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Abstract

Throughout the history of space exploration, the complexity
of missions has dramatically increased, from Sputnik in 1957
to MSL, a Mars rover mission launched in November 2011
with advanced autonomous capabilities. As a result, the mis-
sion plan that governs a spacecraft has also grown in com-
plexity, pushing to the limit the capability of human operators
to understand and manage it.
However, the effective representation of large plans with mul-
tiple goals and constraints still represents a problem. In this
paper, a novel approach to address this problem is presented.
We propose a new planning paradigm named HTLN, in-
tended to provide a compact and understandable representa-
tion of complex plans and goals based on Timeline planning
and Hierarchical Temporal Networks. We also present the de-
sign of a planner based on HTLN, which enables new plan-
ning approaches that can improve the performance of present
real-world domains.

1 Introduction
In the past decades Automated Planning & Scheduling
(P&S) has become a well studied field. Nevertheless, there is
an important gap between academic and real-world systems
that needs to be continuously bridged in both directions to
make planning theory aware of the complexity of real-world
problems and to transfer innovations in theory to applied
planners. In this paper we consider the planetary rover as an
example of a real-world problem dealing with critical oper-
ations, uncertainty and complex systems and goals that can
be easily generalised to many other real scenarios on Space
and Earth like rescue robots or autonomous vehicles.

The scope of this work is to define a new timeline plan-
ning paradigm for real-world scenarios such as the rover-
world problem, aimed to manage temporal problems with
uncertainty. The objective is to create a Planning & Schedul-
ing System (PSS) able to generate robust plans for execu-
tion, or more specifically, responsive to the uncertainty and
dynamics of the environment. A second objective is to pro-
duce more understandable plans for human experts.

Regarding its design, the PSS must retain sufficient gen-
erality in order to be used to design a knowledge-based,
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domain-independent timeline planner which can take advan-
tages from different planning techniques such as HTN, CSP
or MC.

After studying the problem, we have identified a num-
ber of key planning technologies from both the academic
and applied worlds that represent the ingredients of a new
planning paradigm called Hierarchical Timeline Networks
(HTLN). It is based on hierarchical hypergraphs to represent
the structure of problems, where complex goals in the upper
layers of the hierarchy are decomposed in more specific sub-
goals, grouped together in sub-hypergraphs in lower level
layers.

The paper is organised as follows: first, the planetary rover
problem is described, then the proposed approach is dis-
cussed and the mathematical background of HTLN is in-
troduced. Next, the design of a planner based on HTLN
paradigm is presented. The paper concludes with some fi-
nal remarks and a discussion of future work.

2 Planning for Autonomous Rover Missions
The planetary rover is a type of robot equipped with a loco-
motion system, typically wheeled, to move across hazardous
terrain. Its hardware is divided between payload and plat-
form. The former includes all the instrumentation dedicated
to perform science, while the remaining sub-systems in sup-
port of these activities are considered the platform. They can
serve different purposes both on Earth and space, such as
rescue missions, surveillance or planetary exploration.

We use as a reference a planetary rover scenario with a
single robot that must perform a traverse through uneven,
unknown terrain towards a target, which can be a rock or
geographical feature. The rover then performs a number of
scientific activities such as taking pictures or studying the
chemical composition of samples extracted with a driller.

This scenario shares with other problems in the robotic
domain a number of specific characteristics, listed in Ta-
ble 1, making it very hard from a planning point of view.

In this context, additional effort is required in the man-
agement of the plan complexity for two reasons. First, as
the complexity of plans increases, the capability of hu-
mans to understand and manage them decreases. However,
human operators need to understand the outcome of the
planners and the reasons leading to generate it. This prob-
lem can be addressed by making the planner goal-based



Property Description Field

Uncertainty - Dy-
namic environment

The environment can spontaneously change its state
due to external events

Both

Uncertainty - Partial
observability

Some aspects of the state of the world are unknown.
It has three consequences: Planning based in a com-
plete understanding of the world is not feasible, some
of the assumptions considered during planning might
be wrong and new relevant information for the plan
might be discovered only during execution time

Both

Uncertainty - Non
determinism

Not possible to estimate with precision the outcome of
the robot actions

Both

Hw/Sw/Problem
complexity

The complexity of space missions has increased expo-
nentially (Dvorak 2009; Bajracharya, Maimone, and
Helmick 2008; Aghevli et al. 2006; McCurdy 2009)

