the computational cost of
strongly connected-components algorithm is linear with the
number of nodes and edges in the alignment graph [31, 32].

4. Results Analysis

4.1. Inputs: Data Mining from Dozens of Huge Databases.
Same as the interactome data is incomplete and noisy, the
information for the protein/gene sequences, similarity, func-
tional categories, and orthology groups currently is incom-
plete and inconsistent from databases to databases. Even
names and IDs are not used globally but locally from one
database to another. It is time consuming to find useful infor-
mation from one database and cross database. Postprocessing
is indeed necessary. Notice that the number of protein inter-
actions in BioGRID ismuch larger than those inDIP (Isorank
used both). So more numbers (quantity) of interactions con-
servation found in one tool may not mean that the results are
better (in quality) than others.

We download the PPI interaction data from DIP and the
Stanford Network Database (SNDB). We ran pairwise align-
ments of yeast (sce) and fly (dme) DIP networks, Escherichia
coli K12 (eco) and Salmonella typhimurium LT2 (stm) SNDB
networks, and E. coli (eco) and Caulobacter crescentus (ccr)
SNDB networks. We also ran a three-way alignment of the
yeast (sce), fly (dme), and worm (cel) DIP networks. We used
bothKOgroups andGO terms for our alignment comparison
metrics. Table 2 provides a summary of all PPI networks
analyzed in this paper.

4.2. Alignment Results. In Table 3, results of 1, 117 clusters
with node size larger than one, were obtained from the
supplementary material of original publication [15] using
networkBLAST and INPARANOID ortholog groups. The
results of 2 HopeMap-bestPairs were obtained using the same
node data from 117 clusters but choosing 1314 best matching
ortholog pairs only; edges are added between node pairs
(yeast1, fly1) and (yeast2, fly2) only when there are edges
between both yeast pairs (yeast1, yeast2) and fly pairs (fly1,
fly2). Results of 3 were obtained using HopeMap, the same
data from 1, and similar way as NetworkBLAST to add edges
in the alignment graph. The results of 4, HopeMap-KO, were

obtained using KO groups as ortholog groups, and no more
interactions are added in original PPI networks from DIP.

NetworkBLAST used different techniques to add edges in
the alignment graph, so that its total number of conserved
regions is larger than HopeMap. Notice that the number of
conserved regions is just a crude indicator since it depends
on the size of regions. Table 3 shows that specificity and sen-
sitivity in GO terms of HopeMap is comparable to Network-
BLAST, while HopeMap is simpler and faster. Using KO
groups in HopeMap improves the specificity.

In Table 4, we use PPI network data from SNDB for two
pairs, E. coli K12 (eco)/S. typhimurium (stm) and E. coli K12
(eco)/C. crescenttus (ccr). Interaction probability above 0.5
is set as the cutoff. The total number of conserved regions
only includes those sizes larger than two for eco/stm, while
regionswith size larger than one are included for eco/ccr. High
specificity and sensitivity were obtained. The reason may be
that PPI network data from SNDB is quite complete.

The comparison of KO groups against other tools is
provided in Tables 5 and 6. In Table 5, we provide specificity
comparison in terms of KO groups for different global align-
ment tools (comparing to other local alignment tools which
are also available in Graemlin 2.0). The metrics of specificity
and sensitivity in terms of KO groups are introduced in
Graemlin 2.0. In short, an equivalence class is defined as
correct if all protein members in it are in the same KO group.
Then the fraction of equivalence classes that were correct is
shown asCeq,while the fraction of nodes that were in correct
equivalence classes is Cnode in Table 5. Other results than
HopeMap are from original publication of Graemlin 2.0 table
where Gr2.0 is Graemlin 2.0, ISO is Isorank, and GrG is
another version of Graemlin introduced in Graemlin 2.0.

In Table 6, we provide sensitivity comparison in terms of
KO groups for different global alignment tools. Other results
are from original publication of Graemlin 2.0 table. Same
names annotations are used as Table 5.HereCor standards for
the total number of nodes in correct equivalence classes, and
Tot is the total number of equivalence classes with 𝑟 species
for 𝑟 = 2, . . . , 𝑛.

Since HopeMap uses KO groups for homologue cluster-
ing, the results have higher specificity and sensitivity than
other tools.

One observation is that all these measure and calculation
of enrichment are imperfect measures of specificity and
sensitivity, but they work as rough guides to validate that an
aligner is not sacrificing specificity to increase sensitivity or
vice versa.

In Table 7, we provide alignment comparison of yeast/fly/
worm for NetworkBLAST, NetworkBLAST-M, and Hope-
Map. The results of NetworkBLAST and NetworkBLAST-M
are from original publication of NetworkBLAST-M. Notice
that the specificity of C. elegans is smaller than others in all
methods. One reason may be that the PPI network data is
incomplete for it: only about 3393 PPIs are recorded in DIP
for 3029 proteins of C. elegans (worm).

For adding edges in alignment graph, HopeMap uses the
following rule: for any node pair, node (𝑦

1

, 𝑓
1

, 𝑤
1

), and node
(𝑦
2

, 𝑓
2

, 𝑤
2

), the edge between them added at least two pairs
from three species that are directly interacting, and another
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pair has distance at most two in its original PPI networks.
NetworkBLAST and NetworkBLAST-M used different tech-
niques to add edges in the alignment graph. Table 7 shows
that in term of specificity, HopeMap is comparable to Net-
workBLAST andNetworkBLAST-M (which has higher speci-
ficity and sensitivity than Graemlin 2.0 as reported in Net-
workBLAST-M). HopeMap is faster than NetworkBLAST
and NetworkBLAST-M.

In Table 8, we provide another functional annotation val-
idation. Using MIPS complexes and FunCats, we compared
the identified clusters of yeast/fly using HopeMap-bestPairs
in Table 3, where all members in a cluster that are also in
MIPS complexes are counted as 100% coverage; otherwise the
cluster is said not to be covered in MIPS complexes. similar
measure for MIPS FunCats can also be applied. Then we find
the percent of total clusters identifed by HopeMap is also
covered in MIPS complexes and FunCat.

Table 9 shows typical running time of HopMap pairwise
alignmentwhenusing a desktop that has 2GhzPentiumCPU,
1 G byte memory, and 300G byte hard disk.

5. Conclusion

Based on genome similarity across different species, interac-
tome conservations, and functional coherence, we developed
a pairwise network alignment tool, called HopeMap, to
improve the speed, accuracy, and generality of the alignment.
HopeMap is fast; it is linear in terms of the number of nodes
and edges in the alignment graph. Our results show that
HopeMap has specificity and sensitivity comparable with the
existing best-performing tools. Especifically, in terms of GO
terms’ enrichment, HopeMap performs comparably with
NetworkBLAST, and HopeMap has higher specificity and
sensitivity in terms of KO groups’ enrichment than the other
tools. Our scoring system is generic, and the main algorithm
is parameter-free. HopeMap is also extensible to multiple
network alignment.
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