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Abstract

Non-negative matrix factorization (NMF), with the constraints of non-negativity, has been recently proposed for multi-variate data analysis.
Because it allows only additive, not subtractive, combinations of the original data, NMF is capable of producing region or parts-based
representation of objects. It has been used for image analysis and text processing. Unlike PCA, the resolutions of NMF are non-negative
and can be easily interpreted and understood directly. Due to multiple solutions, the original algorithm of NMF [D.D. Lee, H.S. Seung,
Nature 401 (1999) 788] is not suitable for resolving chemical mixed signals. In reality, NMF has never been applied to resolving chemical
mixed signals. It must be modified according to the characteristics of the chemical signals, such as smoothness of spectra, unimodality of
chromatograms, sparseness of mass spectra, etc. We have used the modified NMF algorithm to narrow the feasible solution region for resolving
chemical signals, and found that it could produce reasonable and acceptable results for certain experimental errors, especially for overlapping
chromatograms and sparse mass spectra. Simulated two-dimensional (2-D) data and real GUJINGGONG alcohol liquor GC-MS data have
been resolved soundly by NMF technique. Butyl caproate and its isomeric compound (butyric acid, hexyl ester) have been identified from the
overlapping spectra. The result of NMF is preferable to that of Heuristic evolving latent projections (HELP). It shows that NMF is a promising
chemometric resolution method for complex samples.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction so the results with negative intensities cannot be reasonably
interpreted.

Principal Component Analysis (PCA) is a basic technique =~ Some multi-variate data resolution techniques, for ex-
in chemometrics for multi-variate data analysis, which can ample, evolving factor analysis (EFA2,3], iterative target
find several latent variables to extract information from the transformation factor analysis (ITTFA2,4—6], generalized
data matrices. The measured data matrix can be factorizedank annihilation factor analysis (GRAFM),8], window fac-
into two factor matrices (score matrix and loading matrix) tor analysis (WFA)Y9,10], Heuristic evolving latent projec-
by PCA. One major problem in applications of PCA is that tions (HELP)[2,11], etc., have made great efforts and devel-
the data in factor matrices are both positive and negative, oped rapidly in recent years. As a result, hyphenated instru-
and the data are represented as linear combinations of thosenents combined with chemometrics algorithms can make it
variables with positive and negative coefficients. In many possible to quantify the complicate analytical system clearly.
cases, the negative components contradict physical realitiesThe methods have been successfully applied to many fields

[2-11]. However, all the methods mentioned above have a

* Corresponding author. Tel.: +86 21 65983987; fax: +86 2165983987, COmmon problem. When they are applied to resolving over-
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within a certain limit. If the peaks are overlapping strongly be a promising method for the resolution of chemical mixed
or completely, the resolution results will be not acceptable. signals.
Some efforts and attempts have been made to improve the
resolution. Non-negative factor analysis was purposed by
Paatero and Tapper to cure the resulting negative factors2. Theory and algorithm
when they performed factor analysis on environmental data.
They proposed to use alternating least squares (ALS) and2.1. Non-negative matrix factorization
positive matrix factorization (PMF) to resolve the problem
[12]. Garrido Frenich et al. applied orthogonal projectionap-  Non-negative matrix factorization is a method to obtain a
proach (OPA), PMF and ALS to resolving multi-component representation of data using non-negativity restraint. The con-
peaks[13]. We have made some successful attempts to ex- straint leads to a parts-based representation because it allows
tract pure components information from the embedded peaksonly additive, not subtractive, combinations of the original
in chromatogram under certain constraifitd]. However, data[1]. Suppose a bilinear matrix is expressedAiyn x m),
it is still a problem to resolve overlapping (in particular where each column is ardimensional non-negative vector
severely or completely overlapping) signals efficiently and ofthe original matrixnvectors). Itis possible to find two new
accurately. matrices YW andH) in order to approximate the original an-