Both

Highly constrained Robotic operations required highly constrained models
to avoid malfunctions

Both

Restricted commu-
nications

Some scenarios do not allow continuous or real-time
communications with the robot. For example, the
round trip of a radio signal to Mars takes around forty
minutes

Both

Low CPU perfor-
mance

Space-oriented processors have much lower perfor-
mance than those integrated in conventional computers
(Berger 2009)

Space

Safety The possibilities to recover a mission in case of a
spacecraft failure are very limited. Therefore, safety
and V&V play a major roll in space missions

Space

Table 1: Properties of autonomous robots exploration on
space and Earth

(Dvorak, Amador, and Starbird 2008; Dvorak et al. 2007;
Morris et al. 2006), where goals are organised in a hierar-
chical structure that contains different levels of abstraction
(Ghallab, Nau, and Traverso 2004). Navigating deeper in
the structure allows the operator to learn how complex goals
decompose in sub-tasks. Second, algorithms might be also
benefited, as it is easier to isolate and fix parts of the plan
that fail as a group. Different techniques such as intelligent
backtracking and fast-forwarding can be used in this context.

A higher level of autonomy is crucial to increase the sci-
ence return and decrease mission costs at the same time
(Muscettola et al. 1998; Chien et al. 2006; Davies et al.
2006). However, autonomy comes at a price: the higher the
level of autonomy desired, the higher the complexity of the
system and level of detail in the knowledge to be added. The
problem is that during the design of a planning system, part
of the knowledge of the human experts is not captured. For
this reason the system should be able to collaborate with
experts in a mixed-initiative strategy (Bresina et al. 2003;
2005), where humans can manually add new elements to the
problem and force the planner to satisfy them.

Finally, it must be possible to express the temporal evo-
lution of events and actions. Temporal planners combined
with CSP techniques have demonstrated to be very ef-
fective for problems involving dynamic environments and
have become the main technology in the space domain
(Frank and Jónsson 2003; Fratini, Pecora, and Cesta 2008;
Ghallab and Laruelle 1994). The plans generated must be
flexible to increase the robustness for execution under uncer-
tainty. As a consequence, the PSS should be able to generate
partially defined plans to be further completed once the in-
formation required is available, possibly at execution time,
based on the least commitment principle.

3 Related work in AI Planning
Even though the techniques mentioned before are suitable to
address some of the problems presented in Table 1, none of
them completely satisfies all the characteristics and require-
ments described above. In the specific case of space robotics,
the high cost of a mission plus the fear of losing the space-
craft due to software malfunctions have so far prevented a
deeper integration of these technologies with the exception
of two notorious attempts: Deep Space 1 (Muscettola et al.
1998; Jonsson et al. 2000) and Earth Observation 1 (Chien
et al. 2004; 2005).

Significant work has been conducted in the field of
CSP planning, where different versions of arc and path-
consistency algorithms have been used in several planners
(Mackworth 1977; Bessière 1994; Mohr and Henderson
1986; Singh 1995). Even though stating the planetary rover
as a pure CSP problem is possible, this is not straightforward
and can result in a complex representation. For this reason,
alternative techniques should be taken under consideration
to represent time, uncertainty or goal decomposition.

With respect to hierarchical task networks, HTN planners
have been successfully applied in real problems (Wilkins
and desJardins 2000) such as SIPE-2 (Wilkins et al. 1995) or
O-Plan (Tate, Drabble, and Kirby 1994) but they show some
limitations in dealing with uncertainty as well as temporal
domains and do not allow interaction with human experts.
Even though SIPE-2 can define vagueness with respect to
interval relations in terms of minimum and maximum dura-
tion, our objective is to have a more powerful mechanism to
represent partial plans.

Regarding timeline planners, there are several examples
that have been used in the space sector, such as Aspen
(Chien et al. 1997; Fukunaga et al. 1997), Europa (Frank
and Jónsson 2003) or IxTet (Ghallab and Laruelle 1994;
Laborie and Ghallab 1995), but they are not oriented to un-
certainty or do not provide hierarchical task representation.

