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Abstract

Non-negative matrix factorization (NMF), with the constraints of non-negativity, has been recently proposed for multi-variate data analysis.
Because it allows only additive, not subtractive, combinations of the original data, NMF is capable of producing region or parts-based
representation of objects. It has been used for image analysis and text processing. Unlike PCA, the resolutions of NMF are non-negative
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nd can be easily interpreted and understood directly. Due to multiple solutions, the original algorithm of NMF [D.D. Lee, H.S
ature 401 (1999) 788] is not suitable for resolving chemical mixed signals. In reality, NMF has never been applied to resolving
ixed signals. It must be modified according to the characteristics of the chemical signals, such as smoothness of spectra, un

hromatograms, sparseness of mass spectra, etc. We have used the modified NMF algorithm to narrow the feasible solution region
hemical signals, and found that it could produce reasonable and acceptable results for certain experimental errors, especially for
hromatograms and sparse mass spectra. Simulated two-dimensional (2-D) data and real GUJINGGONG alcohol liquor GC–M
een resolved soundly by NMF technique. Butyl caproate and its isomeric compound (butyric acid, hexyl ester) have been identifie
verlapping spectra. The result of NMF is preferable to that of Heuristic evolving latent projections (HELP). It shows that NMF is a p
hemometric resolution method for complex samples.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Principal Component Analysis (PCA) is a basic technique
n chemometrics for multi-variate data analysis, which can
nd several latent variables to extract information from the
ata matrices. The measured data matrix can be factorized

nto two factor matrices (score matrix and loading matrix)
y PCA. One major problem in applications of PCA is that

he data in factor matrices are both positive and negative,
nd the data are represented as linear combinations of those
ariables with positive and negative coefficients. In many
ases, the negative components contradict physical realities,
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so the results with negative intensities cannot be reaso
interpreted.

Some multi-variate data resolution techniques, for
ample, evolving factor analysis (EFA)[2,3], iterative targe
transformation factor analysis (ITTFA)[2,4–6], generalize
rank annihilation factor analysis (GRAFA)[7,8], window fac-
tor analysis (WFA)[9,10], Heuristic evolving latent proje
tions (HELP)[2,11], etc., have made great efforts and de
oped rapidly in recent years. As a result, hyphenated in
ments combined with chemometrics algorithms can ma
possible to quantify the complicate analytical system cle
The methods have been successfully applied to many
[2–11]. However, all the methods mentioned above ha
common problem. When they are applied to resolving o
lapping spectra, the degree of peak overlapping mu
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within a certain limit. If the peaks are overlapping strongly
or completely, the resolution results will be not acceptable.
Some efforts and attempts have been made to improve the
resolution. Non-negative factor analysis was purposed by
Paatero and Tapper to cure the resulting negative factors
when they performed factor analysis on environmental data.
They proposed to use alternating least squares (ALS) and
positive matrix factorization (PMF) to resolve the problem
[12]. Garrido Frenich et al. applied orthogonal projection ap-
proach (OPA), PMF and ALS to resolving multi-component
peaks[13]. We have made some successful attempts to ex-
tract pure components information from the embedded peaks
in chromatogram under certain constraints[14]. However,
it is still a problem to resolve overlapping (in particular
severely or completely overlapping) signals efficiently and
accurately.

Non-negative matrix factorization (NMF) was introduced
by Lee and Seung in a paper on unsupervised learning
in 1997. They subsequently developed a simple algorithm
for computing the factorization[1,15,16], which was ap-
plied in image analysis[17–20]. The algorithmic details
will be introduced in the following sections of this pa-
per. Meanwhile, the algorithm and its applications have al-
ready been advanced since they were proposed. For in-
stance, Feng et al. proposed a method called local non-
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be a promising method for the resolution of chemical mixed
signals.