Non-negative matrix factorization (NMF) was introduced alytical matrix Vi, ~ (W x H);, = > _,_1WiaHay. The di-
by Lee and Seung in a paper on unsupervised learningmensions of the factorized matricééandH aren x r and
in 1997. They subsequently developed a simple algorithm r x m, respectively. Usually,is the number of principal com-
for computing the factorizatiofil,15,16] which was ap- ponents. Each column of matri#/ contains a basis vector
plied in image analysi§17—20] The algorithmic details  while each row oH contains the weights needed to approx-
will be introduced in the following sections of this pa- imate the corresponding column \husing the basis from
per. Meanwhile, the algorithm and its applications have al- W. It is well known that PCA can decompose the matrix into
ready been advanced since they were proposed. For intwo factors. However, in the two factorized matrices there
stance, Feng et al. proposed a method called local non-are positive and negative entries simultaneously, and these
negative matrix factorization (LNMF) for learning spatially negative components make the result often unacceptable in
localized, parts-based subspace representation of visual patehemical meanings. In contrast to PCA, NMF does not allow
terns [21]. And Guillamet et al. introduced a weighted negative entries in the factorized matriddsandH, permit-
non-negative matrix factorization (WNMF) for image clas- ting the combination of multiple basis matrices to represent
sification to improve the NMF capabilities of represent- spectra.
ing positive local datg22]. Non-negative matrix factoriza- In order to estimate the factorization matrices, an objective
tion is a technique for dimensionality reduction by plac- function has to be defined. A possible objective function is
ing non-negativity constraints on the matrix. Its idea can given by
be interpreted as decomposing a non-negative matrix 0 om
into two non-negative factorization matric&8 and H. It — : o ,
is assumed that columns W are far fewer than those d ;;Wm 109 (WH)iy. =~ (WH)] @)
in V, and the rows inH are far fewer than those iN,
so the approximation can succeed only if it discovers la- This objective function can be related to the likelihood of
tent structure in the matrix. In other words, NMF is an 9enerating the signals M from the base$V and encodings
analytical method for latent variables and can be intro- H. An iterative approach to reach a local maximum of this
duced into multi-variable analysis like PCA. It can possibly ©Objective function is given by the following rul¢s]:
overcome the problem that the basis vectors have negative (jy |pjtialize matricesW and H randomly under non-
elements. o _ negative condition.

To our knowledge, NMF has not been applied in chemical (i) Calculate the new value o/ by H:
signal resolution. In this paper, we applied NMF to resolving
_S|mulat(_ad two.-d|menS|onaI (2—D_) data (chromatograms were Wi, = Wiy Z Vip Hap, )
in one dimension, spectra were in the other) and actual exper- m (WH);,
imental data. NMF was modified according to the character- ) )
istics of chemical signals, such as smoothness of spectra, uni-(ii)) Normalize W column wisely:
modality of chromatograms and sparseness of mass spectra. Wia
Our results showed that a modified NMF could be introduced Wia = S Wi )
to resolve chemical mixed signals, especially overlapping A
chromatograms and sparse mass spectra. For the resolutior(iv) Calculate the new value ¢ by W resulted from (ii):
of GUJINGGONG alcohol liquor GC-MS data, the result of v,
NMF is preferable to that of Heuristic evolving latent pro- Hyy = Hay Z Wia i (4)
L ) X N . ‘ (WH);
jections. It shows that non-negative matrix factorization will i H
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(v) Repeat from (ii) to (iv) until it converged. dimensional data (GC-MS data were taken as an exam-

he i . h . b ple in this paper) usually can be expressed by a matrix
The iterative process stops once the maximum num erx(mx n)=C(mx 1) x S(r x n), whereX is a bilinear matrix,