For planning under uncertainty two techniques have been
widely used: Markov Decision Processes (MDP) (Cassan-
dra, Kaelbling, and Littman 1994; Boutilier, Dean, and
Hanks 1999) and Model Checking (MC) (Clarke, Long,
and McMillan 1989; Bertoli et al. 2001). The rover prob-
lem presents uncertainty in all its possible dimensions (Ta-
ble 1) making it a crucial aspect of the PSS design. By as-
signing costs and rewards, it is possible to represent desires
about goals, while non determinism is expressed by means
of probabilities assigned to the different choices available to
achieve a goal. However, in MDP the policies (pairs states-
actions) are defined beforehand, which do not represent a
good approximation for real scenarios where the number of
states might be infinite. It seems better to provide a model
of the system and let the planner calculate how to achieve
a specific state, taking into account the model in a similar
way to MC, where policies only contain the states involved
in transitions to achieve the goals.

4 Theoretical background
HTLN relies on the idea of merging timeline planning and
HTN techniques. With respect to timeline planning, HTLN



is based on the formalism of APSI (Fratini, Pecora, and
Cesta 2008). Regarding HTN, we have used cyclic hyper-
graph structures to represent the hierarchical decomposition
of goals into sub-goals (Figure 2).

4.1 Timeline planning principles
In APSI, a PSS requires two inputs: model and problem
and produce one output, the plan. The model contains a for-
mal description of all the systems which activities must be
planned. Each system is modeled as an automaton (named
component in APSI) composed of states (component de-
cisions (cd) in APSI) and relations (rlt) between the cd’s,
which represent a super-set of the classical transitions in au-
tomata theory. Each component has related a timeline that
represents a more or less flexible sequence of cd’s that rep-
resent the plan.

Figure 1: Component Camera automaton

A problem is represented as a decision network (dn), that
is, a graph that contains a set of initial conditions ic repre-
senting facts that the planner does not need to justify, and
goals, which the planner must justify using the model. Both
ic’s and goals are represented as sets of cd’s (the nodes)
and/or rlt’s (the edges) of the graph.

In case all goals are satisfied, the result is a fully supported
dn called plan from which the timelines are extracted.

4.2 Hypergraph theory
Hypergraphs have been widely studied and applied in dif-
ferent areas such as the definition of complex data struc-
tures or optimization (Rugg 1983; Berge 1990; Gallo et al.
1993). They combine graph and set theories (Rugg 1983); it
is a generalization of a graph where a hyperedge can con-
nect any number of nodes and a set whose elements are the
nodes it connects. It is formally defined as H = (N,E),
where N is the set of nodes/hypernodes and E is the set
of hyperedges. The model of hypergraph used here diverges
from the traditional as it contains in addition a second way
for grouping nodes (besides the hyperedge) called hypern-
ode (Damaschke 2009). While hyperedges are used to spec-
ify relations (such temporal or parameter relations) between
nodes, a hypernode is used to represent the group of nodes
in which a complex goal is decomposed. Therefore, a hyper-
node can be managed by the planner as a single node (seen
as a black box) or as a sub-problem.

HTLN structure is organised horizontally with nested hy-
pergraphs and vertically by mean of directed hierarchical hy-
pergraphs.

The former are used to represent the decomposition of
a complex element (problem or goal) in sub-elements. A
super-hypergraph can contain several sub-hypergraphs and
so forth until all the elements of each sub-hypergraph are
simple. The idea behind this structure is to help the plan-
ner to manage all types of element (complex or simple) in
a common way. However, this structure is not sufficient to
represent the evolution of a problem. During the planning
process, each complex goal is replaced by one of its possi-
ble decompositions (sub-goals). It is important to keep track
of this process to backtrack in case the planner finds no solu-
tion. To represent this relation, a tree data structure seems to
be more appropriate than nesting hypergraphs. Nevertheless,
a tree can be generalised as a directed hypergraph removing
the constraints by which nodes must have at most one parent
and no cycles allowed. The resulting structure is a directed
hierarchical set of hypergraphs. Each hypergraph has a set
of parents (except the root) and children (except the leaves),
where a parent represents a less evolved version of the child.

Figure 2 represents the hierarchical hypergraph structure.
Ellipses represent problems and sub-problems while cir-
cles represent goals. Arrows represent the decomposition of
goals into sub-goals while lines represent binary relations
(temporal and parameter). For the sake of simplicity, there
is no relation involving more than two nodes. The nomen-
clature used (represented as labels in the figure) is the fol-
lowing:

- pi and pi+1: Problem at level i and its decomposition
- cds: Simple node (definition in Section 5)
- cdc: Complex node (definition in Section 5)
- d↑ and d↓: Node to be decomposed (parent) and

its decomposition (child). Formally: d↑(to) = d↓ ∧
d↓(from) = d↑(to)

- dnsup and dnsub: super − dn and one of its sub− dn’s
- rdec: Decomposition relation, where the source is a cdc

and the target is a sub − dn. Even though a cdc can be
decomposed in different sub − dn’s, just one is used in
the problem, being the rest inactive d↓

- rtemp, rparam: Temporal and parameter relations respec-
tively

Figure 2: HTLN structure

Following section will present the novelties of HTLN and
some formal definitions.