2. Theory and algorithm

2.1. Non-negative matrix factorization

Non-negative matrix factorization is a method to obtain a
representation of data using non-negativity restraint. The con-
straint leads to a parts-based representation because it allows
only additive, not subtractive, combinations of the original
data[1]. Suppose a bilinear matrix is expressed byV (n× m),
where each column is ann-dimensional non-negative vector
of the original matrix (mvectors). It is possible to find two new
matrices (W andH) in order to approximate the original an-
alytical matrixViµ ≈ (W × H)iµ = ∑r

a=1WiaHaµ. The di-
mensions of the factorized matricesW andH aren× r and
r × m, respectively. Usually,r is the number of principal com-
ponents. Each column of matrixW contains a basis vector
while each row ofH contains the weights needed to approx-
imate the corresponding column inV using the basis from
W. It is well known that PCA can decompose the matrix into
two factors. However, in the two factorized matrices there
are positive and negative entries simultaneously, and these
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egative matrix factorization (LNMF) for learning spatia
ocalized, parts-based subspace representation of visua
erns [21]. And Guillamet et al. introduced a weight
on-negative matrix factorization (WNMF) for image cl
ification to improve the NMF capabilities of represe
ng positive local data[22]. Non-negative matrix factoriz
ion is a technique for dimensionality reduction by p
ng non-negativity constraints on the matrix. Its idea
e interpreted as decomposing a non-negative matV

nto two non-negative factorization matricesW and H. It
s assumed that columns inW are far fewer than thos
n V, and the rows inH are far fewer than those inV,
o the approximation can succeed only if it discovers
ent structure in the matrix. In other words, NMF is
nalytical method for latent variables and can be in
uced into multi-variable analysis like PCA. It can poss
vercome the problem that the basis vectors have neg
lements.

To our knowledge, NMF has not been applied in chem
ignal resolution. In this paper, we applied NMF to resolv
imulated two-dimensional (2-D) data (chromatograms w
n one dimension, spectra were in the other) and actual e
mental data. NMF was modified according to the chara
stics of chemical signals, such as smoothness of spectra

odality of chromatograms and sparseness of mass sp
ur results showed that a modified NMF could be introdu

o resolve chemical mixed signals, especially overlap
hromatograms and sparse mass spectra. For the reso
f GUJINGGONG alcohol liquor GC–MS data, the resul
MF is preferable to that of Heuristic evolving latent p

ections. It shows that non-negative matrix factorization
-

.

egative components make the result often unaccepta
hemical meanings. In contrast to PCA, NMF does not a
egative entries in the factorized matricesW andH, permit-

ing the combination of multiple basis matrices to repre
pectra.

In order to estimate the factorization matrices, an obje
unction has to be defined. A possible objective functio
iven by

=
n∑

i=1

m∑

µ=1

[Viµ log (WH)iµ − (WH)iµ] (1)

This objective function can be related to the likelihood
enerating the signals inV from the basesW and encoding
. An iterative approach to reach a local maximum of
bjective function is given by the following rules[1]:

(i) Initialize matrices W and H randomly under non
negative condition.

(ii) Calculate the new value ofW by H:

Wia = Wia

∑

µ

Viµ

(WH)iµ
Haµ (2)

(iii) Normalize W column wisely:

Wia = Wia∑
jWja

(3)

(iv) Calculate the new value ofH by W resulted from (ii):

Haµ = Haµ

∑

i

Wia

Viµ

(WH)iµ
(4)
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(v) Repeat from (ii) to (iv) until it converged.

The iterative process stops once the maximum number
of iterations reaches or the residual sum of squares between
data matrix (V) and reconstituted data matrix (W× H) drops
below a certain threshold.

2.2. Characteristics of NMF

Non-negative constraints have been widely used in chemo-
metrics for curve resolution. Conventional methods, such as
force to zero and non-negativity least squares (NNLS) are
introduced to constrain the calculation results in the iterative
procedure or optimization algorithm. It can be called “ex-
constraint”, while it is not the case in non-negative matrix
factorization algorithm. NMF can directly obtain a represen-
tation of nonnegative data by using multiplies update rules,
which can be regarded as “in-constraints”. NMF implemen-
tation is based on elements, not on vectors. It is different
from the conventional factor analysis. Just due to it, NMF
can learn the local representations of data, and the factor-
ization results have realistic physical meaning and can be
directly understood without additional operations, such as
“rotational transformation”.