of iterations reaches or the_ residual sum of squares betweerb represents chromatograms measurerh aétention time
data matrix V) and reconstituted data matii/(x H) drops s andSrepresents spectra measured signal channels
below a certain threshold. (wavelength onvVz). The data often contain abundant quali-
tative and quantitative information and non-negativity is the
2.2. Characteristics of NMF basic property of the chemical data. There are at least three
issues we must address when NMF is introduced to resolve
Non-negative constraints have been widely used in chemo-the chemical data. The first is that chromatograms or spectra
metrics for curve resolution. Conventional methods, such as are often smooth, in other words, the move trend of the curves
force to zero and non-negativity least squares (NNLS) are js gentle, except for mass spectra and IR spectra. The second
introduced to constrain the calculation results in the iterative s the unimodal nature of chromatograms, for there is only a
procedure or optimization algorithm. It can be called “ex- maximum in the chromatographic profiles of each pure com-
ConStraint”, while it is not the case in non-negative matrix ponent_ The last is the sparseness of mass Spectra, which is
factorization algorithm. NMF can directly obtain a represen- seldom considered. Sparseness means the absorbance is zero
tation of nonnegative data by using multiplies update rules, at some mass valuesmifz(mass/charge), and this is the basic
which can be regarded as “in-constraints”. NMF implemen- property of mass spectra. So, when NMF is introduced to re-
tation is based on elements, not on vectors. It is different solve the chemical data matrix, it must be modified according
from the conventional factor analysis. Just due to it, NMF tg the characteristics of signals: smoothness and unimodality
can learn the local representations of data, and the faCtOf-of Chromatograms and sparseness of mass Spectra_
ization results have realistic physical meaning and can be  One modification of NMF is to introduce curve smooth-
directly understood without additional operations, such as ing in the algorithm. The calculation ¥ andH is carried

‘rotational transformation”. . . out element by element in the iterative process. Because the
We note that the algorithm contains a “serious” feature: vajues ofw andH are initialized randomly, the elements of
the algorithm does not allow that any element of matver WandH at the beginning have no relationship each other. So

matrix H becomes non-zero if one element of original ma- \wandH obtained in the iterative process are zigzag but not
trix V becomes zero. Due to the feature, the iteration cannotsmooth, which contradict the smooth property of continuous
converge or reach correct results. But it will not be a prob- gpectral curves. Measures should be taken to ensur&\that
lem when NMF is applied for chemical curve resolution. If andH obtained in iterative steps have “spectra” shape. So
the initial matricesV andH do not contain zero, the feature five_point mean curve Smoothing was integrated into the it-
can be avoided. In addition, the smoothing (see the following erative procedure in order to get reasonable and acceptable
section) can be contributed to settling down the shortcoming. resolution. For mass spectra, due to the sparse character of

Another feature is that the speed of the algorithm is slow. mass spectra, the curve smoothing was unnecessary.
Typical, some thousands or even tens of thousands of steps  Fyrther modification of NMF is to impose unimodal-
will then be needed for “good” convergence to the optimum ity constraints of chromatograms. The resulting chromato-
of objective functiorf. Practically, itis impossible to expect  graphic profiles €) were inspected to find the global peak
the residual sum of squares between the original dgtarid ~ maximums, one for each profile. Searching in both the for-
the reconstituted datM(H) near zero. But, it is not difficult ward and backward directions from the g|0ba| peak max-
to reach an acceptable threshold under certain experimentalmums for each constituent, unimodality constraints must
error, for example, 1. In that case, hundreds of steps will pe added at point+1, Ci+1,>Ci,, or at pointi—1,
produce satisfactory results. And we take 400 as the maxi-c; _, , >C; ,, if local maximums were encountered, for ex-
mum number of iterations in practice. ample, G, <Ci+1, 0r G, <Ci_1,,then G+1, =Ci,, or

In summary, there are several issues in NMF discussedc; ; ,=C; ,.
above, and the original NMF cannot be introduced into ana-  The last modification of NMF is to impose constraints of
lytical chemistry for curve resolution. Only if nature restraints - sparseness for mass spectra. The data matrix obtained from
of chemical curves, such as smoothness of spectra, unimodalinstrument coupled with mass detection (such as GC-MS) is
ity of chromatograms, sparseness of mass spectra, etc., argparse. This means that there are many zero values in mass
imposed, can NMF be used for curve resolution. This willbe spectra direction. In this case, the resolution of NMF will get

discussed in the following sections. absurd numerical values because data divided by zero occurs
in the iterative process. What we have done to deal with the
2.3. Algorithm improvement problem was to set; 77— = 0 when WH);,, =0 appeared.