5 Hierarchical Timeline Networks (HTLN)
HTLN extends the APSI formalism in the following areas:
• Uses a HTN approach, allowing the definition of complex

goals and its decomposition in sub-plans. HTLN defines
three types of decisions which organisation is displayed
in the tree bellow:
- cds: Simple component decision that can be directly

“executed”. It is represented as a node of the graph that
cannot be further decomposed

- cdc: Complex component decision that must be decom-
posed in order to be “executable”. It is represented as a
node of the graph, that is, a node with a set of decom-
position relations

- dn: A decision network represents a special type of de-
cision represented as a hypernode

• Common representation for all relation types, extended as
n-ary relations between sets of cd’s

• HTLN allows partially defined, partially ordered plans in
order to handle uncertainty (see Section 6)

D

CD

cds cdc

DN

dn

5.1 Decision Network (dn)
A dn is represented as a hypergraph which nodes are a set
of cd’s and edges are the set of rlt’s. In order to allow the
definition of hierarchical structures, it can be decomposed in
two different ways (see Figure 2):
- Vertical (level of abstraction): A parent dn (dn↑) repre-

sents a less evolved version of the child (dn↓), that is, dn↓
contains at least the decomposition of one dn↑ complex
goal. Each dn can have several parents, as two dn↓ can be
unified in one single dn, and several children, because a
dn might be decomposed in different ways. There is one
single dn at the highest level in the hierarchical structure,
called problem0, which represents the root of the struc-
ture, and several dn’s at the lowest level, called problemi

(where i is the level in the hierarchy) which represents the
leaves of the structure. In case the planner finds a solution,
it will be in any of the leaves of the structure

- Horizontal (nesting): A super − dn (dnsup) can be de-
composed in an unlimited number of sub− dn’s (dnsub),
nested in different levels. At the same time, each dn can
belong to several dnsup, as different dnsup can share com-
mon goals. There is one single dn at the highest nest-
ing level, called problemi, where i represents the hier-
archical level and several dn’s at the lowest level, called
sub−problemij , where j represents the nesting depth. A
dn represents itself a complex goal that can be managed
as any other goal by the planner
It is formally defined as follows:

dn =
〈
id, {values} , {interval} ,

{nodes} , {edges} , {props}
〉 (1)

where:
- {values}: Values associated to the dn inherited from its

parent d↑, in case dn represents the decomposition of a
cdc with value

- {interval}: Indicates the range of minimum and maxi-
mum time that the execution of this dn should take. It
is either defined as a time horizon for a dn that repre-
sents a problem, inherited from its parent (as it happens
for {values} or derived from its elements in case it rep-
resent a partial problem

- {nodes}: Set of cd’s and dnsub’s involved in the dn
- {edges}: Set of rlt’s in which either the dn or any of its

elements are involved
- {props}: A dn inherits the properties of cd’s. The value

of each property is assigned or retrieved with a specific
function, formally defined as follows: fproperty(dn)
A dn is partially ordered in case any of its cd’s are not

ordered by means of temporal relations with a predecessor
and successor. The predecessor of the first element and the
successor of the last element is their dn, related by means of
Starts and Ends temporal relations respectively (see Al-
gorithm 4). During the specification of a problem or during
planning time, a dn can be added or deleted by the planner
or human user.

5.2 Component Decision (cd)
A cd on a component defines that a state of the component
automaton holds for a given interval of time and can be used
to express goals and constraints. It is formally defined as
follows:

cd =
〈
id, type, {values} , {rlts} , {props}

〉
(2)

where:
- id: Identifies uniquely the cd
- type: Type of cd as defined in Section 5
- {values}: Each state has associated a value defined over a

qualitative or quantitative domain. Notice that the same cd
representation is used to represent actions of a component
or consumption/production of certain resource

- {rlts}: Set of relations that affect this cd
- {props}: A cd can have specific properties such as rel-

evance, uncertainty, parameters, etc. which values are
assigned or retrieved via specific functions, formally:
fproperty(cd)

Like in dn’s, a cd can be added or deleted by the planner
or human user.

dn’s as cd’s
A decision network dn↓1 that represents a decomposition of a
goal d↑1 ∈ CDc inherits the values, relations and properties
of d↑1.