We note that the algorithm contains a “serious” feature:
the algorithm does not allow that any element of matrixWor
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dimensional data (GC–MS data were taken as an exam-
ple in this paper) usually can be expressed by a matrix
X(m× n) = C(m× r) × S(r × n), whereX is a bilinear matrix,
C represents chromatograms measured atm retention time
points andSrepresents spectra measured atn signal channels
(wavelength orm/z). The data often contain abundant quali-
tative and quantitative information and non-negativity is the
basic property of the chemical data. There are at least three
issues we must address when NMF is introduced to resolve
the chemical data. The first is that chromatograms or spectra
are often smooth, in other words, the move trend of the curves
is gentle, except for mass spectra and IR spectra. The second
is the unimodal nature of chromatograms, for there is only a
maximum in the chromatographic profiles of each pure com-
ponent. The last is the sparseness of mass spectra, which is
seldom considered. Sparseness means the absorbance is zero
at some mass values ofm/z(mass/charge), and this is the basic
property of mass spectra. So, when NMF is introduced to re-
solve the chemical data matrix, it must be modified according
to the characteristics of signals: smoothness and unimodality
of chromatograms and sparseness of mass spectra.

One modification of NMF is to introduce curve smooth-
ing in the algorithm. The calculation ofW andH is carried
out element by element in the iterative process. Because the
values ofW andH are initialized randomly, the elements of
W r. So
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atrix H becomes non-zero if one element of original m
rix V becomes zero. Due to the feature, the iteration ca
onverge or reach correct results. But it will not be a p
em when NMF is applied for chemical curve resolution
he initial matricesW andH do not contain zero, the featu
an be avoided. In addition, the smoothing (see the follow
ection) can be contributed to settling down the shortcom

Another feature is that the speed of the algorithm is s
ypical, some thousands or even tens of thousands of
ill then be needed for “good” convergence to the optim
f objective functionF. Practically, it is impossible to expe

he residual sum of squares between the original data (V) and
he reconstituted data (WH) near zero. But, it is not difficu
o reach an acceptable threshold under certain experim
rror, for example, 10−6. In that case, hundreds of steps w
roduce satisfactory results. And we take 400 as the m
um number of iterations in practice.
In summary, there are several issues in NMF discu

bove, and the original NMF cannot be introduced into
ytical chemistry for curve resolution. Only if nature restra
f chemical curves, such as smoothness of spectra, unim

ty of chromatograms, sparseness of mass spectra, et
mposed, can NMF be used for curve resolution. This wi
iscussed in the following sections.

.3. Algorithm improvement

With the development of hyphenated instruments in
atest decades, such as HPLC-DAD, GC–MS, etc.,
imensional data become available. The measured
andH at the beginning have no relationship each othe
andH obtained in the iterative process are zigzag bu

mooth, which contradict the smooth property of continu
pectral curves. Measures should be taken to ensure tW
nd H obtained in iterative steps have “spectra” shape
ve-point mean curve smoothing was integrated into th
rative procedure in order to get reasonable and accep
esolution. For mass spectra, due to the sparse charac
ass spectra, the curve smoothing was unnecessary.
Further modification of NMF is to impose unimod

ty constraints of chromatograms. The resulting chrom
raphic profiles (C) were inspected to find the global pe
aximums, one for each profile. Searching in both the
ard and backward directions from the global peak m

mums for each constituent, unimodality constraints m
e added at pointi + 1, Ci + 1,� > Ci,µ, or at point i − 1,
i − 1,µ > Ci,µ, if local maximums were encountered, for
mple, Ci,µ < Ci + 1,µ or Ci,µ < Ci − 1,µ, then Ci + 1,µ = Ci,µ, or
i − 1,µ = Ci,µ.
The last modification of NMF is to impose constraints

parseness for mass spectra. The data matrix obtained
nstrument coupled with mass detection (such as GC–M
parse. This means that there are many zero values in
pectra direction. In this case, the resolution of NMF will
bsurd numerical values because data divided by zero o

n the iterative process. What we have done to deal with
roblem was to set Viµ

(WH)iµ
= 0 when (WH)iµ = 0 appeared.