After these three madifications, NMF could be applied to

With the development of hyphenated instruments in the resolving chemical spectra data matrix. It should be noted
latest decades, such as HPLC-DAD, GC-MS, etc., two- that NMF cannot give a unigue solution when it is used to
dimensional data become available. The measured two-decompose a matrix into two factorization matrices, and the
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obtained results are in a region. The solutions region variesmaintained at 50C for 5 min, then programmed at&/min

now and then, depending on the degree of peaks overlappingto 180°C, held 10 min and programmed at XO/min to

so these make the factorization matrix hardly interpretable. 220°C, held 10 min. The injector port was maintained at
The algorithm improvements proposed in this section not 250°C and a 2.l volume was injected in the split (1/40)
only help us to obtain a meaningful solution but also to cut mode. Mass spectrometer parameters: electron impact ion-
down the feasible region. This will be discussed in detail in ization mode with 70 eV energyyz50-550; ion source tem-

the later section. perature, 250C; MS Quad temperature, 15Q; scan rate,
0.1 s per scan, electron multiplier voltage 1000 V; solvent de-
lay, 3min.
3. Experimental
3.2. Software
3.1. Data
All the calculations were performed by using programs
3.1.1. Two-dimensional data simulated by Gaussian written by the authors in the Matlab environment (The Math-
profiles works, Natick, USA), running on PC with Intel (R) Pentium4

Gaussian profiles were used as models to simulate two-CPU 2.00 GHz and 256 M RAM. The library searches and
dimensional data for theoretical studies. A 2-D data matrix spectral matching of the resolved pure components were con-
was reasonably modeled by generating Gaussian peaks omlucted on the National Institute of Standards and Technology
the firstdimension (several vectors, for example, two vectors) MS database (NIST 98).
and then making a cross product multiplication with Gaussian
peaks generated on the second dimension (other vectors).

Three cases of HPLC-DAD data matrices of a two- 4. Results and discussion
component system were simulated. These cases were dif-
ferent in chromatographic dimension, which was partially, 4.1. Non-uniqueness
severely and completely overlapping peaks, respectively.

Two-dimensional MS data matrices were modeled by ex- NMF implementation is based on elements. Non-
tracting mass spectra of ethylbenzene pnglene from the unigueness exists in NMF, which is similar to rotational ambi-
NIST MS database and then a cross product multiplication guity of factor analysis. Before the results of NMF are demon-
with two-component peaks was made to produce a 2-D datastrated, the issue of multi-solution may be discussed at first.
matrix. Because the restriction of NMF is only non-negativity, which

In order to compare the results with the original data, the is not a strong constraint, one will obtain different solutions
columns of the simulated and real data were both normalizedfrom the same original matrix in different runs. This issue

by dividing by the maximum element of each column. does not affect the explanation of the results when NMF is
used for image analysis, and it has been seldom mentioned
3.1.2. Real experimental data (GC-MS) in literature. David and Victoris discussed about the assump-

3.1.2.1. Materials.The sample of GUJINGGONG alcohol tions and conditions when NMF could give a correct decom-
liquor (made in Bozhou, Anhwei province, China) was pur- position[23].

chased from a supermarket. When NMF is used to resolve chemical spectra, the results
may be linear combinations of pure components spectra. For
3.1.2.2. Experimental conditiorAbout 150 mlof GUJING- example, the obtained solutions ¥f are linear combina-