As a consequence, a planner can apply its normal opera-
tors over a set of cd’s viewed as a special node called hyper-
node represented by the dn. This approximation makes the



Type Constraint Directed Arity

Parameter Yes No n-ary

Temporal Yes No n-ary

Decomposition No Yes n-ary

Table 2: Relations in HTLN

PSS more powerful, as it can perform planning over groups
of cd’s, and simpler, as no special code is required to handle
dn’s.

5.3 Relation (rlt)
A relation is used to describe a common property between
some cd’s. It is represented as a hyperedge that joins together
the cd’s involved in the relation. A constraint is a special
type of relation that limits the possible states in which a
component can be and the duration of this status. All rlt’s in
HTLN are n-ary in order to construct more understandable
problems and plans for humans (Little and Ghafoor 1990;
1993).

A relation is formally defined as follows:

rlt =
〈
id, type, {elements} , {props}

〉
(3)

where:
- id: Identifies uniquely the rlt
- type: The relations supported by HTLN are showed in

Table 2
- {elements}: A relation contains a number of elements
ei | 0 < i ≤ n. A n-ary relation is applied iteratively to
each consecutive pair of elements in the following way:
ei rlt ei+1,∀i ∈ [0, n). An element is formally described
as follows: ei =

〈
cd, {values} , {constraints}

〉
- cd: Component decision affected by the relation. It can

be a cdc, cds or dn
- {values}: Values used to delimit the relation. Depend-

ing on the type of relation, these values will be used for
a different purpose. As an example, in the case of tem-
poral relations, the intervals of the relation are defined
as a set of pairs of values

- {constraints}: Each relation might have appended
some constraints

- {props}: A rlt, as a cd, can have specific properties, for-
mally: fproperty(rlt)
Each of the relations are introduced in detail below.

Parameter (fparam). A parameter relation is used to con-
straint the value between the parameters of different cd’s of
the dn. It is represented as a n-ary non-directional constraint.
Formally

rlt =
〈
id, fparam, {elements}, {props}

〉
(4)

where:
- fparam: There are two type of relations: fparam ∈ (=, 6=)

- {elements}: List of parameters involved in the constraint

Temporal (ftemp). In HTLN, temporal constraints repre-
sent a superset covering other types of constraints like tran-
sitions in conventional automata theory or synchronizations
between components (Muscettola 1994). Temporal relations
can be applied to any kind of node, that is, to dn’s, cdc’s and
cds’s.

A temporal constraint is represented as a n-ary, non-
directional constraint. Formally:

rlt =
〈
id, ftemp, {elements} , {props}

〉
(5)

where:
- ftemp: HTLN uses the set of Allen temporal relations:
Equals, Before [l, u], Meets, Starts [l, u], Ends [l, u],
Overlaps [l, u] and Contains [l1, u1] , [l2, u2], being
[l, u] a time interval, where l is the lower bound and u the
upper bound. In the special case of Contains, the first in-
terval defines the time relation between the starting points
and the second the relation between the ending points

- elements: List of elements involved in the constraint

Decomposition (fdec). It represents a relation that is ap-
plied not only to decisions d ∈ D, but also to other relations
in order to generate a more evolved version of the problem.
It is represented as a 1 : n directional relation from a de-
cision n1 ∈ D to a set of decisions {n2}. The type of n2
depends on the type of n1 as follows:

- n1 ∈ CDs ⇒ n2 ∈ CDs: All simple elements are just
copied in the evolved version of the problem

- n1 ∈ CDc ∪ DN ⇒ n2 ∈ DN : A complex element,
either a cdc or dn will be decomposed as a dn

The decomposition relation is formally represented as fol-
lows:

rlt =
〈
id, fprop, {{from}, {to}}, {props}

〉
(6)