After these three modifications, NMF could be applie
esolving chemical spectra data matrix. It should be n
hat NMF cannot give a unique solution when it is use
ecompose a matrix into two factorization matrices, and
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obtained results are in a region. The solutions region varies
now and then, depending on the degree of peaks overlapping,
so these make the factorization matrix hardly interpretable.
The algorithm improvements proposed in this section not
only help us to obtain a meaningful solution but also to cut
down the feasible region. This will be discussed in detail in
the later section.

3. Experimental

3.1. Data

3.1.1. Two-dimensional data simulated by Gaussian
profiles

Gaussian profiles were used as models to simulate two-
dimensional data for theoretical studies. A 2-D data matrix
was reasonably modeled by generating Gaussian peaks on
the first dimension (several vectors, for example, two vectors)
and then making a cross product multiplication with Gaussian
peaks generated on the second dimension (other vectors).

Three cases of HPLC-DAD data matrices of a two-
component system were simulated. These cases were dif-
ferent in chromatographic dimension, which was partially,
severely and completely overlapping peaks, respectively.
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maintained at 50◦C for 5 min, then programmed at 5◦C/min
to 180◦C, held 10 min and programmed at 10◦C/min to
220◦C, held 10 min. The injector port was maintained at
250◦C and a 2�l volume was injected in the split (1/40)
mode. Mass spectrometer parameters: electron impact ion-
ization mode with 70 eV energy,m/z50–550; ion source tem-
perature, 250◦C; MS Quad temperature, 150◦C; scan rate,
0.1 s per scan, electron multiplier voltage 1000 V; solvent de-
lay, 3 min.

3.2. Software

All the calculations were performed by using programs
written by the authors in the Matlab environment (The Math-
works, Natick, USA), running on PC with Intel (R) Pentium4
CPU 2.00 GHz and 256 M RAM. The library searches and
spectral matching of the resolved pure components were con-
ducted on the National Institute of Standards and Technology
MS database (NIST 98).

4. Results and discussion

4.1. Non-uniqueness
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Two-dimensional MS data matrices were modeled by
racting mass spectra of ethylbenzene andp-xylene from the
IST MS database and then a cross product multiplica
ith two-component peaks was made to produce a 2-D
atrix.
In order to compare the results with the original data

olumns of the simulated and real data were both norma
y dividing by the maximum element of each column.

.1.2. Real experimental data (GC–MS)

.1.2.1. Materials.The sample of GUJINGGONG alcoh
iquor (made in Bozhou, Anhwei province, China) was p
hased from a supermarket.

.1.2.2. Experimental condition.About 150 ml of GUJING
ONG liquor was treated with CH2Cl2 three times in tur
y volumes of 50 ml, 30 ml and 20 ml, respectively. The

racted liquids were combined together and concentrat
bout 20 ml; 3% Na2CO3 (10 ml) was added to the residua
ack-extract, and then a small quantity of CH2Cl2 was adde

or laving, which was combined into the extracted liquid
ained in the former step. It was dried by using anhyd
a2SO4, and concentrated for examination.

.1.2.3. Instrumental condition.A Hewlett-Packard 689
as chromatograph equipped with a HP5973 mass-sel
etection system and a split-splitless injector was used fo
nalysis of the studied liquor. A non-polar fused-silica c

llary column, HP-5 (30 m× 25 mm i.d.) and 0.25�m film
hickness supplied by Agilent Co., was employed, with
ium as carrier gas at 1 ml/min. The column temperature
NMF implementation is based on elements. N
niqueness exists in NMF, which is similar to rotational am
uity of factor analysis. Before the results of NMF are dem
trated, the issue of multi-solution may be discussed at
ecause the restriction of NMF is only non-negativity, wh

s not a strong constraint, one will obtain different soluti
rom the same original matrix in different runs. This is
oes not affect the explanation of the results when NM
sed for image analysis, and it has been seldom ment

n literature. David and Victoris discussed about the assu
ions and conditions when NMF could give a correct dec
osition[23].