GONG liquor was treated with GI€I, three times in turn  tions of the pure component€), as denoted in the equation:
by volumes of 50 ml, 30 ml and 20 ml, respectively. The ex- W=C x B, in which B is a transformation matrix (x r). If
tracted liquids were combined together and concentrated toB is not a diagonal matriXVis a linear combination o, as
about 20 ml; 3% NgCOgz (10 ml) was added to the residualto  shown inFig. 1 There is a feasible region obtained from the
back-extract, and then a small quantity of §Hp was added resolution of two-component overlapping chromatograms by
for laving, which was combined into the extracted liquid ob- NMF, in which all the solutions satisfy the constraint of non-
tained in the former step. It was dried by using anhydrous negativity.
Na; SOy, and concentrated for examination. There is another represent format of multiple solutions in
the resolution of the chemical curw&/andH obtained from
3.1.2.3. Instrumental conditionA Hewlett-Packard 6890  NMF sometimes may be zigzag and not smooth. The reason
gas chromatograph equipped with a HP5973 mass-selectivas that the estimation dfV andH is carried out element by
detection system and a split-splitless injector was used for theelement in an iterative process. Because the valué¢anid
analysis of the studied liquor. A non-polar fused-silica cap- H are usually initialized randomly, the points\@fandH at
illary column, HP-5 (30 mx 25mm i.d.) and 0.2pm film the beginning have no relationship with each other. Zigzag
thickness supplied by Agilent Co., was employed, with he- results are also consistent with the constraints; and the resid-
lium as carrier gas at 1 ml/min. The column temperature was ual sum of squares between the original data mayjxagd
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Fig. 1. Feasible solutions obtained from NMF. The solid lines denote the

ta 66 (2005) 65-73 69
One factor is the correlation between the chemical spec-
tra. If the spectra are uncorrelated or mutually indepen-
dent, the multiple solutions obtained from NMF will be in
a very narrow region, which is acceptable under certain ex-
perimental error. Most mass spectra satisfy the constraint
of independence as exactly as possible. If the data matrix
contains one dimension of mass spectra, the resolution will
be nearly unigue. The other factor is the degree of chro-
matograms overlapping. Practically, the more the degree of
overlapping is, the narrower the feasible region will be gained
when NMF is used to decompose a mixed spectral matrix.
It makes NMF a powerful tool to resolve severely overlap-
ping peaks, and we will illustrate it in detail in the next
sections.

From the above discussions, we can conclude that if the
constraints of chemical characteristics are imposed, the prob-

simulated chromatograms; the dot lines denote the resolved chromatograms|ems of multi-solution may be partially solved. Moreover, if

the reconstructed data matriw/(x H) also may drop below
a certain threshold. But it obviously contradicts the smooth

property of continuous spectra curve, except for mass spectra

Zigzag results are illustrated Fig. 2

As mentioned in Sectio?, in order to improve the accept-
ability and reliability of solutions, we propose to improve
the NMF algorithm by imposing the character of chemi-
cal spectra, such as smoothness of spectra, unimodality o
chromatograms and sparseness of mass spectra. After th
three modifications are taken, NMF can be applied to re-
solving chemical spectra data matrices. It should be noted
that the modified NMF generally cannot give a unique solu-
tion when it is used to resolve chemical spectra. However, in
most cases the obtained results are in a limited region, which
is acceptable under certain experimental error (see the nex
section).

We also find that there are two factors, which affect the
size of the feasible region in mixture components analysis.

Absorbance

40 50 60
Retention time

70 80 90 100

Fig. 2. Zigzag curves obtained from NMF. The zigzag curves denote the
resolved results and the smooth curves denote the original data.

one-dimensional data of the matrix are uncorrelated or mutu-
ally independent, the multiple solutions will be in a very nar-
row region, which is acceptable under certain experimental
error. And for chromatograms, if two peaks overlap strongly,
the results are also still acceptable. So we limit the use of
NMF to LC, GC, MS, IR and a part of UV spectra. More-
over, we can introduce further constraints, such as the eluting
sequence of chromatograms of different components, which

fWiII be discussed in subsequent work.