The decomposition function relies in some supporting
functions that are presented bellow:
- n1(from): Returns the list of parents of n1
- n1(to): Returns the list of children of n1
- n1(active): Indicates whether the decision n1 is active or

not
- fsup(n1): Returns the list of super − dn of n1
- fsub(n1): Returns the list of sub− dn of n1
- x(nodes): List of nodes of x, where x might be a relation

or decision network
- d(edges): List of relations of a decision d ∈ D
- d(params): List of parameters of the decision d
- fdec: Decomposition function (which follows the rules

defined before)
- fStarts

temp (n1, n2): Defines a Start Start temporal relation
between two decisions

- fEnds
temp (n1, n2): Defines an End End temporal relation

between two decisions



- fsearch(domain, n1): Return the decomposition dn’s for
n1

- x +
= y: Addition of the element y to the list {x}

- x = y: Assigns to x the value of y

In addition to the elements presented in Section 4.2, two
more are used:
- domain: Model of the system containing a description of

all components, its simple decisions cds ∈ CDs, complex
decisions cdc ∈ CDc, decompositions dn ∈ DN and
relations rlt ∈ R

- χ(rlt): Log that stores all the decompositions performed
during planning in support of backtracking in case the
planner cannot find a solution
The following algorithms are in charge of decomposing a

dn into a more evolved version. This decomposition repre-
sents an extra move of the planner in order to transform a
problem into a plan.

Algorithm 1: fdecNode(d
↑, domain)

begin
d↓(active) = true

fcreateDec(d
↑, d↓)

dn↑ = fsup(d
↑)

if dn↑ 6= null then
dn↓ = dn↑(to)

dn↓(nodes)
+
= d↓

else
dn↓ = d↓

if d↑ ∈ DN then
∀d ∈ d↑(nodes), d ∈ D ⇒ fdecNode(d, domain)

∀fr ∈ d↑(edges), fr ∈ {Rparam, Rtemp} ⇒
fdecRel(fr)

Decompose a decision d↑ ∈ D in d↓ ∈ D. The algorithm
is illustrated in Figure 3.

Figure 3: Decomposition of a dn

The algorithm receives as inputs the node to be decom-
posed (d↑) and the decomposition node (d↓), which will be
selected in different ways depending on the type of d↑ (see
5.3:

- d↑ ∈ CDs (simple decision): d↓ contains a copy of d↑

- d↑ ∈ CDc (complex decision): A list of dn candidates
to decompose d↑ is retrieved from domain. One dn is
heuristically selected from this list

- d↑ ∈ DN (decision network): A new dn is created to
store the decomposition elements of d↑

The decision d↓ selected for the decomposition is marked
as active to distinguish it from the rest of options in which
d↑ could be decomposed. Then a decomposition relation be-
tween d↑ and d↓ is defined. Following, the super − dn’s of
d↑ and d↓, named dn↑ and dn↓ respectively, are identified.
Notice that d↑ represents the problem pi in case it has no
super − dn. In this case, d↓ has been previously initialized
to a new dn which represents the evolution of the problem
called pi+1. In case dn↑ 6= null, then d↓ is added to dn↓,
that means, the decomposition node of d↑ is added to a prob-
lem that represents an evolution of the problem in which d↑
is defined. In case d↑ represents a dn, we further decompose
each of its cd’s and rlt’s.

Algorithm 2: fdecRel(f
↑
r )

begin
new f↓r ∈ R

∀d↑ ∈ f↑r (nodes)
begin

d↓ = d↑(to)

f↓r (nodes)
+
= d↓

dn↓(edges)
+
= f↓r

Decompose a relation f↑r ∈ R. The algorithm is illus-
trated in Figure 4.

Figure 4: Decomposition of a relation

First, a new relation f↓r is created of the same type as f↑r .
For each node d↑ involved in f↑r we search its decomposition
node d↓ in dn↓ and assign it to f↓r . Once f↓r contains all the
decomposition nodes of f↑r (nodes), the relation f↓r is added
to the list of relations of dn↓.

Regarding parameter relations, the decomposition of f↑r
in f↓r is very simple as d↓2 will inherit the parameters of d↑2.
With respect to temporal relations (see Algorithm 4), the de-
composition of f↑r in f↓r is equally simple, as d↓2 will inherit
the temporal relations (including the temporal duration) of
d↑2.



Propagate a relation fr ∈ {Rparam, Rtemp}. During
planning, two more algorithms will be required to propa-
gate parameter and temporal relations between a dn and its
cd’s. In order to study how they propagate consider, without
loss of generality, a relation like f↑r in Figure 4 involving
two elements, one of which is a cdc. The generalisation of
this example to n-ary relations involving different cds’s and
cdc’s is straightforward.