When NMF is used to resolve chemical spectra, the re
ay be linear combinations of pure components spectra

xample, the obtained solutions ofW are linear combina
ions of the pure components (C), as denoted in the equatio

= C× B, in which B is a transformation matrix (r × r). If
is not a diagonal matrix,W is a linear combination ofC, as

hown inFig. 1. There is a feasible region obtained from
esolution of two-component overlapping chromatogram
MF, in which all the solutions satisfy the constraint of n
egativity.

There is another represent format of multiple solution
he resolution of the chemical curve.WandH obtained from
MF sometimes may be zigzag and not smooth. The re

s that the estimation ofW andH is carried out element b
lement in an iterative process. Because the values ofW and
are usually initialized randomly, the points ofW andH at

he beginning have no relationship with each other. Zig
esults are also consistent with the constraints; and the
al sum of squares between the original data matrix (V) and
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Fig. 1. Feasible solutions obtained from NMF. The solid lines denote the
simulated chromatograms; the dot lines denote the resolved chromatograms.

the reconstructed data matrix (W× H) also may drop below
a certain threshold. But it obviously contradicts the smooth
property of continuous spectra curve, except for mass spectra.
Zigzag results are illustrated inFig. 2.

As mentioned in Section2, in order to improve the accept-
ability and reliability of solutions, we propose to improve
the NMF algorithm by imposing the character of chemi-
cal spectra, such as smoothness of spectra, unimodality of
chromatograms and sparseness of mass spectra. After the
three modifications are taken, NMF can be applied to re-
solving chemical spectra data matrices. It should be noted
that the modified NMF generally cannot give a unique solu-
tion when it is used to resolve chemical spectra. However, in
most cases the obtained results are in a limited region, which
is acceptable under certain experimental error (see the next
section).

We also find that there are two factors, which affect the
size of the feasible region in mixture components analysis.

F e the
r

One factor is the correlation between the chemical spec-
tra. If the spectra are uncorrelated or mutually indepen-
dent, the multiple solutions obtained from NMF will be in
a very narrow region, which is acceptable under certain ex-
perimental error. Most mass spectra satisfy the constraint
of independence as exactly as possible. If the data matrix
contains one dimension of mass spectra, the resolution will
be nearly unique. The other factor is the degree of chro-
matograms overlapping. Practically, the more the degree of
overlapping is, the narrower the feasible region will be gained
when NMF is used to decompose a mixed spectral matrix.
It makes NMF a powerful tool to resolve severely overlap-
ping peaks, and we will illustrate it in detail in the next
sections.

From the above discussions, we can conclude that if the
constraints of chemical characteristics are imposed, the prob-
lems of multi-solution may be partially solved. Moreover, if
one-dimensional data of the matrix are uncorrelated or mutu-
ally independent, the multiple solutions will be in a very nar-
row region, which is acceptable under certain experimental
error. And for chromatograms, if two peaks overlap strongly,
the results are also still acceptable. So we limit the use of
NMF to LC, GC, MS, IR and a part of UV spectra. More-
over, we can introduce further constraints, such as the eluting
sequence of chromatograms of different components, which
w
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a ver-
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o ted,
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t error,
a ELP,
e ato-
ig. 2. Zigzag curves obtained from NMF. The zigzag curves denot
esolved results and the smooth curves denote the original data.
ill be discussed in subsequent work.

.2. Simulated HPLC-DAD data matrix

The advent of hyphenated chromatography-detection
ems, such as HPLC-DAD, makes more powerful analy
pproaches in chromatography possible. These hyphe

echniques, being capable of generating huge amounts
data, allow qualitative and quantitative identification fr

pectral properties in addition to retention time. Thus, the
xtensively applied to many fields[24–29]. However, incom
lete separation or overlapping of chromatographic p

s still a likely occurrence for a complex sample. Con
uently, it is an eye-catching task to develop a good r

ution in hyphenated chromatography-detection system
ractice.