‘i.z. Simulated HPLC-DAD data matrix

The advent of hyphenated chromatography-detection sys-
tems, such as HPLC-DAD, makes more powerful analyzing
approaches in chromatography possible. These hyphenated
techniques, being capable of generating huge amounts of 2-
b data, allow qualitative and quantitative identification from
spectral propertiesin addition to retentiontime. Thus, they are
extensively applied to many fiel{@4—-29] However, incom-
plete separation or overlapping of chromatographic peaks
is still a likely occurrence for a complex sample. Conse-
quently, it is an eye-catching task to develop a good reso-
lution in hyphenated chromatography-detection systems in
practice.

Three cases of simulated HPLC-DAD data matrices of
two-component systems (each chromatogram contains one
Gauss peak and each spectrum consists of two Gauss peaks)
are discussed, with partially, severely and completely over-
lapping peaks in the chromatograms, respectively. The simu-
lated spectra and the resolved spectra are showigs 3-5

The first case is that of partially overlapping peaks in chro-
matograms and completely overlapping peaks in spectra, as
shown inFig. 3. The two original spectra have the same peak
widths at half height and the degree of chromatographic res-
olution is 1. When the three improvements are implemented,
NMF could give a narrow feasible region in which the resolu-
tion results are acceptable under certain experimental error,
as the conventional resolution methods (such as EFA, HELP,
etc.) do. But it exceeds them when the degree of chromato-
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Fig. 3. Simulated and resolved chromatograms (A) and spectra (B) of the Fig. 5. Simulated and resolved chromatograms (A) and spectra (B) of the
2-D data. The solid lines denote the simulated chromatograms and spectra2-D data. The solid lines denote the simulated chromatograms and spectra,
the dot lines denote the overlapping curves, while the dashed lines representhe dot lines denote the overlapping curves, while the dashed lines represent
the resolved chromatograms and spectra by the NMF. the resolved chromatograms and spectra by the NMF.

graphic resolution is smaller than 0.5, NMF could still give ~ 1he last case is completely overlapping peaks in chro-
reliable results, while the other methods mentioned above Matograms, also called embedded peaks or a peak in another
may not give correct answer. peak, where the assumption of “first-in-first-out” is not satis-

A particular case is showed Fig. 4 There are two peaks fied[27]. No matter how advanced the analytical instruments
with the same peak width at half height, and they were and methods used are and how good the experience of the op-
severely overlappingR=0.1) in the chromatogram and in erator is, this possibly exists in the analytical data. It creates
the spectrum. It appears when chromatographic profiles of difficulty fpr analysts, and how to treat_thg particular elution
two compounds are of similar peak-height and almost of the pattern st|_II remains a problfem. One distinct embedded case
same retention time, and it is quite a troublesome issue for IS Shown inFig. 5. The maximum of two completely over- -
analysts. The solutions of NMF are reasonable and accept/@PPing chromatograms does not appear at the same retention

able while the other methods mentioned above cannot givetime- There are no appropriate methods at present to deal with
acceptable resolutions. the cases efficiently. NMF can succeed in getting reasonable

and acceptable resolution results, which can be seen from

Fig. 5.
2 , TS S—. — As we have mentioned, NMF cannot give a unique reso-
e " A: resolved chfomatograms ) . ) ) . )
- X, - original chromatograms lution in most cases, and the results are in a feasible region in
' o ] overiapping peak which all solutions satisfy the non-negative constraint. The

- feasible region is related to the overlapping degree of the
chromatograms and the nature of the spectra.
We have performed NMF 100 times to resolve the same

5 ry 5 = 5 pre e, case where the chromatographic profiles are completely over-

Absorbance

Retention time lapped, and obtained acceptable resolutions in most cases,
2 — . . — 8 esg . while occasionally we get unreliable results. The results are
: . resolved spectrum L. . K
e - original spectrum shown inFig. 6. Though one does not get a unique solution,
' “OWedepping pesk the obtained solutions are acceptable according to position

- and shape being very similar to the original ones and it was
not difficult to identify the component.