Algorithm 3: fpropParamRel(dn
sup, dnew)

begin
∀pari ∈ dnew(params) : ∃parj ∈ dnsup∧pari = parj
begin

new fequals
param ∈ Rparam

fequals
param(from) = pari
fequals
param(to) = parj

dn↓(edges)
+
= fequals

param

The propagation of parameter relations is presented in Al-
gorithm 3. In case there is a parameter pari in the new cd
equal to a parameter parj of the dn (for example, both re-
fer to the speed of the rover), an equal parameter relation
is created between them and added to the set of relations of
dnsup.

Regarding temporal relations, in order to maintain the
consistency between d↓2 and its cd’s, the temporal relation
must be propagated any time a new element is added to d↓2.
Algorithm 4 takes care of it.

Algorithm 4: fpropTempRel(dn
sup, dnew)

begin
if dnsup(order) change to ¬fullyOrdered then

dnsup(edges)
−
=

{fStarts
temp (dnsup, nfirst), f

Ends
temp (dn

sup, nlast)}
dummy1, dummy2 = new cd ∈ CDs

dnsup(nodes)
+
= {dummy1, dummy2}

fStarts
temp (dnsup, dummy1)

fEnds
temp (dn

sup, dummy2)

dnsup(edges)
+
=

{fStarts
temp (dnsup, dummy1), f

Ends
temp (dn

sup, dummy2)}

else if dnsup(order) change to fullyOrdered then
dnsup(edges)

−
=

{fStarts
temp (dnsup, dummy1), f

Ends
temp (dn

sup, dummy2)}

dnsup(nodes)
−
= {dummy1, dummy2}

fStarts
temp (dnsup, nfirst)

fEnds
temp (dn

sup, nlast)

dnsup(edges)
+
=

{fStarts
temp (dnsup, nfirst), f

Ends
temp (dn

sup, nlast)}

In case a new element is added to dnsup, the status of
dnsup is checked. If it has changed to ¬fullyOrdered, the
temporal relations between the first/last cd and dnsup are

removed and two dummy cds’s are created to enforce the
temporal relations between dnsup and its cd’s:
- fStarts

temp (dnsup, dummy1): Indicates that dnsup will start
at the same time as the first of its cd’s

- fEnds
temp (dn

sup, dummy2): Indicates that dnsup will end at
the same time as the last of its cd’s
If the status of dnsup has changed to fullyOrdered,

the dummy cd’s are replaced by the first
and last cd of dnsup and the new relations
fStarts
temp (dnsup, nfirst), f

Ends
temp (dn

sup, nlast) are added
to the list of edges of dnsup.

6 Design of a planner based on HTLN
In this section we summarize the guidelines we identified
in order to exploit the HTLN paradigm. Traditional timeline
planners search for complete valid plans, which can be de-
fined as follows: All variables are grounded, the constraints
are satisfied, all intervals have been sequenced and the plan
has been fully specified to the end of time.

This definition might represent an unachievable condition
for real-world P&S systems. Our PSS is based on the con-
cept of Sufficient Plan, defined as follows: All variables and
relations are sufficiently grounded, all fully grounded rela-
tions are satisfied, all sub-plans are sufficiently decomposed
and all the mandatory goals can be achieved for at least one
specific instantiation of the sufficient plan.

The underlying concepts of this definition are:
- Sufficiently grounded: All decisions d ∈ D and relations
r ∈ R that appear as goals in the problem must spec-
ify whether they should be grounded or not at planning
time. A cd is grounded when its value and parameters
are grounded; a relation is grounded when all its elements
are grounded. A partially grounded relation has two im-
portant consequences: (1) the relation cannot be satisfied,
(2) in case of temporal relations, the resulting dn is par-
tially ordered

- Sufficiently decomposed: A cdc should also specify
whether it must be or not fully decomposed. A cdc is fully
decomposed if all its sub−cd’s are fully decomposed and
partially decomposed in other case

- Valid plan: If there is one instantiation of the partial plan
where every decision and relation can be grounded, all
constraints satisfied, all sub-plans can be fully decom-
posed and all mandatory goals are achieved
This represents an extension of the definition provided in

(Frank and Jónsson 2003), where a partial plan is fully de-
fined up to a certain point called plan horizon, ignoring ac-
tivities that fall outside it. In our case, any goal, decision or
constraint might be partially defined according to an initial
definition, giving the responsibility to the executive to fill in
the gaps prior to the execution.