Three cases of simulated HPLC-DAD data matrice
wo-component systems (each chromatogram contain
auss peak and each spectrum consists of two Gauss
re discussed, with partially, severely and completely o

apping peaks in the chromatograms, respectively. The s
ated spectra and the resolved spectra are shown inFigs. 3–5.

The first case is that of partially overlapping peaks in c
atograms and completely overlapping peaks in spect

hown inFig. 3. The two original spectra have the same p
idths at half height and the degree of chromatographic
lution is 1. When the three improvements are implemen
MF could give a narrow feasible region in which the res

ion results are acceptable under certain experimental
s the conventional resolution methods (such as EFA, H
tc.) do. But it exceeds them when the degree of chrom
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Fig. 3. Simulated and resolved chromatograms (A) and spectra (B) of the
2-D data. The solid lines denote the simulated chromatograms and spectra;
the dot lines denote the overlapping curves, while the dashed lines represent
the resolved chromatograms and spectra by the NMF.

graphic resolution is smaller than 0.5, NMF could still give
reliable results, while the other methods mentioned above
may not give correct answer.

A particular case is showed inFig. 4. There are two peaks
with the same peak width at half height, and they were
severely overlapping (R= 0.1) in the chromatogram and in
the spectrum. It appears when chromatographic profiles of
two compounds are of similar peak-height and almost of the
same retention time, and it is quite a troublesome issue for
analysts. The solutions of NMF are reasonable and accept-
able while the other methods mentioned above cannot give
acceptable resolutions.

F of the
2 pectra;
t resent
t

Fig. 5. Simulated and resolved chromatograms (A) and spectra (B) of the
2-D data. The solid lines denote the simulated chromatograms and spectra,
the dot lines denote the overlapping curves, while the dashed lines represent
the resolved chromatograms and spectra by the NMF.

The last case is completely overlapping peaks in chro-
matograms, also called embedded peaks or a peak in another
peak, where the assumption of “first-in-first-out” is not satis-
fied[27]. No matter how advanced the analytical instruments
and methods used are and how good the experience of the op-
erator is, this possibly exists in the analytical data. It creates
difficulty for analysts, and how to treat the particular elution
pattern still remains a problem. One distinct embedded case
is shown inFig. 5. The maximum of two completely over-
lapping chromatograms does not appear at the same retention
time. There are no appropriate methods at present to deal with
the cases efficiently. NMF can succeed in getting reasonable
and acceptable resolution results, which can be seen from
Fig. 5.

As we have mentioned, NMF cannot give a unique reso-
lution in most cases, and the results are in a feasible region in
which all solutions satisfy the non-negative constraint. The
feasible region is related to the overlapping degree of the
chromatograms and the nature of the spectra.

We have performed NMF 100 times to resolve the same
case where the chromatographic profiles are completely over-
lapped, and obtained acceptable resolutions in most cases,
while occasionally we get unreliable results. The results are
shown inFig. 6. Though one does not get a unique solution,
the obtained solutions are acceptable according to position
a was
n

4

more
w ere
a n be
c lated
ig. 4. Simulated and resolved chromatograms (A) and spectra (B)
-D data. The solid lines denote the simulated chromatograms and s

he dot lines denote the overlapping curves, while the dashed lines rep
he resolved chromatograms and spectra by the NMF.
nd shape being very similar to the original ones and it
ot difficult to identify the component.

.3. Simulated MS data

The mass spectrum technique is applied more and
idely in analytical chemistry and other fields. Th
re many zero values in mass spectrum, which ca
alled sparse. Two-dimensional MS data were simu
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Fig. 6. The resolutions of NMF by carried out 100 times.

to validate the application of NMF in sparse spectra data
resolution.

The mass spectrum of ethylbenzene is quite similar to that
of p-xylene, and it is difficult to identify them when ethylben-
zene andp-xylene are mixed together at different proportions.
NMF could succeed resolving the mixture of ethylbenzene
andp-xylene, the resolution of the mass spectrum is accept-
able. The matches of ethylbenzene andp-xylene are 98.1%
and 97.2%, respectively, when searching automatically in the
NIST MS database. The results are shown inFigs. 7 and 8,
respectively.