Absorbance

o
2
T

0 5 10 15 20 25 30 35 40 45 50 4.3. Simulated MS data
Wavelength

The mass spectrum technique is applied more and more

Fig. 4. Simulated and resolved chromatograms (A) and spectra (B) of the . . . : -
2-D data. The solid lines denote the simulated chromatograms and spectra;WIdely in analytlcal ChemIStry and other fields. There

the dot lines denote the overlapping curves, while the dashed lines represenfl€ Many zero value_s In mass spectrum, Wh'Ch_ can be
the resolved chromatograms and spectra by the NMF. called sparse. Two-dimensional MS data were simulated
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Fig. 8. Mass spectrum gf-xylene. The resolved spectrum is shown in the
Fig. 6. The resolutions of NMF by carried out 100 times. top and the original spectrum at the bottom.

There were many chromatograms in the data, which sep-
arated ideally and could be analyzed (qualitative analysis)
tdirectly by MSD data analysis software and NIST98 MS
database. There were about 11 kinds of alcohols, 3 kinds

zene ang>-xylene are mixed together at different proportions. ©f aldehydes and 22 kinds of esters, which could be identi-
NMF could succeed resolving the mixture of ethylbenzene fiéd- However, there were also some overlapping peaks in the
andp-xylene, the resolution of the mass spectrum is accept- 42t the matches from direct searching with the NIST MS
able. The matches of ethylbenzene @adylene are 98.1% database were quite low for these chromatographic peaks. If
and 97.2%, respectively, when searching automatically in the tN€S€ overlapping peaks were not resolved, the simple search

NIST MS database. The results are showfFigs. 7 and 8 with the database would fail, since the mass spectra of mix-
respectively. tures measured could not get a good match with that of a pure

componentinthe NIST MS database. Furthermore, since a 2-
) D data obtained by mass spectral measurement unavoidably
4.4. Real GC-MS experimental data contained peaks associated with base line and noise, it was

. i . . difficult to estimate low content components correctly with
Under the experimental condition mentioned in Seclon 14 gatabase.

the GC-MS chromatograms of GUJINGGONG liquor was e took the overlapping peak from 17.40 minto 17.55 min
optalned. Part data ranging 6.38-17.80 min were shown in ;4 4 example. The GC—MS chromatogram was shown in
Fig. 9. Fig. 10 It seemed that there was only one component, but
actually, it was a two-component peak.
ethybenzene Heuristic evolving latent projectionf2,11] has been

i bsslvstide ] widely used to resolved 2-D chromatogram data, which is
based on the chromatographic characters of filling in and
0.5} eluting out to gain selective information of pure component

106 chromatograms and spectra. We have used HELP to resolve
" . R 1 the GC-MS data in this example, and the resolved chro-
0 20 40 80 80 100 120 matograms are shown Fig. 11

The resolution of the chromatogram is still a linear combi-

i Original data | nation of pure components that contain negative and positive
data, which contradicts reality. HELP could not give a rea-
0.5} sonable resolution in this case.

106 NMF is successful in this case. The resolution of chro-

" e o &gl 1 matograms and mass spectra are shoviigs. 12 and 13e-
0 20 40 60 80 100 120 spectively. Resolved by NMF, the match ofgEl200- (butyl

m/z caproate) enhanced from 89.3% to 92.0% in the NIST MS
database, and that of the isomeric compound (butyric acid,
hexyl ester) enhanced from 86.3% to 95.0%.

to validate the application of NMF in sparse spectra data
resolution.

The mass spectrum of ethylbenzene is quite similar to tha
of p-xylene, and it is difficult to identify them when ethylben-

Abundence

m/z

Abundence

Fig. 7. Mass spectrum of ethylbenzene. The resolved spectrum is shown in
the top and the original spectrum at the bottom.
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