During the plan expansion, the planner has to add (and
eventually delete) cd’s in order to justify the already existing
goals in the network. As dn’s are managed in HTLN like
cd’s, the planner can reason over groups of goals. In fact,
the planner can add sub − dn’s stored in the KB using the
same methods applied to cd’s.



By reasoning over the underlying graph of an HTLN
problem, it is possible to identify separate sub-problems, al-
lowing the use of parallel planning. As explained in (Dechter
and Pearl 1987), a graphG = (V,E) has a separation vertex
v if there exist vertices a and b, a 6= v, b 6= v such that all
the paths connecting a and b pass through v. A graph that
has a separation vertex is called separable. Let V ′ ⊆ V , the
induced subgraph G′ = (V ′, E′) is called a non-separable
component if G′ is non-separable and if for every larger V ′′,
V ′ ⊆ V ′′ ⊆ V , the induced subgraph G′′ = (V ′′, E′′)
is separable. An efficient algorithm for determining consis-
tency and computing the minimal network is to first find the
non-separable components C1..Cm and then solve each one
of them independently. If all components are consistent, then
the entire network is consistent, and the minimal networks of
the individual components coincide with the overall minimal
network. Taking advantage of HTLN structure, we can use
this technique to isolate independent sub-problems dnsub
and perform parallel planning, where each planner takes care
of a different independent sub-problem.

6.1 Planner design
In classical planning, two types of operators are used to build
a solution from a partial plan: expansion (horizontally) of the
partial plan and fixing flaws. However, in HTLN a plan is a
hierarchical structure which divides the problem in different
levels of abstraction. In order to generate a valid plan, the
planner must generate a valid dn at each level of abstraction.
Therefore, a planner for HTLN should have a third type of
procedure, the decomposition, which expands the plan ver-
tically.

At the same time, the planner requires the following
properties for the cd’s: fisSGround(cd), fisSDec(cd), which
specify whether the cd is sufficiently grounded or decom-
posed, respectively, and factive(cd), that specifies which cd
is active between a set of exclusive cd’s. With respect to
rlt’s, fisSatisfied(rlt) indicates whether the relation is sat-
isfied or not.

Given a problem and model as inputs to the planner (pre-
sented in Algorithm 5), it first divides the problem in inde-
pendent sub-problems by means of the separation vertices.
Each sub-problem is then evolved in parallel and added to
the plan, which is refined while taking into consideration all
the partial modifications.

The strategy to evolve a problem consists of two steps.
First, the flaws (threads or open-goals) at one level of the
problem are computed and fixed (if possible). Once the layer
is valid, the problem is evolved to the next level decompos-
ing a complex goal in subgoals. This task is undertaken by
the vDecomposition method shown in Algorithm 6, which
decomposes cd’s and rlt’s using the algorithms shown in
Section 5.3.

7 Conclusions and Future Work
Real-world problems, and particularly space robotics, man-
age complex and critical systems that present important di-
vergences with respect to theoretical problems. In order to
introduce automated P&S systems in this area, the experts
need to understand and trust the outcomes of the planners.

Algorithm 5: HTLNPlanner(problem, domain, time)
begin

while (time) do
subdns = calcSeparationV ertex(problem)
[parallel]
plan

+
= evolveP (subdnsi, domain, time)

refineP lan(plan)
if (plan.score > best.score) then

best← plan

if (¬best) then
return fail

return solution

Algorithm 6: evolveP(problem, domain, time)
begin

while (time) do
flaws = computeF laws(problem, domain)
fixF laws(problem, domain, flaws, time)
if (flaws 6= ∅) then

return fail

fdecNode(problem, domain)
if (¬problem.isSDec ∨ ¬problem.isSGround)
then

return fail

return problem

return fail

At the same time, we have to increase the flexibility of plan-
ners and plans in order to increase its robustness during plan
execution in uncertain environments with noise information.
Finally, it is becoming crucial to provide instruments to rep-
resent and store the knowledge that will lead the planner
through NP-complete search-spaces using incomplete and
not sound algorithms. We consider that the way problems
and plans are defined and represented constitutes a major
concern that might help to address these issues. This is the
reason that motivated the conception of HTLN as a new
paradigm that defines complex goals as the building blocks
of problems and provide advanced features to define and
connect them. In the future, we are planning to extend the
HTLN paradigm in order to include fuzzy temporal inter-
vals and relations as a complementary tool to represent un-
certainty in execution. A planner which exploits the HTLN
paradigm and follows the guidelines presented in Section 6
is also under development.
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