4.4. Real GC–MS experimental data

Under the experimental condition mentioned in Section3,
the GC–MS chromatograms of GUJINGGONG liquor was
obtained. Part data ranging 6.38–17.80 min were shown in
Fig. 9.

F own in
t

Fig. 8. Mass spectrum ofp-xylene. The resolved spectrum is shown in the
top and the original spectrum at the bottom.

There were many chromatograms in the data, which sep-
arated ideally and could be analyzed (qualitative analysis)
directly by MSD data analysis software and NIST98 MS
database. There were about 11 kinds of alcohols, 3 kinds
of aldehydes and 22 kinds of esters, which could be identi-
fied. However, there were also some overlapping peaks in the
data, the matches from direct searching with the NIST MS
database were quite low for these chromatographic peaks. If
these overlapping peaks were not resolved, the simple search
with the database would fail, since the mass spectra of mix-
tures measured could not get a good match with that of a pure
component in the NIST MS database. Furthermore, since a 2-
D data obtained by mass spectral measurement unavoidably
contained peaks associated with base line and noise, it was
difficult to estimate low content components correctly with
the database.

We took the overlapping peak from 17.40 min to 17.55 min
as an example. The GC–MS chromatogram was shown in
Fig. 10. It seemed that there was only one component, but
actually, it was a two-component peak.

Heuristic evolving latent projections[2,11] has been
widely used to resolved 2-D chromatogram data, which is
based on the chromatographic characters of filling in and
eluting out to gain selective information of pure component
chromatograms and spectra. We have used HELP to resolve
t hro-
m

bi-
n sitive
d rea-
s

hro-
m
s
c MS
d acid,
h

ig. 7. Mass spectrum of ethylbenzene. The resolved spectrum is sh
he top and the original spectrum at the bottom.
he GC–MS data in this example, and the resolved c
atograms are shown inFig. 11.
The resolution of the chromatogram is still a linear com

ation of pure components that contain negative and po
ata, which contradicts reality. HELP could not give a
onable resolution in this case.

NMF is successful in this case. The resolution of c
atograms and mass spectra are shown inFigs. 12 and 13, re-

pectively. Resolved by NMF, the match of C10H20O2 (butyl
aproate) enhanced from 89.3% to 92.0% in the NIST
atabase, and that of the isomeric compound (butyric
exyl ester) enhanced from 86.3% to 95.0%.



72 H.-T. Gao et al. / Talanta 66 (2005) 65–73

Fig. 9. The GC–MS chromatograms of liquor from 6.38 min to 17.80 min.

Fig. 10. The GC–MS chromatogram of liquor from 17.40 min to 17.55 min.

Fig. 11. The resolved GC–MS chromatograms from HELP.

Fig. 12. The resolved GC–MS chromatograms from NMF.

Fig. 13. The resolved mass spectra from NMF.
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5. Conclusion

We have improved the algorithm of non-negative ma-
trix factorization by undertaking the following steps. (1)
Add curves smoothing; (2) impose unimodality constraint
of chromatograms; and (3) setViµ

(WH)iµ
= 0 when (WH)iµ = 0

appears in the iterative process. The improved NMF has
been used to resolve simulated chemical two-dimensional
data and actual experimental GC–MS data. It has been
shown that NMF is a powerful resolution method for over-
lapping chromatograms and mass spectra. When 2-D ma-
trix contains overlapping chromatograms or mutually inde-
pendent spectra, NMF can give reasonable and acceptable
resolutions.

Both methods, PCA and NMF, are based on finding a pro-
jection matrix used to project new vectors. NMF implemen-
tation is based on element-to-element iterative calculations
in which the basis functions are local, while PCA implemen-
tation is based on vector-to-vector decomposition in which
basis functions are global and span the entire domain. The
factorization matrices in NMF are non-orthogonal, while the
factor matrices (score matrix and loading matrix) in PCA
are orthogonal. The problem on PCA is that the data in
the factor matrices have both positive and negative values,
which contradicts physical reality. It must be solved in next
s pec-
t tive
a ctly.
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